
IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 60, NO. 3, MARCH 2014 1447

Lossless Coding for Distributed Streaming Sources
Stark C. Draper, Member, IEEE, Cheng Chang, and Anant Sahai, Member, IEEE

Abstract— Distributed source coding is traditionally viewed in
a block coding context wherein all source symbols are known in
advance by the encoders. However, many modern applications
to which distributed source coding ideas are applied, are better
modeled as having streaming data. In a streaming setting, source
symbol pairs are revealed to separate encoders in real time and
need to be reconstructed at the decoder with subject to some
tolerable end-to-end delay. In this paper, a causal sequential
random binning encoder is introduced and paired with maximum
likelihood (ML) and universal decoders. The latter uses a novel
weighted empirical suffix entropy decoding rule. We derive a
lower bounds on the error exponent with delay for each decoder.
We also provide upper bounds for the special case of streaming
with decoder side information and discuss when upper and lower
bounds match. We show that both ML and universal decoders
achieve the same (positive) error exponents for all rate pairs
inside the Slepian–Wolf achievable rate region. The dominant
error events in streaming are different from those in block-
coding and result in different exponents. Because the sequential
random binning scheme is also universal over delays, the resulting
code eventually reconstructs every source symbol correctly with
probability one.

Index Terms— Distributed source coding, lossless source cod-
ing, Slepian–Wolf coding, streaming data, universal decoding.

I. INTRODUCTION

D ISTRIBUTED source coding, pioneered in its lossless
form by Slepian and Wolf [27] and in its lossy form

by Wyner and Ziv [31], has found use in many applications;
see [6] for a survey. While the standard distributed source
coding paradigm is block-oriented, the data characteristics par-
ticular to certain applications of interest, e.g., video codecs [9],
[14], [19], [20], are streaming in nature. Rather than being
fully realized in advance, the data is realized and encoded in
real time. This motivates the investigation of extensions of

Manuscript received August 5, 2010; revised September 21, 2013; accepted
November 1, 2013. Date of publication December 6, 2013; date of current
version February 12, 2014. This work was supported in part by the National
Science Foundation (NSF) CAREER under Grant CCF-0844539, in part by
the NSF ITR Grant CNS-0326503, and in part by NSF Grant CCF-0729122.
This paper was presented at the 2005 IEEE International Symposium on
Information Theory [8].

S. C. Draper is with the Department of Electrical and Computer Engi-
neering, University of Toronto, Toronto, ON M5S 3G4, Canada (e-mail:
stark.draper@utoronto.ca).

C. Chang was with the Department of Electrical Engineering and Com-
puter Science, University of California Berkeley, Berkeley, CA 94720
USA. He is now with D. E. Shaw, New York, NY 10036 USA (e-mail:
cchang@eecs.berkeley.edu).

A. Sahai is with the Department of Electrical Engineering and Computer
Science, University of California Berkeley, Berkeley, CA 94720 USA (e-mail:
sahai@eecs.berkeley.edu).

Communicated by E.-H. Yang, Associate Editor for Source Coding.
Color versions of one or more of the figures in this paper are available

online at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TIT.2013.2294368

Fig. 1. Streaming distributed source coding. At time i a source pair (xi , yi)
is received at the encoder, Rx and Ry bits are sent by the respective encoders
to the joint decoder, and an estimate of the j th pair (x̂ j [i], ŷ j [i]), for all
j ≤ i , is made. The delay on this estimate is � = i − j . We bound individual
and joint error probabilities as a function of source statistics, Rx , Ry , and �.

distributed source coding to streaming sources which, in its
lossless variant, is the focus of this paper.

The streaming version of the Slepian-Wolf problem studied
in this paper is illustrated in Fig. 1. The sources are modeled
as being embedded in time, integrating the idea that all
physically realizable encoders/decoders must obey some form
of causality. Encoders do not have access to the entire source
realization in advance, rather source symbols continue to arrive
at the encoder during the course of transmission.

Within the model of Fig. 1 we desire a probability of
error that goes to zero for every source symbol, but at the
cost of variable delay. In other words, consider the j th pair
(x j , y j). At any time i ≥ j we want the probability that the
estimate we can make at that time (x̂ j [i], ŷ j [i]) is not correct
to drop exponentially in the delay � = i − j . Achieving
such “anytime” reliability turns out to be key in a number
of distributed control and coordination problems (see, e.g.,
[21], [23]). While those earlier works on anytime reliability
focused on channel coding, herein we ask analogous questions
of distributed source coding.

In this paper, we formally define a streaming Slepian-
Wolf code, and develop coding strategies both for situations
when source statistics are known and when they are not. The
new tool we introduce is a sequential binning argument that
parallels the tree-coding arguments used to study convolutional
codes. We characterize the performance of the streaming
schemes through an error-exponent analysis and demonstrate
the same exponents can be achieved regardless of whether
the system is informed of the source statistics (in which case
we use maximum-likelihood (ML) decoding) or not (in which
case we use universal decoding). The universal decoder we
design for the streaming problem is somewhat different from
those familiar from the block coding literature, as are the
nature of the error exponents in both the universal and ML
cases. The end results is that, essentially, every source symbol
can eventually be recovered correctly with probability one. In

0018-9448 © 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

1448 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 60, NO. 3, MARCH 2014

Fig. 2. The achievable tradeoff between rate, delay, and probability of error
for an i.i.d. source that has a 50% chance of emitting a 0 and a 12.5% chance
of emitting a 1, 2, 3, or a 4. The entropy is 2 bits. The surface represents
what the bounds in this paper achieve.

particular, at any time the decoder can make a causal estimate
of any specific symbol. The decoder can continue to refine
these estimates over time. The bound on erroneous estimation
decays exponentially in the delay, �. The choice of acceptable
delay is up to the user, based on application requirements.

From an engineering perspective, four desirable qualities
of our scheme would be: (i) low-rate transmission, (ii) small
end-to-end latency, (iii) low probability of error, and (iv) low
implementational complexity. As is often the case in infor-
mation theoretic investigations, we will not consider imple-
mentation complexity. The theory we develop does tell us
about the tradeoffs among the first three of these qualities.
In Fig. 2 we illustrate the tradeoff between rate, latency, and
error probability that is revealed by our analysis for a bursty
discrete memoryless source. For simplicity we plot results for
a point-to-point streaming system which can be understood
as the system illustrated in Fig. 1 in the special case where
y is independent of x . In the example, with probability 0.5
the realization of each i.i.d. source symbols xi is 0 and with
probability 0.5 the realization is uniformly distributed across
{1, 2, 3, 4}. The entropy of this source is 2 bits. The surface
plotted in the figure depicts the upper bound on achievable
error probability derived in this paper as a function of rate
and delay.

A. Relation to Prior Work

The system depicted in Fig. 1 is related to models of
delay-constrained source coding studied previously. Perhaps
the most closely related work is that by Weissman and
El Gamal [29]. In [29] the authors consider a variant of
the source coding with side-information problem wherein
the “side-information” sequence yi is revealed directly to
the decoder (rather than through a rate-limited channel as
in Fig. 1). In [29] the encoder observes the full length-n
source realization non-causally. The decoder, however, must
operate causally (or with some look-ahead), estimating source
symbol xi based on the message from the encoder and the

side-information sequence up to some l steps in the future:
y1, . . . , yi+l . The authors find the somewhat pessimistic
results that any finite look-ahead of l is useless in the sense
that the encoding rate Rx must satisfy Rx > H (x) (rather than
Rx > H (x |y)) to ensure that limn→∞ Pr(xn �= x̂n) = 0. This
may seem at first to be at odds with the results of this paper.
We show that we can attain an exponential decay in error,
i.e., Pr(x̂i [i + l] �= xi) ≤ 2−lE(Rx) with positive exponent
E(Rx) > 0 as long as Rx > H (x |y). The resolution is that
our reliability is exponential in delay and not in the absolute
position of the symbol to be estimated in the sequence so,
indeed, limi→∞ Pr(x̂i [i + l] �= xi) ≤ 2−lE(Rx) �= 0.

Another relevant set of work concerns variable-length
Slepian-Wolf coding. In this setting either codeword lengths
or the number of bits transmitted are a function of the
realized source sequence. Our setting is slightly different as
our encoders operate at fixed rates and it is the decision time
that can be variable. While one use of variable-length coding in
classic source-coding is to attain zero-error compression (e.g.,
by using Huffman codes) variable-length coding does not, in
general, enable zero-error Slepian-Wolf coding at rates close
to the conditional entropy. This result can be inferred from the
interactive data compression setting of [13] where it is shown
that, in general, a zero-error variant of the source-coding with
side-information problem is possible only if Rx ≥ H (x).
Applying the result twice reveals that Rx + Ry ≥ H (x)+ H (y)
to get zero-error for the Slepian-Wolf problem of Fig. 1. One
should note that, just as is the case for zero-error channel
coding, when certain symbol pairs are known to have zero
probability, there are special cases where zero-error Slepian-
Wolf coding is possible [17]. But, while not getting to zero
error, variable-length coding can sometimes help in a second-
order sense. A Slepian-Wolf code with codewords of different
lengths is used in [15] to reduce the redundancy of the code,
i.e., the rate above the conditional entropy used at finite n. The
extra usefulness of variable over fixed-length coding depends
somewhat naturally on a combination of the non-uniformity of
the x-source and the conditional deviation of the output from
its marginal given each source observation. These two effects
interact, see Remark 10 of [15] and some remarks following
Theorem 5 in Section III. Finally, we note that if interaction is
allowed between the encoder and decoder, then variable-length
approaches have been studied that adapt the encoding rates in
an on-line manner to deal with, say, unknown statistics. See,
e.g., [7], [10], [26], [32].

Finally, we note that recently constructions of causal
encoders of the type considered in this paper have been
considered. Since the analysis herein depends only on pairwise
error probability, linear codes suffice. Causal encoding and
a linear structure means that the parity-check matrix of the
code must have a lower-diagonal design. Such a design in the
somewhat different context of interactive source coding with
decoder side information is considered in [18]. More closely
related is the discussion of linear anytime codes considered
recently in [28]. By constraining the codes to have a Toeplitz
structure, which in effect means that the codes are time-
invariant convolutional codes of growing constraint length,
the authors demonstrate the existence of semi-infinite causal

DRAPER et al.: LOSSLESS CODING FOR DISTRIBUTED STREAMING SOURCES 1449

linear codes for the binary-erasure and binary-symmetric chan-
nels. The erasure channel also affords an efficient decoding
algorithm. This allows the selection of deterministic codes, in
contrast to the random constructions considered in this paper.
Efficient decoding of the family of codes considered herein
was also considered in [25].

B. Outline

In Section II we review classic results on error exponents
for fixed-block Slepian-Wolf source coding. In Section III
we state the main result of the paper on error exponents for
streaming Slepian-Wolf source coding and connect back to the
form of the block coding exponents provided in Section II.
In Section IV we present illustrative numerical results, includ-
ing more detailed discussion of the example of Fig. 2. The
theorems of Section III are proved in Sections V and VI.
Section V begins by deriving results for point-to-point stream-
ing source coding. This is the simplest case and provides
insights into the nature of sequential source coding problem
and associated error events. We show that the streaming error
exponent is the same as the random block source coding
error exponent. In Section V-E we consider point-to-point
streaming source coding when side-information is available
at the decoder. In Section VI we present the proof of the
main result of the paper on the error exponents of distributed
streaming source coding for correlated sources. For all three
scenarios, point-to-point source coding, decoding with side-
information, and distributed source coding, both maximum
likelihood (ML) and universal decoding rules are studied. We
defer the proofs of some lemmas to the appendices where, in
addition we show that the error exponents achieved by the ML
and universal decoders are, in fact, the same.

C. Notation

We use serifed-fonts, e.g., x to indicate sample values,
and sans-serif, e.g., x , to indicate random variables. Bolded
fonts are reserved to indicate sample or random vectors, e.g.,
x = xn and x = xn , respectively, where the vector length
(n here) is understood from the context. Subsequences, e.g.,
xl, xl+1, . . . , xn are denoted as xn

l where x j
i � ∅ if i > j . Dis-

tributions are indicated with lower-case p, e.g., x is distributed
according to px(x). We use script font to denote sets, X , F ,
W , etc., their cardinality by, e.g., |X |, and reserve E and D to
denote encoding and decoding functions, respectively. We use
standard notation for types, see, e.g., [5]. Let N(a; x) denote
the number of symbols in the length-n vector x that take on
value a. Then, x is of type P if P(a) = N(a; x)/n. The
type-class, or set of length-n vectors of type P is denoted TP .
A sequence y has conditional type V given x if N(a, b; x, y) =
N(a; x)V (b|a) = n P(a)V (b|a) for every a, b. The set of
sequences y having conditional type V with respect to x
is called the V -shell of x and is denoted by TV (x). When
considered together, the pair (x, y) is said to have joint type
V × P . We always use upper-case, e.g., P and V , to denote
length-n types and conditional types. As we often discuss the
types of subsequences we add a superscript notation to remind
the reader of the length of the subsequence in question. If, for

instance, the subsequence under consideration is xn
l we write

xn
l ∈ TPn−l . Similarly we use V n−l for the conditional type

of length-(n − l + 1), and V n−l × Pn−l for the joint type.
Given a joint type V × P , entropies and conditional entropies
are denoted as H (P) and H (V |P), respectively. Alternately,
the empirical joint entropy of a pair of sequences (xn, yn) is
denoted H (xn, yn). The entropy of a Bernoulli-p distribution
is denoted as HB(p). Generally we assume the natural-base for
our logarithms, expressing entropies in nats. The one exception
is in Section IV where we use bits since one of our prominent
examples is binary. The Kullback Leibler (KL) divergence
between two distributions q and p is denoted by D(q‖p).
Finally, | · |+ is used as shorthand to denote max(·, 0).

II. BACKGROUND RESULTS

In this section we review classical definitions and error
exponent results for distributed block coding. In later sections
we refer back to these results to contrast them with the results
from the streaming framework.

In the classic block-coding Slepian-Wolf paradigm, length-
N vectors x and y are observed by their respective encoders
before communication commences. In this situation a rate-
(Rx , Ry) length-N block source code consists of an encoder-
decoder triplet (E x

N , E y
N ,DN):

Definition 1: A randomized length-N rate-(Rx, Ry) block
encoder-decoder triplet (E x

N , E y
N ,DN) is a set of maps

E x
N : X N → {0, 1}N Rx , e.g., E x

N (x N) = aN Rx

E y
N : YN → {0, 1}N Ry , e.g., E y

N (y N) = bN Ry

DN : {0, 1}N Rx × {0, 1}N Ry → X n × Yn,

e.g., DN (aN Rx , bN Ry) = (x̂ N , ŷ N)

where common randomness, shared between the encoders and
the decoder is assumed. This allows us to randomize the
mappings independently of the source sequences.

While we state Definition 1 only for Slepian-Wolf coding,
it immediately specializes to source coding with decoder
side information (dropping the E y

N and revealing y N to the
decoder), and point-to-point source coding without side infor-
mation (dropping the E y

N).
The standard error probability considered in Slepian-

Wolf coding is the joint error probability, Pr[(x N , y N) �=
(x̂ N , ŷ N)] = Pr[(x N , y N) �= DN (E x

N (x N), E y
N (y N))]. In this

paper we also consider the marginal error events Pr[x N �= x̂ N]
and Pr[y N �= ŷ N]. Distinguishing between these events is of
interest in applications where x and y are decoded jointly, but
used individually. All probabilities are taken over the random
source vectors as well as the randomized mappings. A joint
error exponent E is said to be achievable if there exists a fam-
ily of rate-(Rx , Ry) encoders and decoders {(E x

N , E y
N ,DN)},

indexed by N , such that

lim
N→∞ − 1

N
log Pr[(x N , y N) �= (x̂ N , ŷ N)] ≥ E . (1)

Similarly, a marginal exponent E is achievable for source x N if

lim
N→∞ − 1

N
log Pr[x N �= x̂ N] ≥ E . (2)

1450 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 60, NO. 3, MARCH 2014

In this paper, we study random source vectors (x, y) that
are i.i.d. across time but may have dependencies at any given
time:

px,y(x, y) =
N∏

i=1

px ,y (xi , yi).

For such i.i.d. sources, upper and lower bounds on the
achievable error exponents are derived in [5], [12], [16]. These
results are summarized by the following theorems.

Theorem 1: Given rate pair (Rx , Ry), there exists a ran-
domized encoder-decoder triplet (per Definition 1) that satisfy
the following three decoding criteria:

(i) For all E < Ebl,x(Rx , Ry), there is a constant K > 0
such that Pr[x̂ N �= x N] ≤ K exp{−N E} where

Ebl,x (Rx , Ry)

= min

{
sup

0≤ρ≤1
Ex |y(Rx , ρ), sup

0≤ρ≤1
Exy(Rx , Ry, ρ)

}
. (3)

(ii) For all E < Ebl,y(Rx , Ry) there is a constant K > 0
such that Pr[ŷ N �= y N] ≤ K exp{−N E} where

Ebl,y(Rx , Ry)

= min

{
sup

0≤ρ≤1
Ey|x(Ry, ρ), sup

0≤ρ≤1
Exy(Rx , Ry, ρ)

}
. (4)

(iii) For all E < Ebl,xy(Rx , Ry) there is a constant K > 0
such that Pr[(x̂ N , ŷ N) �= (x N , y N)] ≤ K exp{−N E} where

Ebl,xy(Rx , Ry)

= min

{
sup

0≤ρ≤1
Ex |y(Rx , ρ), sup

0≤ρ≤1
Ey|x(Ry, ρ),

sup
0≤ρ≤1

Exy(Rx , Ry, ρ)

}
. (5)

In the above,

Exy(Rx , Ry, ρ) = ρ(Rx + Ry)−log
[∑

x,y

pxy (x, y)
1

1+ρ

]1+ρ
(6)

Ex |y(Rx , ρ) = ρRx −log
[∑

y

[∑

x

pxy (x, y)
1

1+ρ

]1+ρ]
(7)

Ey|x(Ry, ρ) = ρRy −log
[∑

x

[∑

y

pxy (x, y)
1

1+ρ

]1+ρ]
. (8)

As long as (Rx , Ry) is in the interior of the achievable
Slepian-Wolf region, i.e., Rx > H (x |y), Ry > H (y |x) and
Rx + Ry > H (x, y), cf. [4], [27], all the above exponents are
positive. Upper bounds on the error exponents are provided
in [5], and match the lower bounds when the rate pair (Rx , Ry)
is within, but close to the boundary of, the achievable region.
This is analogous to the high-rate regime in channel coding
where the random coding and sphere-packing bounds match.

Theorem 1 can be used to generate bounds on the exponent
for source coding with decoder side information (i.e., y
observed at the decoder), and for source coding without side
information (i.e., y is a constant). These corollaries will serve
as a basis for comparison as we build toward the complete
solution for streaming Slepian-Wolf systems.

Corollary 1: Consider a Slepian-Wolf problem where y is
known by the decoder. Given a rate Rx , then for all

E < sup
0≤ρ≤1

ρRx − log
[∑

y

[∑

x

pxy (x, y)
1

1+ρ

]1+ρ]
(9)

there exists a family of randomized encoder-decoder mappings
as defined in Definition 1 such that (2) is satisfied.

The proof of Corollary 1 follows from Theorem 1 by
letting Ry be arbitrarily large. Note that the exponent in (9)
is identical to Ex |y(Rx , ρ) in (6), which given an operational
meaning to that exponent. That exponent bounds the event that
x is decoded incorrectly while y is decoded correctly.

Next let y be deterministic, e.g., px ,y (x, y) =
px |y (x |y)1[y = a] for some a ∈ Y where 1[·] is the indicator
function. Then it follows that H (x) = 0, H (x |y) = H (x) and,
specializing the form of Ex |y(Rx , ρ) to this distribution, we
get the following random-coding bound for the point-to-point
case of a single source x.

Corollary 2: Consider a Slepian-Wolf problem where y is
deterministic, i.e., y = y. Given a rate Rx , then for all

E < sup
0≤ρ≤1

ρRx − log
[∑

x

px (x)
1

1+ρ

]1+ρ
(10)

there exists a family of randomized encoder-decoder triplet as
defined in Definition 1 such that (2) is satisfied.

Gallager [12] and Koshelev [16] initiated the study of the
error exponents of ML decoding for Slepian-Wolf systems,
Gallager for source coding with decoder side information, and
Koshelev for the two-encoder Slepian-Wolf problem. The joint
decoding bound (5) is from [16] where (in the case of ML
decoding considered therein) the constant K = 1. Koshelev
did not consider the marginal exponents (3) and (4), but those
can be extracted immediately from his derivation. As might be
guessed from the discussion following Corollary 1, Koshelev
partitions the joint error event (1) into three constituent events:
(a) both x̂ N and ŷ N are erroneous, (b) only x̂ N is erroneous,
(c) only ŷ N is erroneous. Respectively, the exponents bound-
ing each of these events are given in (6)–(8). By ignoring either
of the latter two events one get the marginal error bounds. For
example, ignoring event (c) and accounting for events (a) and
(b) leads to a bound on the event that only x̂ N is erroneous,
and to the error exponent of (3).

It is well known in the literature [5] that the results of The-
orem 1 and Corollaries 1 and 2 can be achieved by universal
decoders as well as ML decoders. Universal decoding results
are often derived using the methods of types, e.g., in [5]. The
“Csiszár-style” exponents of [5] take a different form from the
“Gallager-style” form of the exponents given in this section,
due to the use of type-based arguments. The equivalence of
the two forms of the exponents for these problems is a classic
result. See, e.g., [5, pg. 44] exercise 13 and [5, pg. 192]
exercise 23.

III. MAIN RESULTS

In this section we present the main results of the paper.
We define the functionality of streaming source coding for
both point-to-point and distributed systems. We present results

DRAPER et al.: LOSSLESS CODING FOR DISTRIBUTED STREAMING SOURCES 1451

for both maximum likelihood (ML) and universal decoding.
The error exponents achieved are equal for both. We compare
the forms of the streaming exponents with their block cod-
ing counterparts and in Section IV illustrate the differences
through numerical examples. Proofs of the results are provided
in Sections V and VI, while we defer to the appendices proofs
not needed to understand the fundamental differences between
block and streaming coding.

A. Code Definitions and Error Events for Streaming Systems

We start by defining sequential fixed-rate encoder/decoder
pairs for streaming source coding systems. As we comment,
in this paper we exclusively focus on encoders that employ
random binning.

Definition 2: A randomized sequential rate-(Rx , Ry)
encoder-decoder triplet ({E x

j }, {E y
j }, {D j }) is a sequence

of mappings, {E x
j }, j = 1, 2, . . ., {E y

j }, j = 1, 2, . . . and
{D j }, j = 1, 2, . . . such that

E x
j : X j −→ {0, 1}
 j Rx�−
(j−1)Rx�, (11)

E y
j : Y j −→ {0, 1}
 j Ry�−
(j−1)Rx�. (12)

for example,

E x
j (x j) = a
 j Rx�

(j−1)Rx�+1,

E y
j (y j) = b

 j Ry�

(j−1)Ry�+1,

and where if
(j − 1)Rx� + 1 >
 j Rx� the null sequence
is produced. Common randomness, shared between encoders
and decoder, is assumed. This allows us to randomize the
mappings independently of the source sequence. Finally, the
decoder mapping

D j : {0, 1}
 j Rx� × {0, 1}
 j Ry� −→ X̂ j × Ŷ j , e.g.,

D j (a

 j Rx�, b
 j Ry�) = (x̂ j (j), ŷ j (j)).

At each time j the decoder D j outputs estimates of all the
source symbols that have entered the encoder by time j .

Note that sometimes we will allow an extra “failure” symbol
“?” so that X̂ = X ∪ {?}. In understanding these definitions
it may help to recall the discussion of linear constructions in
Section I-A and the lower-triangular nature of the parity-check
matrix of those constructions.

As for block coding, while we state Definition 2 only
for Slepian-Wolf coding, it immediately specializes to source
coding with decoder side information (dropping the E y

N and
revealing y N to the decoder), and point-to-point source coding
without side information (dropping E y

N and y N completely).
In this paper, the sequential encoding maps will always

work by assigning random “parity bits” in a causal manner to
the observed source sequence. That is, the bits generated in
(11)-(12), are i.i.d. Bernoulli-(0.5). Since parity bits are
assigned causally, if two source sequences share the same
length-l prefix, then their first
l Rx� parity bits must
match. Subsequent parities are drawn independently. Such
a sequential coding strategy is the source-coding parallel to
tree and convolutional codes used for channel coding [11].
In fact, we call these “parity bits” as they can be generated

using an infinite constraint-length time-varying randomized
convolutional code.

We will often restrict our attention to the set of source
sequences that are compatible with the received parities up
to time n. Given that xn = xn this set is denoted as

Bx(xn)={x̃ n ∈X n :E x
j (x̃ j)=E x

j (x j), j = 1, 2, . . . , n}. (13)

An analogous definition holds for By(yn).
We define the pair of source estimates at time n as

(x̂n, ŷn) = Dn(
∏n

j=1 E x
j ,
∏n

j=1 E
y
j), where

∏n
j=1 E x

j indicates
the full n Rx bit stream from encoder x up to time n. We
use (x̂n−�, ŷn−�) to indicate the first n − � symbols of
each estimate, where for conciseness of notation both the
estimate time, n, and the decoding delay, �, are indicated in
the superscript. With these definitions the two marginal error
probabilities are

Pr[x̂n−� �= xn−�] and Pr[ŷn−� �= yn−�].
A pair of exponents Ex > 0 and Ey > 0 is said to be
achievable if there exists a family of rate-(Rx, Ry) encoders
and decoders {(E x

j , E
y
j ,D j)} such that

lim
�→∞ inf

n>�
− 1

�
log Pr[x̂n−� �= xn−�] ≥ Ex , (14)

lim
�→∞ inf

n>�
− 1

�
log Pr[ŷn−� �= yn−�] ≥ Ey . (15)

In contrast to the block-coding error event of (1) this error
exponent is in delay, �, rather than total observation time, n.
While the definitions of the exponents (14)–(15) and of (1) are
asymptotic in nature, the error bounds stated in the theorems
hold for finite n and �. Finally, we note that, as in the block
coding case, the error exponent of the joint error event can be
found by taking the minimum of the individual exponents, i.e.,

lim
�→∞ inf

n>�
− 1

�
log Pr[(x̂n−�, ŷn−�) �= (xn−�, yn−�)]

≥ min{Ex , Ey}.
We can now see why the use of randomized maps is

important. This is due to the infinite operating horizon of our
system and the fact that we require exponential decay in error
probability at all times and for all delays. We will show that
the desired performance can be achieved over the ensemble of
tree codes through the use of commonly randomized encoders
and decoders. However, the standard argument that because
the ensemble of codes satisfy some measure of performance
therefore a single code must exist that does also cannot be
applied as there is now a countable number of measures of
performance (all times and all delays).

B. Point-to-Point Streaming

Our first results concern streaming coding in the point-to-
point setting. The first theorem provides achievable bounds on
the random coding error exponents both for ML and universal
decoding.

Theorem 2: Given any rate R, there exist both ML and
universal randomized sequential rate-R point-to-point encoder-
decoder pairs (per the specialization of Definition 2) such that

1452 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 60, NO. 3, MARCH 2014

for all E < E pt,x(R) there is a constant K > 0 such that
Pr[x̂n−� �= xn−�] ≤ K exp{−�E} for all n,� ≥ 0 where

E pt,x(R) = sup
0≤ρ≤1

ρR − log
[∑

x

px (x)
1

1+ρ

]1+ρ
(16)

= inf
x̄

D(px̄‖px) + |R − H (x̄)|+. (17)

where in (17) x̄ is a random variable on X with distribution
px̄ and entropy H (x̄).

Proof: In Section V-C a Gallager-style analysis of ML
decoding yields the form of the exponent specified in (16).
This analysis is the source-coding parallel to the traditional
one for convolutional channel codes. In Section V-D a types-
based analysis of a novel universal decoder yields the form of
the exponent specified in (17). Here, the crucial issue that must
be side stepped is the non-additivity of empirical entropy. The
equality of the two forms of the exponent in (16) and (17) is
a classic result. For example, see [5, pg. 44] exercise 13. �

The error exponent of Theorem 2 equals the random source
coding exponent for block-coding (10). The main difference
in the formulation is that the error probability in a streaming
system decays with delay � rather than block length N . For
any fixed source symbol with time index j , as time progresses
(n → ∞) the delay � = n − j also increases without bound.
Thus all symbols are eventually recovered with probability
one.

A companion upper-bound to Theorem 2 is proved in [2].
We state the theorem next, sketch the proof, and refer the
reader to [2] for details.

Theorem 3: Any (randomized or deterministic) sequential
rate-R point-to-point encoder-decoder pair satisfies

lim
�→∞ sup

n>�
− 1

�
log Pr[x̂n−� �=xn−�]≤ inf

α>0

1

α
Eup

pt,x((1+α)R).

(18)

where

Eup
pt,x(R) = sup

ρ≥0
ρR − log

[∑

x

px(x)
1

1+ρ

]1+ρ

= inf
x̄ :H(x̄)>R

D(px̄‖px). (19)

Proof sketch: Consider the decoding of the tth symbol xt at
time t +� for any arbitrary t by a delay-constrained decoder.
Consider an encoder/decoder pair aided in the following ways:
(i) we tell the decoder symbols xt+1, . . . , xt+�; (ii) we tell the
decoder symbols x0, . . . xt−L for some L to be determined;
(iii) we tell the encoder the L symbols xt−L+1, . . . , xt all at
time t − L + 1; (iv) we don’t require the decoder to decode
any of the symbols xt−L+1, . . . , xt until time t + �. A pair
so enabled is strictly more powerful than our usual delay-
constrained encoder/decoder pair since these stronger pairs can
emulate our usual pairs. Further, since

max
i∈{t−L+1,...,t} Pr[x̂i �= xi] ≥ 1

L
Pr[∪t

i=t−L+1(x̂i �= xi)]
and t is arbitrary, by lower bounding the block-error-
probability of the more powerful encoder/decoder pair, we gain
a lower bound on the error probability of our usual pairs.

Note that by (i) and (ii) we are able to ignore the distance
past (before time t−L+1, where L is yet to be determined) and

the future. Further by (iii) and (iv) we have transformed the
problem into an equivalent block coding problem. The length
of this block code is L. The rate is (L+�)R/L = (1+�/L)R.
The block error probability of such a block code is lower
bounded by classic results for block coding, cf. [5]. Since the
classic bounds hold both for deterministic and random coding,
the current bound also holds for both deterministic and random
strategies. Namely,

Pr[x̂ t
t−L+1 �= x t

t−L+1] ≥̇ exp
{

− L Eup
pt,x

((
1 + �

L

)
R
)}

,

where Eup
pt,x(·) is the classic source coding bound for block

codes specified in (19). By ≥̇ we mean the relation holds
to the first order in the exponent [4] (if a good source code
is used ≥̇ can be replaced by

.=). We state the result in this
way to suppress non-exponential factors that will do affect the
exponent, thereby simplifying the presentation. Recalling that
L is a free parameter yet to be specified, we get the tightest
bound by finding the (worst-case) L that maximizes the bound:

max
L

exp
{

− L Eup
pt,x

((
1 + �

L

)
R
)}

= exp
{

− � inf
α>0

1

α
Eup

pt,x

((
1 + α

)
R
)}

Taking the log, normalizing, and recalling that this bound
holds for all � we get the result in (18). �

The idea of the proof is that there is some atypicality event
that starts L samples in the past. The worst-case time in the
past is L∗ = �/α∗ where α∗ is the optimizer. Even if we
ignore the distant past and the future symbols and concentrate
all our resources, over the entire interval of length L +� from
time t −L+1 to time t +�, on correcting this error, correction
is not possible. By converting the problem into an equivalent
block coding problem we are able to leverage existing results
for such systems.

We note the the derivation assumes that t > � and t > L.
However, the first isn’t restrictive since we are only interested
in � ≤ t . The second isn’t restrictive since if the optimizing
L∗ > t we can add dummy symbols spanning time t − L∗
to time 0. Forcing the decoder to decode these will simply
worsen the performance, further lowering the lower bound.

C. Streaming With Decoder Side Information

Our result for distributed streaming source coding when
the side information is observed at the decoder, but not the
encoder, is encapsulated in the following theorem:

Theorem 4: Given any rate R, there exist both ML and
universal randomized sequential rate-R source coding with
decoder side-information encoder-decoder pairs (per the spe-
cialization of Definition 2) such that for all E < Esi(R)
there is a constant K > 0 such that Pr[x̂n−� �= xn−�] ≤
K exp{−�E} for all n,� ≥ 0 where

Esi(R) = sup
0≤ρ≤1

ρR−log
[∑

y

[∑

x

pxy (x, y)
1

1+ρ

]1+ρ]
(20)

= inf
x̄ ,ȳ

D(px̄ ,ȳ‖px ,y) + |R − H (x̄|ȳ)|+, (21)

DRAPER et al.: LOSSLESS CODING FOR DISTRIBUTED STREAMING SOURCES 1453

and (x̄, ȳ) are random variables with joint distribution px̄,ȳ

and H (x̄|ȳ) is their conditional entropy.
Similar to the point-to-point case in Theorem 2, the error

exponent of Theorem 4 equals its random block-coding coun-
terpart (9). Similarly, (20) and (21) can be shown to be equal.
We do not prove this equivalence herein but, as a first step,
the interested reader could consider [5, pg. 192] exercise 23.
We sketch the proof of this theorem in Section V-E, which
requires only small modifications of the techniques used to
prove Theorem 2.

The following companion upper bound is proved in [2]:
Theorem 5: Any (randomized or deterministic) sequential

rate-R source coding with decoder side-information encoder-
decoder pair satisfies

lim
�→∞ sup

n>�
− 1

�
log Pr[x̂n−� �= xn−�] ≤ Eup

si (R)

where

Eup
si (R)

= min

⎧
⎪⎨

⎪⎩
inf

x̄, ȳ , α ≥ 1 s.t.
H (x̄|ȳ) ≥ (1 + α)R

1

α
D(px̄,ȳ‖px ,y),

inf
x̄, ȳ , 0 ≤ α ≤ 1 s.t.
H (x̄|ȳ) ≥ (1 + α)R

1 − α

α
D(px̄‖px) + D(px̄ ,ȳ‖px ,y)

⎫
⎪⎬

⎪⎭
, (22)

and (x̄, ȳ) are random variables with joint distribution px̄,ȳ

and H (x̄|ȳ) is their conditional entropy.
The proof approach here is similar to that sketched for

Theorem 3. The main difference is that there are now two
possible sources of error: there is the possibility of atypicality
in the x-source and there is possibility of joint atypicality
in the (x, y)-source pair. Either one type can dominate (as
in the first case of (22) where joint atypicality dominates),
or a combination of errors can occur (as in the second case
of (22)). When the encoder can tell that such atypicality is
taking place the encoder can take remedial action, e.g., by
momentarily ignoring the recently arrived symbols (whose
deadline is not yet close) and focusing resources (parity bits)
on the symbols that are behaving atypically. Note that the
rate is fixed throughout, it is simply a question of when
each source symbol observed is allowed to start to affect
the encoded parity symbols. In certain situations it is not
possible for the encoder to detect that such atypicality is taking
place. An example of this is a uniformly distributed source
and a conditional relationship py |x(y|x) that corresponds to
a symmetric channel. This is akin to the condition given
in in Remark 10 of [15] (mentioned in Section I-A) that
characterizes when variable-rate source coding with decoder
side information is no better than fixed-rate source coding, i.e.,
that

− log px (x) − D(py |x (·|x)‖py) (23)

is constant in x ∈ X . We also remark that when side
information is also available at the encoder the upper bound on
the exponent is, naturally, increased. In the latter setting one
can apply the exponent of (19) to each conditional probability

with an average across the various side information symbols.
See [2] for details.

As an example of a special case where the upper bound
reduces to a simpler form (equivalent to an upper bound for
block coding) is when the side information y is uniformly
distributed and x = y ⊕ e where e is independent of y (and
|X | = |Y| = |E | so we can define the addition operator). Note
that for this case (23) is constant. For such situations (22)
simplifies to

Eup
si (R) = inf

x̄ ,ȳ :H(x̄ |ȳ)≥R
D(px̄,ȳ‖px ,y). (24)

For such sources, e.g., a doubly-symmetric binary source, the
upper bound of (24) and lower bounds of (20) and (21) match
at rates close to the conditional entropy H (x |y). We direct
the reader to Appendix I of [2] where this example is fully
developed.

D. Distributed Coding of Streaming Sources

In contrast to streaming point-to-point coding and stream-
ing source coding with decoder side information, our
results for the general case of streaming Slepian-Wolf
coding with two separate encoders results in achiev-
able error exponents that differ from their block coding
counterparts.

Theorem 6: Given any rate pair (Rx , Ry), there
exist both ML and universal randomized sequential
rate-(Rx , Ry) Slepian-Wolf encoder-decoder triplets
(per Definition 2) that satisfy the following three
criteria:

(i) For all E < Est,x(Rx , Ry), there is a constant K > 0
such that Pr[x̂n−� �= xn−�] ≤ K exp{−�E} for all n,� ≥ 0
where

Est,x(Rx , Ry) = min

{
inf

γ∈[0,1] Ex(Rx , Ry, γ),

inf
γ∈[0,1]

1

1 − γ
Ey(Rx , Ry, γ)

}
. (25)

(ii) For all E < Est,y(Rx , Ry) there is a constant K > 0
such that Pr[ŷn−� �= yn−�] ≤ K exp{−�E} for all n,� ≥ 0
where

Est,y(Rx , Ry) = min

{
inf

γ∈[0,1]
1

1 − γ
Ex (Rx , Ry, γ),

inf
γ∈[0,1] Ey(Rx , Ry, γ)

}
. (26)

(iii) For all E < Est,xy(Rx , Ry) there is a
constant K > 0 such that Pr[(x̂n−�, ŷn−�) �=
(xn−�, yn−�)] ≤ K exp{−�E} for all n,� ≥ 0
where

Est,xy(Rx , Ry) = min

{
inf

γ∈[0,1] Ex(Rx , Ry, γ), (27)

inf
γ∈[0,1] Ey(Rx , Ry, γ)

}
. (28)

1454 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 60, NO. 3, MARCH 2014

There are two alternate, but equivalent, ways to specify the
above error exponents. The first is the “Gallager-style”

Ex(Rx , Ry, γ)

= sup
ρ∈[0,1]

[γ Ex |y(Rx , ρ) + (1 − γ)Exy(Rx , Ry, ρ)]
Ey(Rx , Ry, γ)

= sup
ρ∈[0,1]

[γ Ey|x(Ry, ρ) + (1 − γ)Exy(Rx , Ry, ρ)], (29)

where Exy(·, ·, ·), Ex |y(·, ·), and Ey|x(·, ·) are defined as
in (6)–(8), repeated here for convenience:

Exy(Rx , Ry, ρ) = ρ(Rx + Ry) − log
[∑

x,y

pxy (x, y)
1

1+ρ

]1+ρ

Ex |y(Rx , ρ) = ρRx − log
[∑

y

[∑

x

pxy (x, y)
1

1+ρ

]1+ρ]

Ey|x(Ry, ρ) = ρRy − log
[∑

x

[∑

y

pxy (x, y)
1

1+ρ

]1+ρ]
.

Alternately, the second “Csiszár-style” form of the exponents
is

Ex(Rx , Ry, γ)

= inf
x̃ ,ỹ ,x̄,ȳ

γ D(px̃,ỹ‖px ,y)+(1 − γ)D(px̄,ȳ‖px ,y)

+
∣∣∣γ [Rx − H (x̃|ỹ)] + (1 − γ)[Rx + Ry − H (x̄, ȳ)]

∣∣∣
+

Ey(Rx , Ry, γ)

= inf
x̃ ,ỹ ,x̄,ȳ

γ D(px̃,ỹ‖px ,y) + (1 − γ)D(px̄,ȳ‖px ,y)

+
∣∣∣γ [Ry −H (ỹ|x̃)]+(1−γ)[Rx + Ry −H (x̄, ȳ)]

∣∣∣
+
, (30)

where the random variables (x̃, ỹ) and (x̄, ȳ) have joint
distributions px̃,ỹ and px̄,ȳ , respectively.

Proof: In Section VI-C a Gallager-style analysis of ML
decoding yields the form of the exponents specified in (29).
In Section VI-D a types-based analysis of a novel universal
decoder yields the form of the exponent specified in (30). The
equality of the two forms of the exponent is considered in
Lemma 5, stated and proved in Appendix C. �

We first note that the exponents are strictly positive for
any rate-pair (Rx , Ry) within the Slepian-Wolf achievability
region. This is easiest to see by considering the Csiszár-style
results of (30). By separately considering the case γ = 0,
γ = 1, and 0 < γ < 1 one can confirm that there is always
at least one term in Ex (Rx , Ry, γ) and in Ey(Rx , Ry, γ) that
must be strictly positive.

It is revealing to compare the form of the exponents of
block coding (3)–(5) with those of streaming (25)–(28). The
streaming exponent contains an extra degree of freedom in
the parameter γ . If γ were restricted to be either zero or one,
then the block and streaming exponents would be the same.
The minimization over γ where 0 ≤ γ ≤ 1 results from a
fundamental difference in the types of events that can cause
errors in streaming as opposed to the block setting. In block
coding there are only 3 error events (error in xn , error in
yn , and errors in both), regardless of block length. In contrast,
there are n2 mutually exclusive error events when decoding xn

and yn . These arise from the n2 pairs of time indexes at which
the error patterns can commence, i.e., l, k ∈ {1, 2, . . . , n} such
that x̂ l−1 = x l−1 and ŷ k−1 = y k−1, but x̂l �= xl and ŷk �= yk .
We examine these error events in Section VI.

While the error exponents of block coding are always at
least as large as the streaming exponents due to the lack of
the γ parameter, direct comparison of the two is not really
appropriate for two reasons. The first is that buffering delay is
not accounted for in block coding. Streaming data must first be
packetized into “chunks” of data of the appropriate length to
which the block-encoding can be applied. Such packetization
delay is not accounted for in the block coding exponents and,
at worst, would double the delay on a particular symbols (those
at the beginning of each block). The second reason is that
in block coding the block length is fixed and therefore so is
the resulting error probability. In the streaming context the
error probability on the estimate of any fixed source symbol
continues to decrease as time increments and the decoding
delay � (for that particular symbol) increases.

Finally, as in the point-to-point setting, the two forms of
the exponents in (29) and (30) are equal. But, due to new
classes of error events possible in streaming, this equivalence
now requires proof. This proof is provided in Lemma 5.

IV. NUMERICAL RESULTS

In this section we detail two examples. The first example
is presented in part in Fig. 2 in the Introduction and helps us
understand how source “burstiness” relates to the achievable
error exponent in delay. For simplicity we present these
results for lossless point-to-point streaming, i.e., Theorem 2.
The second example illustrates the difference between the
block-coding and streaming exponents for a simple distributed
asymmetric binary source. In this section we express entropy
in bits.

The source considered in the first example is a discrete
memoryless source with alphabet {0, 1, . . . , L} where px (0) =
(1 − β) and px (x) = β/L for all x �= 0. The β parameter
specifies the “burstiness” of the source and the entropy of this
source is H (X) = HB(β) + β log L. In Fig. 2 we consider
L = 4 and β = 0.5, hence H (X) = 2 bits. Fig. 2 plots
the trade-off between rate, delay, and probability of error for
ML decoding. (We note that the results for universal decoding
would differ little as they are equal to ML in an exponential
sense.) As would be expected, the probability of decoding
error drops both as a function of communication rate and
delay.

The source of Fig. 2 is only mildly bursty, half the time it
emits a 0 and half the time some other letter. In Fig. 3 we
plot the error exponent of the same family of sources for a
range of burst probabilities β and alphabet sizes L + 1 where
we hold the entropy constant at H (X) = 2 bits. As the source
becomes more bursty (smaller β) we increase the alphabet size
to maintain the equality H (X) = 2 = HB(β) + β log L. The
figure shows that that the more bursty the source (smaller β
and large L) the smaller the error exponent for any given rate.

Our second example illustrates a distributed source coding
situation where the streaming and block coding error expo-
nents differ. The reason for the difference is the new type of

DRAPER et al.: LOSSLESS CODING FOR DISTRIBUTED STREAMING SOURCES 1455

Fig. 3. The effect of burstiness on the error exponent as a function of the
excess rate beyond the entropy. The source is 0 with probability 1 − β and,
with probability β, the source is uniformly distributed on {1, 2, . . . , L}. We
scale L with the burst probability β to hold the source entropy constant at
2 bits. A lower burst probability β means more variability in the instantaneous
rate, the effect of which is a lowered exponent.

Fig. 4. Rate region for the asymmetric example source.

error event (reflected in the minimization over γ in Theorem 6)
that can dominate in the distributed streaming setting. How-
ever, it turns out that when the distributed source has uniform
symmetric marginals there is no gap between the streaming
and block coding error exponents. Thus, we consider the
following asymmetric example (asymmetric marginals and
asymmetric channel relating x to y). The pair of sources
xi and yi are binary i.i.d. sources where px ,y (0, 0) = 0.1,
px ,y (0, 1) = px ,y (1, 0) = 0.05 and px ,y (1, 1) = 0.8. For
this source H (x) = H (y) = 0.61 bits, H (x |y) = H (y |x) =
0.42 bits and H (x, y) = 1.02 bits. The Slepian-Wolf achiev-
able rate region is shown in Fig. 4. We consider various error
exponents for this source as a function of Rx where we keep
Ry fixed. We consider both a low Ry-rate situation where
Ry = 0.45 = H (y |x) + 0.03 bits and a high Ry-rate situation
where Ry = 0.58 = H (y) − 0.03 bits.

Fig. 5 plots the streaming exponent Est,x(Rx , Ry) for source
x from Theorem 6, the block coding exponent Ebl,x (Rx , Ry)

Fig. 5. Error exponents for x-source: streaming Est,x (Rx , Ry), block-coding
Ebl,x (Rx , Ry), and point-to-point source coding E pt,x (Rx) at two rates:
Ry = 0.68 and Ry = 0.45 bits per sample.

from Theorem 1, and the point-to-point exponent E pt,x(Rx)
from Theorem 2. All are plotted as a function of Rx , and the
first two for both Ry = 0.45 and Ry = 0.58. A note on the
plots: since Est,x(Rx , Ry) = Ebl,x (Rx , Ry) for many choices
of Rx and Ry , we choose to plot the block coding exponents
with solid or dashed lines and the streaming exponents with
circles or diamonds. Both are, of course, continuous functions
of Rx . Our choice of plotting the streaming exponents at a
discrete set of points was made purely to aid in making visual
comparison between the exponents.

There are a few observations to make about Fig. 5. Perhaps
the most significant is that, in order to recover the x-source
with the greatest likelihood, it can be better not to use joint
decoding if Ry is too low. For example, when Ry = 0.45 and
Rx > 0.65 bits, E pt,x(Rx) is larger than either Est,x(Rx , 0.45)
or Ebl,x (Rx , 0.45). This occurs because joint decoding errors
are more likely due to atypical behavior of source y . Thus, it
can be better to ignore the y -source and decode the x-source
individually. As Ry is increased, e.g., to Ry = 0.58 bits, the
information about the y -source is more reliable and the joint
decoding exponents dominate that of point-to-point source
coding without side information up to higher rates, about
Rx = 0.84. The next observation to make is that the difference
between the block and streaming error exponents is small and
often zero. In Fig. 5 the difference between the two is only
apparent about Rx � 0.75 for the Ry = 0.45 case. To see more
clearly where the streaming and block coding exponents differ,
in Fig. 6 we plot the ratio Ebl,x (Rx , Ry)/Est,x(Rx , Ry). In this
figure we see that at the higher rate Ry = 0.58 the exponents
are the same for the entire range.

Figs. 7 and 8 plot the corresponding results for
Est,y(Rx , Ry), Ebl,y(Rx , Ry), and E pt,y(Ry) for Ry = 0.45
and Ry = 0.58. Note that E pt,y(0.45) = E pt,y(0.58) = 0
since both rates are below H (y) = 0.61 bits and E pt,y(0.71)
is constant at about 0.01. Thus, joint decoding is required to
get any positive exponent on the y -source. Next note that when
Rx is sufficiently high, the the error exponent for y saturates

1456 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 60, NO. 3, MARCH 2014

Fig. 6. Ratio of block-coding to streaming exponents for source-x . The block
coding exponent is always at least as large due to the extra possibility error
events in the streaming setting.

Fig. 7. Error exponents for y -source: streaming Est,y(Rx , Ry), block-coding
Ebl,y(Rx , Ry), and point-to-point source coding E pt,y(Ry) at two rates:
Ry = 0.45 and Ry = 0.58 bits per sample. Note that E pt,y(0.45) =
E pt,y(0.58) = 0.

to what it would be if source x were known perfectly to the
decoder. Recalling the discussion in Sections II and III, this
is the contribution of the Ey|x(Ry, ρ) term to the exponents
in (4) and (26). As before, to help visualize the difference
between the block and streaming exponents, in Fig. 8 we plot
the ratio Ebl,y(Rx , Ry)/Est,y(Rx , Ry). In this plot we note a
feature that didn’t appear in Fig. 6; namely, that for certain
ranges of Rx (that don’t overlap) the ratio of the exponents is
greater than one both for the high- and low-Ry examples.

V. STREAMING POINT-TO-POINT CODING VIA

SEQUENTIAL RANDOM BINNING

In this section we prove Theorems 2 and 4. While the
emphasis of the paper is on distributed source coding, the
strategy of causal random binning, the appropriate ML and

Fig. 8. Ratio of block-coding to streaming exponents for source-y .

universal decoders, and the associated analysis techniques, are
most easily developed in the point-to-point context.

A. Sequential Scoring Decoders

In this section we introduce the class of decoders used for
streaming source coding and streaming source coding with
decoder side information. Both ML and universal decoders
can be cast as a type of decision-directed sequential scoring
decoder, where different scoring functions are used in each
case.

Definition 3: A sequential scoring decoder constructs its
estimate in a sequential manner starting from l = 1 where

x̂l =

⎧
⎪⎪⎨

⎪⎪⎩

x̄l if for some x̄ ∈ Bx(x) s.t x̄ l−1 = x̂ l−1

Sl (x̄) ≥ Sl(x̃) for all x̃ ∈ Bx(x)

s.t. x̃ l−1 = x̂ l−1, x̃l �= x̄l

? otherwise

(31)

where we recall that B(x) is defined in (13) and where Sl (·) is
a (possibly time-dependent) scoring function and the (failure)
symbol “?” is included in case such a x̄ does not exists for
some l. Randomly resolve any ties that occur.

Since the sequential scoring decoder is a decision-directed
decoder, it considers as candidates only those sequences whose
parities match the received bit stream up to time n, i.e., if
the length-n source sequence is x = x then the set of such
candidates is {x̄ s.t. x̄ ∈ Bx(x)}. The lth symbol of the
estimate, x̂l , is made with the estimates of the first l − 1
symbols already fixed. One should note that as soon as the next
set of parities arrive at the receiver, all symbols are estimated
anew since n is now replaced by n + 1 and Bx(x

n+1) will be
different from Bx(x

n).
For ML decoding case we use the scoring function

Sl(x̄) = pxn
l
(x̄ n

l). (32)

Note that this scoring function simply leads to the ML estimate
x̂M L = arg maxx̄∈Bx (x) px(x̄) being constructed in a sequential
manner. This is the case since the decision regarding which
of a pair of sequences is more likely depends only on which

DRAPER et al.: LOSSLESS CODING FOR DISTRIBUTED STREAMING SOURCES 1457

sequence has the more likely suffix. Another way of saying
this is that, if we were to consider the log-probability score
Sl = log pxn

l
(x̄ n

l), then the score would be additive for i.i.d.
sequences. Thus, we could equally have chosen Sl (x̄) = px(x̄).
On the other hand, since empirical entropy is not additive
(think of a sequence of all 0s followed by a sequence of all
1s) the use of sequential scoring decoders will be more crucial
in universal decoding.

For universal decoding we use the reciprocal of the empir-
ical suffix-entropy as the score

Sl(x̄) = 1/H (x̄ n
l). (33)

and term the resulting decoding the “minimum empirical
suffix entropy decoder”. The reason for using this decoder
instead of the standard minimum empirical block-entropy
decoder is because (due to the summing over type classes)
the probability of error bound for the block-entropy decoder
has a pre-multiplier term that grows polynomially in n. Since
our bound on error probability will decay exponential in �,
for n large, the polynomial can dominate. This would prevent
us from deriving a bound on the probability of error that
depends only upon the decoding delay �. Using the minimum
empirical suffix-entropy decoder results in a term that grows
polynomially only in �.

B. Error Analysis of Sequential Scoring Decoders

To show Theorem 2 we first develop the common core of
the proof that applies to both ML and universal decoding. The
proof strategy is as follows. A decoding error can only occur if
there is some spurious source sequence x̃ n that satisfies three
conditions: (i) x̃ n ∈ Bx(xn), i.e., it must be in the same bin
(share the same parities) as xn , (ii) x̃l �= xl for some l ≤ n−�,
and (iii) for the time index l of event (ii) it must have a score
at least as large as the correct sequence, i.e., Sl(x̃ n) ≥ Sl(xn).

To help track condition (ii) and to keep notation compact we
introduce a partition of all length-n source sequences x̃ n ∈ X n

into non-overlapping sets Fn(l, xn) defined by the time index
l of the first sample in which each sequence differs from the
realized sequence xn . Formally,

Fn(l, xn) = {x̃ n ∈ X n |x̃ l−1 = xl−1, x̃l �= xl}, (34)

where we define Fn(n + 1, xn) = {xn}, thus ∪n+1
l=1 Fn(l, xn) =

X n .
With these definitions we rewrite the error probability as

Pr[x̂n−� �= xn−�]
=
∑

xn

Pr[x̂n−� �= xn−�|xn = xn]px(xn) (35)

=
∑

xn

n−�∑

l=1

Pr
[∃ x̃ n ∈ Bx(xn) ∩ Fn(l, xn)

s.t. Sl(x̃ n) ≥ Sl(xn)
]

px(xn) (36)

=
n−�∑

l=1

{∑

xn

Pr
[∃ x̃ n ∈ Bx(xn) ∩ Fn(l, xn)

s.t. Sl(x̃ n) ≥ Sl(xn)
]

px(xn)
}

(37)

After conditioning on the realized source sequence in (35),
the remaining randomness is only in the binning. In (36)
the error event is decomposed into mutually exclusive events
based on the discussion of conditions (i)-(iii) above, and the
partitioning of all length-n sources sequences into the sets
Fn(l, xn). Finally, defining

pn(l) =
∑

xn

Pr
[∃ x̃ n ∈ Bx(xn) ∩ Fn(l, xn)

s.t. Sl(x̃ n) ≥ Sl(xn)
]

px(xn). (38)

and substituting the results into (37) yields the relation

Pr[x̂n−� �= xn−�] =
n−�∑

l=1

pn(l). (39)

C. Maximum-Likelihood Decoding

The following lemma provides an upper bound on pn(l) for
ML decoding with the score function Sl = pxn

l
(x̄ n

l) specified
in (32). The proof is given in Appendix A and uses a Chernoff
bounding argument similar to [12].

Lemma 1:

pn(l) ≤ exp{−(n − l + 1)E pt,x(R) + 1},
where the form of E pt,x(R) is given in (16).

Using Lemma 1 in (39) gives

Pr[x̂n−� �= xn−�]

≤
n−�∑

l=1

exp{−(n−l+1)E pt,x(R) + 1} (40)

=
n−�∑

l=1

exp{−(n−l+1−�)E pt,x(R)} exp{−�E pt,x(R)+1}

≤ K0 exp{−�E pt,x(R)} (41)

In (41) we pull out the exponent in �. The remaining summa-
tion is a geometric sum over decaying exponentials and can
thus can be bounded by some constant K0, into which we’ve
also incorporated the exp{1} scaling, which resulted from non-
integer rates. This proves Theorem 2 for ML decoding.

The derivation illustrates the insight that sequential decision
made for each symbol is analogous to a classic block-coding
problem. This is because we only need to decide between
sequences that start to differ in the symbol we are trying to
estimate — previous symbols have been fixed, and subsequent
symbols are not yet in question. Thus, all sequences that
could lead to different estimates of symbol l are binned
independently for the remainder of the block. This is why
the error exponent we derive equals Gallager’s block coding
exponent [12]. Since the error exponent for each block-
decoding problem is the same, the dominant error event is the
hard-decision with the shortest block-length. This corresponds
to the last symbol we need to estimate and its block-length
equals the estimation delay �.

In the remainder of the paper we will assume that all rates
are integer. This will greatly simplify notation and, as we have
seen above non-integer rates only slightly affect the constant
in front of the exponential decay, i.e., the K0 in (41).

1458 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 60, NO. 3, MARCH 2014

D. Universal Decoding

The following lemma provides an upper bound on pn(l) for
universal decoding with the score function Sl(x̄) = 1/H (x̄ n

l)
defined in (33).

pn(l) =
∑

xn

Pr
[∃ x̃ n ∈ Bx(xn) ∩ Fn(l, xn)

s.t. H (x̃ n
l) ≤ H (xn

l)
]

px(xn), (42)

and the following lemma bounds pn(l).
Lemma 2: For minimum empirical suffix-entropy decoding,

pn(l) ≤ (n − l + 2)2|X | exp{−(n − l + 1)E pt,x(R)}.
Proof: We define Pn−l to be the type of length-(n − l +1)

sequence xn
l , and TPn−l to be the corresponding type class so

that xn
l ∈ TPn−l . Analogous definitions hold for P̃n−l and x̃ n

l .
We rewrite the constraint H (x̃ n

l) ≤ H (xn
l) as H (P̃n−l) ≤

H (Pn−l). Thus,

pn(l) =
∑

xn

Pr
[∃ x̃ n ∈ Bx(xn) ∩ Fn(l, xn)

s.t. H (x̃ n
l) ≤ H (xn

l)
]

px(xn)

≤
∑

xn
1

min
[
1,

∑

x̃n
1 ∈ Fn (l, xn) s.t.

H (x̃n
l) ≤ H (xn

l)

Pr[x̃ n
1 ∈ Bx(xn

1)]
]

px(xn)

=
∑

xl−1
1 ,xn

l

min
[
1,
∑

x̃n
l s.t.

H (x̃n
l) ≤ H (xn

l)

exp{−(n − l + 1)R}
]

px(xl−1)px(xn
l)

=
∑

xn
l

min
[
1,

∑

x̃n
l s.t.

H (x̃n
l) ≤ H (xn

l)

exp{−(n − l + 1)R}
]

px(xn
l) (43)

=
∑

Pn−l

∑

xn
l ∈TPn−l

min
[
1,

∑

P̃n−l s.t.

H (P̃n−l) ≤ H (Pn−l)
∑

x̃ n
l ∈TP̃n−l

exp{−(n − l + 1)R}
]

px(xn
l) (44)

≤
∑

Pn−l

∑

xn
l ∈TPn−l

min
[
1, (n − l + 2)|X |

exp{−(n − l)[R − H (Pn−l)]}
]

px(xn
l) (45)

≤ (n−l+2)|X | ∑

Pn−l

∑

xn
l ∈TPn−l

exp{−(n − l + 1)[|R − H (Pn−l)|+]}
exp{−(n − l + 1)[D(Pn−l‖px) + H (Pn−l)]} (46)

≤ (n − l + 2)|X | ∑

Pn−l

exp{−(n − l + 1)

inf
q

[D(q‖px) + |R − H (q)|+]} (47)

≤ (n − l + 2)2|X | exp{−(n − l + 1)E pt,x(R)}. (48)

In going from (44) to (45) first note that the argument of the
inner-most summation (over x̃ n

l) does not depend on x. We
then use the following relations: (i)

∑
x̃ n

l ∈TP̃n−l
= |TP̃n−l | ≤

exp{(n−l+1)H (P̃n−l)}, which is a standard bound on the size
of the type class, (ii) H (P̃n−l) ≤ H (Pn−l) by the minimum-
suffix-entropy decoding rule, and (iii) the polynomial bound

on the number of types, |{P̃n−l }| ≤ (n − l + 2)|X |. In (46)
we recall the function definition | · |+ � max{0, ·}. We
pull the polynomial term out of the minimization and use
px(xn

l) = exp{−(n − l + 1)[D(Pn−l‖px) + H (Pn−l)]} for
all px(xn

l) ∈ TPn−l . It is also in (46) that we see why we use
a minimum empirical suffix-entropy decoding rule instead of
a minimum empirical block-entropy decoding rule. If we had
not marginalized out over xl−1 in (43) then we would have
a polynomial term out front in terms of n rather than n − l,
which for large n could dominate the exponential decay in
n − l. As the expression in (47) no longer depends on xn

l , we
simplify by using |TPn−l | ≤ exp{(n − l + 1)H (Pn−l)}. In (48)
we use the form of E pt,x(·) specified in (17) together with the
polynomial bound on the number of types. �

Starting from (39) together the definition of pn(l) for
minimum-suffix decoding from (42) and Lemma 2 provides
a bound on the probability of error for universal decoding.
Using the definition of pn(l) in (42) we have

Pr[x̂n−� �= xn−�] ≤
n−�∑

l=1

pn(l)

≤
n−�∑

l=1

(n − l + 2)2|X | exp{−(n − l + 1)E pt,x(R)}

≤
n−�∑

l=1

K1 exp{−(n − l + 1)[E pt,x(R) − η]} (49)

≤ K2 exp{−�[E pt,x(R) − η]} (50)

In (49) we incorporate the polynomial into the exponent,
resulting in the constants K1 and η. Namely, for all a > 0,
b > 0, there exists a C such that za ≤ C exp{b(z − 1)}
for all z ≥ 1. We then make explicit the delay-dependent
term. Pulling out the exponent in �, the remaining summation
is a sum over decaying exponentials, and can be bounded
by a constant. Together with K1, this gives the constant
K2 in (50). This proves that universal coding achieves the
exponent specified in Theorem 2. Note that the η in (50) does
not enter the optimization because η > 0 can be picked equal
to any arbitrarily small constant. The choice of η only effects
the constant K in the theorem.

E. Comment on Streaming Source Coding With Side
Information at the Decoder

If a random sequence yn , related to the source xn through
a discrete memoryless channel, is observed at the decoder,
then this side information can be used to reduce the rate
of the source code. In the model we study px,y(xn, yn) =∏n

i=1 px ,y (xi , yi) = ∏n
i=1 px |y (xi |yi)py (yi). The source xn

is observed at the encoder, and the decoder, which observes
yn and a bit stream from the encoder, wants to estimate each
source symbol xi with a probability of error that decreases
exponentially in the decoding delay �.

The earlier analysis of this section applies to this problem
with a few very minor modifications. For ML decoding, we
need to pick the sequence with the maximum conditional
probability given yn . The error exponent can be derived
using a similar Chernoff bounding argument as in Section V.

DRAPER et al.: LOSSLESS CODING FOR DISTRIBUTED STREAMING SOURCES 1459

For universal decoding, the only change is that we now use
a minimum suffix conditional-entropy decoder that compares
sequence pairs (x̄ n, yn) and (¯̄xn, yn). In terms of the analysis,
one change enters in (35) where we must also sum over the
possible side information sequences. And in (44) the entropy
condition in the summation over x̃ changes to H (x̃ n

l+1|yn
l+1) <

H (xn
l+1|yn

l+1) (or the equivalent type notation). Since yn

is observed at the decoder, there is no ambiguity in the
side information. Therefore, this condition is equivalent to
H (x̃ n

l+1, yn
l+1) < H (xn

l+1, yn
l+1).

We do not include the full derivation as no new ideas are
required.

VI. STREAMING SLEPIAN-WOLF SOURCE CODING

In this section we prove ML decoding yields the form
of the error exponent specified in (29) and that universal
decoding yields the form of the exponent specified in (30).
The equivalence of the two forms is deferred to Appendix C.
As with the proof of Theorem 2 we first develop the common
core of the proof that pertains to both ML and universal
decoding. The development for more than l > 2 sources would
essentially be the same, just with more notation and additional
minimization parameters γ1, γ2, . . . , γl−1.

A. Sequential Joint Scoring Decoders

We now introduce the class of decoders needed for joint
decoding. As in Section V both ML and universal decoders
can be cast as a type of decision-directed sequential scoring
decoder, where different scoring functions are used in each
case. The definition is a bit more involved for joint decoders as
all possible pairings between x̄ and ȳ sequences, respectively
in Bx(x) and By(y), must be considered.

Definition 4: A sequential joint scoring decoder constructs
its estimate in a sequential manner starting from l = 1 where

x̂l =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

x̄l if for some x̄ ∈ Bx(x) s.t. x̄ l−1 = x̂ l−1

there exists a ȳ ∈ By(y) s.t.
for all (x̃, ỹ) ∈ Bx(x) × By(y) where
x̃ l−1 = x̂ l−1, x̃l �= x̄l

Sl,k(x̄, ȳ) ≥ Sl,k(x̃, ỹ) for the k ∈ {1, 2, . . . , n}
s.t. ỹk−1 = ȳk−1, ỹk �= ȳk

? otherwise

(51)

where Sl,k(·, ·) is a (possibly time-dependent) joint scoring
function and the (failure) symbol “?” is included in case such
an x̄ does not exist for some l. Ties are resolved randomly.
Just as with the (non-joint) sequential scoring decoders of Def-
inition 3 the estimate of x is built up sequentially, but now all
possible pairings with sequences in By(y) are considered. The
“error” symbol “?” is allowed in case there is no x̄ ∈ Bx(x)
that satisfies the definition. In such an event all subsequent
symbol estimates, i.e., x̂ n

l+1 are also equal to “?”, at least until
the next parity symbols become available to the decoder.

In the case of known statistics, we use the scoring function

Sl,k(x̄, ȳ) = px,y(x̄n
min{l,k}, ȳn

min{l,k}). (52)

where, since we only consider i.i.d. sources, the dimension of
the subscripts in px,y(·, ·) can be inferred from the arguments.

Just as was the case for (32), this scoring function leads to the
ML estimate being constructed in a sequential manner.

In the case of unknown statistics, we use the scoring
function

Sl,k(x̄, ȳ) = 1/HS(l, k, x̄, ȳ) (53)

where HS(·, ·, ·, ·) is the “weighted empirical suffix-entropy”
function, defined as

HS(l, k, x̄, ȳ)

=

⎧
⎪⎪⎨

⎪⎪⎩

H
(
x̄ n

l , ȳn
l

)
if l =k

k−l
n+1−l H

(
x̄ k−1

l

∣∣∣ȳk−1
l

)
+ n+1−k

n+1−l H
(
x̄ n

k , ȳn
k

)
if l <k

l−k
n+1−k H

(
ȳl−1

k

∣∣∣x̄ l−1
k

)
+ n+1−l

n+1−k H
(
x̄ n

l , ȳn
l

)
if l >k.

(54)

Due to the fact that HS(l, k, x̄, ȳ) weights the empirical suffix
entropies differently, based upon the values of l and k, we
term the resulting decoder the “minimum weighted empirical
suffix entropy” decoder.

Note that the form of the two scoring functions (52)
and (54) is more similar than may initially appear. For
instance compare the ML scores of two pairs (x̄, ȳ) and
(x̃, ỹ) where x̄ l−1 = x̃ l−1 and ȳk−1 = ỹk−1, but x̄l �= x̃l

and ȳk �= ỹk , and l < k. Then the question of whether
Sl,k(x̄, ȳ) is larger than Sl,k(x̃, ỹ) is the same as asking
whether − log px|y(x̄ k−1

l |bk−l) − log px,y(x̄ n
k , ȳn

k) is smaller
than − log px|y(x̃ k−1

l |bk−l) − log px,y(x̃ n
k , ỹn

k) where bk−1 =
ȳk−1

l = ỹk−1
l . The analog to the weightings of (54) comes

from the dimensions of the various subsequences.
An error can only occur if there is some erroneous source

pair (x̃, ỹ) ∈ Bx(x)×By(y) such that Sl,k(x̃, ỹ) ≤ Sl,k(x, y) for
some l ≤ n − �. Otherwise, the realized source x will match
x̂ n at least through the n − �th symbol. For both our choices
of score functions we show in the following sections that the
probability of such an event decays exponentially in �.

B. Error Analysis of Sequential Joint Scoring Decoders

We follow the same approach to prove Theorem 6 that we
used for lossless streaming source coding in Section V. We
first develop the common core of the proof for sequential joint
scoring decoders in general. We then specialize the scoring
function to the ML and universal scoring functions, (52)
and (54), respectively.

In Theorem 6 three error events are considered:
(a) Pr[xn−� �= x̂n−�], (b) Pr[yn−� �= ŷn−�], and
(c) Pr[(xn−�, yn−�) �= (x̂n−�, ŷn−�)]. We develop the error
exponent for event (a). The exponent of event (b) follows from
a similar derivation, and that of event (c) from an application of
the union bound resulting in an exponent that is the minimum
of the exponents of events (a) and (b).

For there to be a decoding error there must be some spurious
source pair (x̃ n, ỹn) that satisfies three conditions: (i) x̃ n ∈
Bx(xn) and ỹn ∈ By(yn), (ii) x̃l �= xl for some l ≤ n − �
while x̄ l−1 = xl−1 and (iii) for the time index l of event (ii)
and for the k ∈ {1, . . . , n} such that ỹk−1 = yk−1 but ỹk �= yk ,
the spurious source pair has a higher score than the true pair,
i.e., Sl,k(x̃ n, ỹn) > Sl,k(xn, yn).

1460 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 60, NO. 3, MARCH 2014

As in (34) we again introduce a partition of source
sequences to track condition (ii). This time we partition all
source pairs (x̃ n, ỹn) ∈ {X n,Yn} into sets Fn(l, k, xn, yn)
defined by the times l and k at which x̃ n and ỹn respectively
diverge from the realized source sequences. Formally,

Fn(l, k, xn, yn) = {(x̄ n, ȳn) ∈ X n × Yn

s.t. x̄ l−1 = xl−1, x̄l �= xl, ȳk−1 = yk−1, ȳk �= yk}, (55)

and Fn(n + 1, n + 1, xn, yn) = {(xn, yn)} so ∪n+1
l=1 ∪n+1

k=1
Fn(l, k, xn, yn) = X n × Yn . In contrast to streaming point-
to-point or side-information coding (cf. (55) with (34)), the
partition is now doubly-indexed. To find the dominant error
event, we will need to search over both indices. This search
is the reason why the streaming exponents differ from the
block coding exponents, manifesting itself in the γ parameter
of Theorem 6.

We now bound the marginal error probability Pr[xn−� �=
x̂n−�].
Pr[x̂n−� �= xn−�]

=
∑

xn,yn

Pr[x̂n−� �= xn−�|xn = xn, yn = yn]px,y(xn, yn)

=
∑

xn,yn

px,y(xn, yn)
{ n−�∑

l=1

n+1∑

k=1

Pr
[∃ (x̃ n, ỹn) ∈ Bx(xn) × By(yn) ∩ Fn(l, k, xn, yn)

s.t. Sl,k(x̃ n, ỹn) ≥ Sl,k(xn, yn)
]}

(56)

=
n−�∑

l=1

n+1∑

k=1

{ ∑

xn,yn

px,y(xn, yn)

Pr
[∃ (x̃ n, ỹn) ∈ Bx(xn) × By(yn) ∩ Fn(l, k, xn, yn)

s.t. Sl,k(x̃ n, ỹn) ≥ Sl,k(xn, yn)
]}

(57)

where in (56) we decompose the error event according to
conditions (i)–(iii) discussed above, and the equality results
from the fact that Fn(l, k, xn, yn)∩Fn(l ′, k ′, xn, yn) = {}, the
null set, for (l, k) �= (l ′, k ′). Defining pn(l, k) as

pn(l, k) =
∑

xn,yn

px,y(xn, yn)

Pr
[
∃ (x̃ n, ỹn) ∈ Bx(xn) × By(yn) ∩ Fn(l, k, xn, yn)

s.t. Sl,k(x̃ n, ỹn) ≥ Sl,k(xn, yn)
]
. (58)

and substituting the definition into (57) we get

Pr[x̂n−� �= xn−�] =
n−�∑

l=1

n+1∑

k=1

pn(l, k). (59)

C. Maximum Likelihood Decoding

To develop our results for ML decoding we use use the joint
score function of (52) in (58). With this choice the following
lemma, proved in Appendix B, provides an upper bound on
pn(l, k).

Lemma 3:

pn(l, k) ≤ exp

{
−(n−l+1)Ex

(
Rx , Ry,

k−l

n−l+1

)}
if l ≤k,

pn(l, k) ≤ exp

{
−(n−k+1)Ey

(
Rx , Ry,

l−k

n−k+1

)}
if l ≥k,

(60)

where Ex(Rx , Ry, γ) and Ey(Rx , Ry, γ) are defined in (29).
Notice that l, k ≤ n and that for l ≤ k the fraction k−l

n−l+1 ∈
[0, 1] serves as γ in the error exponent Ex (Rx , Ry, γ). An
analogous discussion holds for l ≥ k.

We use Lemma 3 together with (59) to bound Pr[x̂n−� �=
xn−�] for two distinct cases. The first, simpler case, is
when infγ∈[0,1] Ey(Rx , Ry, γ) > infγ∈[0,1] Ex(Rx , Ry, γ). To
bound Pr[x̂n−� �= xn−�] in this case, we split the sum
over the pn(l, k) into two terms, as is visualized in Fig. 9.
There are (n + 1) × (n − �) such events to account for.
In Fig. 9 these are inside the box. The probability of the
event within each oval are summed together to give an upper
bound on Pr[x̂n−� �= xn−�]. We add extra probabilities
outside of the box but within the ovals to make the summation
symmetric thus simpler. Those extra error events do not
impact the error exponent because this case assumes that
infγ∈[0,1] Ey(Rx , Ry, ρ, γ) ≥ infγ∈[0,1] Ex(Rx , Ry, ρ, γ).
The possible dominant error events are highlighted in Fig. 9.
Thus,

Pr[x̂n−� �=xn−�]=
n−�∑

l=1

n+1∑

k=l

pn(l, k)+
n−�∑

k=1

n+1∑

l=k

pn(l, k) (61)

≤
n−�∑

l=1

n+1∑

k=l

exp{−(n−l+1) inf
γ∈[0,1] Ex(Rx , Ry, γ)}

+
n−�∑

k=1

n+1∑

l=k

exp{−(n−k+1) inf
γ∈[0,1] Ey(Rx , Ry, γ)} (62)

=
n−�∑

l=1

[
(n−l+2) exp{−(n−l+1) inf

γ∈[0,1] Ex(Rx , Ry, γ)}

+
n−�∑

k=1

[
(n−k+2) exp{−(n−k+1) inf

γ∈[0,1] Ey(Rx ,Ry,γ)}
]

≤ 2
n−�∑

l=1

[
(n−l+2) exp{−(n−l+1) inf

γ∈[0,1] Ex(Rx ,Ry,γ)}
]

(63)

≤
n−�∑

l=1

C1 exp{−(n−l+2)[inf
γ∈[0,1] Ex(Rx ,Ry,γ)−α]} (64)

≤ C2 exp{−�[inf
γ∈[0,1] Ex(Rx , Ry, γ) − α]} (65)

Equation (61) follows directly from (59), in the first term
l ≤ k, in the second term l ≥ k. In (62), we use Lemma 3.
In (63) we use the assumption that infγ∈[0,1] Ey(Rx , Ry, γ) >
infγ∈[0,1] Ex (Rx , Ry, γ). In (64) the α > 0 results from
incorporating the polynomial into the first exponent, and can
be chosen as small as desired. Combining terms and summing
out the decaying exponential yield the bound (65).

DRAPER et al.: LOSSLESS CODING FOR DISTRIBUTED STREAMING SOURCES 1461

Fig. 9. Two dimensional plot of the error probabilities pn(l, k), corresponding
to error events (l, k), contributing to Pr[x̂n−� �= xn−�] in the situation where
infγ∈[0,1] Ey(Rx , Ry , ρ, γ) ≥ infγ∈[0,1] Ex (Rx , Ry , ρ, γ).

The second, more involved case, is when
infγ∈[0,1] Ey(Rx , Ry, ρ, γ) < infγ∈[0,1] Ex (Rx , Ry, ρ, γ). To
bound Pr[x̂n−� �= xn−�], we could use the same bounding
technique used in the first case. This gives the error exponent
infγ∈[0,1] Ey(Rx , Ry, γ) which is generally smaller than what
we can get by dividing the error events in a new grouping
shown in Fig. 10. In this situation we split (59) into three
terms, as visualized in Fig. 10. Just as in the first case shown
in Fig. 9, there are (n + 1) × (n − �) such events to account
for (those inside the box). The error events are partitioned
into 3 regions. Region 2 and 3 are separated by k∗(l) using a
dotted line. In region 3, we add extra probabilities outside of
the box but within the ovals to make the summation simpler.
Those extra error events do not affect the error exponent as
shown in the proof. The possible dominant error events are
highlighted in Fig. 10. Thus,

Pr[x̂n−� �= xn−�] ≤
n−�∑

l=1

n+1∑

k=l

pn(l, k)

+
n−�∑

l=1

l−1∑

k=k∗(l)

pn(l, k) +
n−�∑

l=1

k∗(l)−1∑

k=1

pn(l, k) (66)

Where
∑0

k=1 pk = 0. The lower boundary of Region 2 is
k∗(l) ≥ 1 as a function of n and l:

k∗(l)=max

{
1, n+1−

⌈
infγ∈[0,1] Ex(Rx , Ry, γ)

infγ∈[0,1] Ey(Rx , Ry, γ)

⌉
(n+1−l)

}

(67)

For compactness in the ensuing development we use G (always
non-negative) to denote the ceiling of the ratio of exponents,

Fig. 10. Two dimensional plot of the error probabilities pn(l, k), correspond-
ing to error events (l, k), contributing to Pr[x̂n−� �= xn−�] in the situation
where infγ∈[0,1] Ey(Rx , Ry , γ) < infγ∈[0,1] Ex (Rx , Ry , γ).

i.e.,

G =
⌈

infγ∈[0,1] Ex (Rx , Ry, γ)

infγ∈[0,1] Ey(Rx , Ry, γ)

⌉
. (68)

Note that when infγ∈[0,1] Ey(Rx , Ry, γ) is greater than
infγ∈[0,1] Ex (Rx , Ry, γ) then G = 1 and region two of Fig. 10
disappears. In other words, the middle term of (66) equals
zero. This was the first case considered. We now consider the
situation in which G ≥ 2.

The first term of (66), i.e., region one in Fig. 10 where
l ≤ k, is bounded in the same way that the first term of (61)
is, giving

n−�∑

l=1

n+1∑

k=l

pn(l, k)≤C2 exp

{
−�

[
inf

γ∈[0,1]Ex(Rx , Ry, γ) − α

]}
.

(69)

In Fig. 10, region two is upper bounded by the 45-degree
line, and lower bounded by k∗(l). The second term of (66),
corresponding to this region where l ≥ k,

n−�∑

l=1

l−1∑

k=k∗(l)

pn(l, k)

≤
n−�∑

l=1

l−1∑

k=k∗(l)

exp

{
−(n − k + 1)Ey

(
Rx , Ry,

l − k

n − k + 1

)}

=
n−�∑

l=1

l−1∑

k=k∗(l)

exp

{
−(n−l+1)

n−k+1

n−l+1
Ey

(
Rx ,Ry,

l−k

n−k+1

)}

(70)

≤
n−�∑

l=1

l−1∑

k=k∗(l)

exp

{
−(n−l+1) inf

γ∈[0,1]
1

1 − γ
Ey(Rx , Ry, γ)

}

(71)

1462 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 60, NO. 3, MARCH 2014

=
n−�∑

l=1

(l−k∗(l)) exp

{
−(n−l+1) inf

γ∈[0,1]
1

1−γ
Ey(Rx , Ry, γ)

}

(72)

In (70) we note that l ≥ k, so define l−k
n−k+1 = γ as in (71).

Then n−k+1
n−l+1 = 1

1−γ .
The third term of (66), i.e., the intersection of region three

and the “box” in Fig. 10 where l ≥ k, can be bounded as,

n−�∑

l=1

k∗(l)−1∑

k=1

pn(l, k)

≤
n+1∑

l=1

min{l,k∗(n−�)−1}∑

k=1

pn(l, k) (73)

=
k∗(n−�)−1∑

k=1

n+1∑

l=k

pn(l, k) (74)

≤
k∗(n−�)−1∑

k=1

n+1∑

l=k

exp{−(n−k+1)Ey(Rx , Ry,
l − k

n−k+1
)}

≤
k∗(n−�)−1∑

k=1

n+1∑

l=k

exp{−(n − k + 1) inf
γ∈[0,1] Ey(Rx , Ry, γ)}

≤
k∗(n−�)−1∑

k=1

(n−k+2) exp{−(n−k+1) inf
γ∈[0,1]Ey(Rx , Ry, γ)}

(75)

In (73) we note that l ≤ n−� thus k∗(n−�)−1 ≥ k∗(l)−1,
also l ≥ 1, so l ≥ k∗(l) − 1. This can be visualized in Fig. 10
as we extend the summation from the intersection of the “box”
and region 3 to the whole region under the diagonal line and
the horizontal line k = k∗(n − �) − 1. In (74) we simply
switch the order of the summation.

Finally when G ≥ 2, we substitute (69), (72), and (75)
into (66) to give

Pr[x̂n−� �= xn−�]
≤ C2 exp

{
−�

[
inf

γ∈[0,1] Ex(Rx , Ry, γ) − α

]}

+
n−�∑

l=1

(l−k∗(l))exp

{
−(n−l+1) inf

γ∈[0,1]
1

1 − γ
Ey(Rx , Ry, γ)

}

(76)

+
k∗(n−�)−1∑

k=1

(n−k+2) exp

{
−(n−k+1) inf

γ∈[0,1] Ey(Rx , Ry, γ)

}

≤ C2 exp

{
−�

[
inf

γ∈[0,1] Ex(Rx , Ry, γ) − α

]}

+
n−�∑

l=1

(l−n− 1+G(n +1−l))

× exp

{
−(n−l+1) inf

γ∈[0,1]
1

1 − γ
Ey(Rx , Ry, γ)

}

+
n+1−G(�+1)∑

k=1

(n−k+2) exp

{
−(n−k+1) inf

γ∈[0,1]Ey(Rx , Ry, γ)

}

(77)

≤ C2 exp

{
−�

[
inf

γ∈[0,1] Ex (Rx , Ry, γ) − α

]}

+(G−1)C3 exp

{
−�

[
inf

γ∈[0,1]
1

1 − γ
Ey(Rx , Ry, γ) − α

]}

+ C4 exp

{
−
[
�G inf

γ∈[0,1] Ey(Rx , Ry, γ)−α

]}

≤ C5 exp

{
−�

[
min

{
inf

γ∈[0,1] Ex(Rx , Ry, γ),

inf
γ∈[0,1]

1

1 − γ
Ey(Rx , Ry, γ)

}
− α

]}
. (78)

To get (77), we use the fact that k∗(l) ≥ n + 1 − G(n +
1 − l) from the definition of k∗(l) in (67) to upper bound
the second term. We exploit the definition of G to convert the
exponent in the third term to infγ∈[0,1] Ex(Rx , Ry, γ). Finally,
to get (78) we gather the constants together, sum out over the
decaying exponentials, and are limited by the smaller of the
two exponents.

One might note that in this proof we regularly double count
the error events and add some extra small probabilities to
simplify sums. The error exponent is not modified by these
manipulations.

D. Universal Decoding

To develop our universal results we use the joint universal
scoring function Sl,k(x̃ n, ỹn) = 1/HS(l, k, x̃ n, ỹn) from (54)
in (58).

pn(l, k) =
∑

xn

∑

yn

pxy(xn, yn)

Pr
[
∃ (x̃ n

1 , ỹn
1) ∈ Bx(xn) × By(yn) ∩ Fn(l, k, xn, yn)

s.t. HS(l, k, x̃ n, ỹn) ≤ HS(l, k, xn, yn)
]

(79)

The following lemma bound the contributions of each
pn(l, k) to the overall error probability.

Lemma 4: Upper bound on pn(l, k) for l ≤ k. For all η > 0,
there exists a constant K1 < ∞, s.t.

pn(l, k) ≤ K1 exp{−(n − l + 1)[Ex(Rx , Ry, λ) − η]}
where λ = (k − l)/(n − l + 1) ∈ [0, 1].

Proof: Starting from (79) we have the steps shown in
(80)–(81). In (81) we enumerate all the source sequences in a
way that allows us to focus on the types of the important sub-
sequences. We enumerate the possibly misleading candidate
sequences in terms of their suffixes types. We restrict the sum
to those pairs (x̃ n, ỹn) that could lead to mistaken decoding,
defining the compact notation S(Pn−k , Pk−l , V n−k , V k−l) �
(k − l)H (V k−l |Pk−l) + (n − k + 1)H (Pn−k × V n−k), which
is the weighted empirical suffix entropy condition rewritten in
terms of types.

Note that the summations within the minimization in (81)
do not depend on the arguments within these sums. Thus, we
can bound this sum separately to get a bound on the number
of possibly misleading source pairs (x̃, ỹ). We bound this sum
starting in (82).

In (83) we sum over all x̃ k−1
l ∈ TṼ k−l (yk−1

l). In (84)
we use standard bounds, e.g., |TṼ k−l (yk−1

l)| ≤ exp{(k − l)

DRAPER et al.: LOSSLESS CODING FOR DISTRIBUTED STREAMING SOURCES 1463

pn(l, k) ≤
∑

xn,yn

min
[
1,

∑

(x̃n , ỹn) ∈ Fn (l, k, xn , yn)
HS(l, k, x̃n , ỹn) ≤ HS(l, k, xn , yn)

Pr[x̃ n ∈ Bx(xn), ỹn ∈ By(yn)]
]

px,y(xn, yn) (80)

≤
∑

xn
l ,yn

l

min
[
1,

∑

(x̃n
l , ỹn

l) s.t. ỹk−1 = yk−1

HS(x̃n
l , ỹn

l) ≤ HS(xn
l , yn

l)

exp{−(n − l + 1)Rx − (n − k + 1)Ry}
]

px,y(xn
l , yn

l)

=
∑

Pn−k ,Pk−l

∑

V n−k ,V k−l

∑

yk−1
l ∈ T

Pk−l ,

yn
k ∈ T

Pn−k

∑

xk−1
l ∈ T

V k−l (yk−1
l),

xn
k ∈ T

V n−k (yn
k)

min
[
1,

∑

Ṽ n−k , Ṽ k−l , P̃n−k s.t.

S(P̃n−k , Pk−l , Ṽ n−k , Ṽ k−l) <

S(Pn−k , Pk−l , V n−k , V k−l)∑

ỹn
k ∈TP̃n−k

∑

x̃ k−1
l ∈TṼ k−l (yk−1

l)

∑

x̃ n
k ∈TṼ n−k (ỹn

k)

exp{−(n − l + 1)Rx − (n − k + 1)Ry}
]

pxy(xn, yn) (81)

H (Ṽ k−l |Pk−l)} since yk−1
l ∈ TPk−l . We also sum over all

x̃ n
k ∈ TṼ n−k (ỹn

k) and over all ỹn
k ∈ TP̃n−k in (84). By definition

of the decoding rule (x̃, ỹ) can only lead to a decoding error
if (k − l)H (Ṽ k−l |Pk−l)] + (n − k + 1)H (P̃n−k × Ṽ n−k) <
(k − l)H (V k−l |Pk−l) + (n − k + 1)H (Pn−k × V n−k). In (87)
we apply the polynomial bound on the number of types.

We substitute (87) into (81) and pull out the poly-
nomial term, giving (88). In (89) we use the memory-
less property of the source, and exponential bounds on
the probability of observing (xk−1

l , yk−1
l) and (xn

k , yn
k).

In (90) we pull out (n − l + 1) from all terms, noticing
that λ = (k − l)/(n − l + 1) ∈ [0, 1] and λ̄ � 1 − λ =
(n − k + 1)/(n − l + 1). In (91) we minimize the
exponent over all choices of distributions px̃,ỹ and px̄,ȳ .
In (92) we define the universal random coding expo-
nent Ex(Rx , Ry, λ) � inf x̃ ,ỹ ,x̄ ,ȳ {λD(px̃,ỹ‖px ,y) + λ̄D
(px̄,ȳ‖px ,y) + ∣∣λ[Rx − H (x̃|ỹ)] + λ̄[Rx + Ry − H (x̄, ȳ)]∣∣+}
where 0 ≤ λ ≤ 1 and λ̄ = 1 − λ. We also incorporate the
number of conditional and marginal types into the polynomial
bound, as well as the sum over k, and then push the polynomial
into the exponent since for any polynomial F , ∀E, ε > 0, there
exists C > 0, s.t. F(�)e−�E ≤ Ce−�(E−ε) . �

A similar derivation yields a bound on pn(l, k) for l ≥ k.
Using Lemma 4 in (59) and following the same steps as in

the derivation for ML decoding of Section VI-C yields (30).

VII. FUTURE DIRECTIONS

Stationary-Ergodic Sources and Universality: In [3] the
block-coding proofs of the Slepian-Wolf problem are extended
to stationary-ergodic sources using AEP arguments. To have
a similar extension to the streaming context it is possible that
additional regularity conditions will be required so that error
exponents can be achieved. To additionally achieve universal-
ity over non-memoryless sources further technical restrictions
will be required. For the specific case of distributed Markov
sources however, all the arguments in this paper should gener-
alize easily by following an approach similar to that taken in
[24]: the source can be “segmented” into small blocks and the
endpoints (for a Markov source of known order k, the endpoint
is just k successive symbols at the end of the block) of the
blocks can be encoded perfectly at an arbitrarily small rate by
making the “small” blocks long enough. Conditioned on these

endpoints, the blocks are then i.i.d. with the endpoints repre-
senting a third stream of perfectly known side-information.

Upper Bounds and Demonstrating Optimal Delays: This
paper focused on achievable exponents for the two-encoder
case and presented upper bounds for the side-information at
the decoder case. The upper bounds followed by extending
single encoder arguments from [22] and do not immediately
generalize to the case of multiple encoders.

Trading Off Error Exponents for the Different Source Termi-
nals: For multiple terminal systems, different error exponents
can be achieved for different users or different sources. For
channel coding, the encoders can choose different distributions
while generating the randomized code book to achieve an error
exponent trade-off among different users. In [30], the error
exponent region is studied for the Gaussian multiple access
channel and the broadcast channel within the block-coding
paradigm. It is unclear whether similar trade offs are possible
within the streaming Slepian Wolf problems considered here
since there is nothing immediately comparable to the flexibility
we have in choosing the “input distribution” for channel
coding problems.

Adaptation and Limited Feedback: A final interesting exten-
sion is to adaptive universal streaming Slepian Wolf encoders.
The decoders we use in this paper are based on empirical
statistics. Therefore they can be used even if source statistics
are unknown. The current proposal will work regardless of
source and side information statistics as long as the conditional
entropy H (x |y) is less than the encoding rate. Even if there is
uncertainty in statistics, the sequential nature of the coding
system would enable the system to adapt on-line to the
unknown entropy rate if some feedback channel is available.
The feedback channel would be used to order increases (or
decreases) in the binning rate. An increase (or decrease) could
be triggered by examining the difference between two quanti-
ties: the minimal empirical joint entropy between the decoded
sequence and observation, and the empirical joint entropy
between the particular sequence and observation yielding the
second-lowest joint entropy. If there is a large difference
between these two entropies, we are using rate excessively, and
the rate of communication can be reduced. If the difference is
negligible, then it’s likely we are not decoding correctly. Our
target should be to keep this difference at roughly ε. In the
current context, this is analogous to the rate margin by which
we choose to exceed the known conditional entropy.

1464 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 60, NO. 3, MARCH 2014

∑

Ṽ n−k , Ṽ k−l , P̃n−k s.t.

S(P̃n−k , Pk−l , Ṽ n−k , Ṽ k−l) <

S(Pn−k , Pk−l , V n−k , V k−l)

∑

ỹn
k ∈TP̃n−k

∑

x̃ k−1
l ∈TṼ k−l (yk−1

l)

∑

x̃ n
k ∈TṼ n−k (ỹn

k)

(82)

≤
∑

Ṽ n−k , Ṽ k−l , P̃n−k s.t.

S(P̃n−k , Pk−l , Ṽ n−k , Ṽ k−l) <

S(Pn−k , Pk−l , V n−k , V k−l)

∑

ỹn
k ∈TP̃n−k

|TṼ k−l (yk−1
l)||TṼ n−k(ỹn

k)| (83)

≤
∑

Ṽ n−k , Ṽ k−l , P̃n−k s.t.

S(P̃n−k , Pk−l , Ṽ n−k , Ṽ k−l) <

S(Pn−k , Pk−l , V n−k , V k−l)

|TP̃n−k | exp{(k − l)H (Ṽ k−l |Pk−l)} exp{(n − k + 1)H (Ṽ n−k |P̃n−k)} (84)

≤
∑

Ṽ n−k , Ṽ k−l , P̃n−k s.t.

S(P̃n−k , Pk−l , Ṽ n−k , Ṽ k−l) <

S(Pn−k , Pk−l , V n−k , V k−l)

exp{(k − l)H (Ṽ k−l |Pk−l) + (n − k + 1)H (P̃n−k × Ṽ n−k)} (85)

≤
∑

Ṽ n−k ,Ṽ k−l , P̃n−k

exp{(k − l)H (V k−l |Pk−l) + (n − k + 1)H (Pn−k × V n−k)} (86)

≤ (n − l + 2)2|X ||Y | exp{(k − l)H (V k−l |Pk−l) + (n − k + 1)H (Pn−k × V n−k)} (87)

pn(l, k) ≤ (n − l + 2)2|X ||Y | ∑

Pn−k ,Pk−l

∑

V n−k ,V k−l

∑

yk−1
l ∈ T

Pk−l ,

yn
k ∈ T

Pn−k

∑

xk−1
l ∈ T

V k−l (yk−1
l),

xn
k ∈ T

V n−k (yn
k)

min
[
1, exp{−(k − l)[Rx − H (V k−l |Pk−l)] − (n − k + 1)[Rx + Ry − H (V n−k × Pn−k)]}

]
pxn

l ,yn
l
(xn

l , yn
l) (88)

≤ (n − l + 2)2|X ||Y | ∑

Pn−k ,Pk−l

∑

V n−k ,V k−l

exp
{

max
[
0,−(k − l)[Rx − H (V k−l |Pk−l)] − (n − k + 1)[Rx + Ry − H (V n−k × Pn−k)]

]}

exp
{
−(k − l)D(V k−l × Pk−l‖px ,y) − (n − k + 1)D(V n−k × Pn−k‖px ,y)

}
(89)

≤ (n − l + 2)2|X ||Y | ∑

Pn−k ,Pk−l

∑

V n−k ,V k−l

exp
{

− (n − l + 1)
[
λD(V k−l × Pk−l‖px ,y) + λ̄D(V n−k × Pn−k‖px ,y)

+
∣∣∣λ[Rx − H (V k−l |Pk−l)] + λ̄[Rx + Ry − H (V n−k × Pn−k)]

∣∣∣
+]}

(90)

≤ (n − l + 2)2|X ||Y | ∑

Pn−k ,Pk−l

∑

V n−k ,V k−l

exp
{

− (n − l + 1) inf
x̃ ,ỹ ,x̄ ,ȳ

[
λD(px̃ ,ỹ‖px ,y) + λ̄D(px̄,ȳ‖px ,y)

+ ∣∣λ[Rx − H (x̃|ỹ)] + λ̄[Rx + Ry − H (x̄, ȳ)]∣∣+
]}

(91)

≤ (n − l + 2)4|X ||Y | exp{−(n − l + 1)Ex(Rx , Ry, λ)} ≤ K1 exp{−(n − l + 1)[Ex(Rx , Ry, λ) − η]} (92)

APPENDIX

A. Proof of Lemma 1

In this section we provide the proof of Lemma 1.

pn(l) =
∑

xn

Pr
[
∃ x̃ n ∈ Bx(xn) ∩ Fn(l, xn)

s.t. px(x̃ n
l) ≥ px(xn

l)
]

px(xn)

≤
∑

xn

min

⎡
⎢⎢⎣1,

∑

x̃n ∈ Fn (l, xn)s.t.
px(xn

l) ≤ px(x̃n
l)

Pr[x̃ n ∈ Bx(xn)]

⎤
⎥⎥⎦ px(xn) (93)

=
∑

xl−1,xn
l

min

⎡
⎢⎢⎢⎣1,

∑

x̃n
l s.t.

px (xn
l) < px (x̃n

l)

exp{−(n−l+1)R+1}

⎤
⎥⎥⎥⎦ px(xn) (94)

=
∑

xn
l

min
[
1,

∑

x̃n
l s.t.

px (xn
l) < px (x̃n

l)

exp{−(n − l + 1)R+1}
]

px(xn
l)

=
∑

xn
l

min

⎡

⎣1,
∑

x̃ n
l

1

[
px (x̃ n

l)

px(xn
l)

>1

]
exp{−(n−l+1)R+1}

⎤

⎦px(xn
l)

(95)

≤
∑

xn
l

min

⎡

⎣1,
∑

x̃ n
l

min

[
1,

px (x̃ n
l)

px (xn
l)

]
exp{−(n−l+1)R+1}

⎤

⎦px(xn
l)

DRAPER et al.: LOSSLESS CODING FOR DISTRIBUTED STREAMING SOURCES 1465

≤
∑

xn
l

⎡

⎣
∑

x̃ n
l

[
px (x̃ n

l)

px (xn
l)

] 1
1+ρ

exp{−(n − l + 1)R+1}
⎤

⎦
ρ

px(xn
l)

(96)

=
∑

xn
l

px(xn
l)

1
1+ρ

⎡

⎣
∑

x̃ n
l

[
px (x̃ n

l)
] 1

1+ρ

⎤

⎦
ρ

exp{−(n − l + 1)ρR+ρ}

=
[
∑

x

px (x)
1

1+ρ

](n−l+1)[∑

x

px (x)
1

1+ρ

](n−l+1)ρ
exp{−(n−l+1)ρR+ρ}

(97)

=
[
∑

x

px (x)
1

1+ρ

](n−l+1)(1+ρ)

exp{−(n − l + 1)ρR + 1}

= exp

{
−(n−l+1)

[
ρR−(1+ρ) ln

(
∑

x

px (x)
1

1+ρ

)]
+1

}
.

(98)

In (93) the union bound is applied. In (94) we use the
fact that after the first symbol in which two sequences differ,
the remaining parity bits are independent. The number of
such symbols is
n R� −
(l − 1)R� ≥ (n − l + 1)R − 1.
In (95) 1(·) is the indicator function, taking the value one
if the argument is true, and zero if it is false. We get (96)
by limiting ρ to the range 0 ≤ ρ ≤ 1 since the arguments
of the minimization are both positive and upper-bounded by
one. We use the i.i.d. property of the source, exchanging sums
and products to get (97). The bound in (98) is true for all
ρ in the range 0 ≤ ρ ≤ 1. Maximizing (98) over ρ gives
pn(l) ≤ exp{−(n−l+1)E pt,x(R)} where E pt,x(R)} is defined
in Theorem 2, in particular in (16).

B. Proof of Lemma 3

In this section we provide the proof of Lemma 3. We refer
to (99)–(106) in the following discussion. The bound depends
on whether l ≤ k or l ≥ k. Consider the case l ≤ k, In (99)
we explicitly indicate the three conditions that a suffix pair
(x̃ n

l , ỹn
k) must satisfy to result in a decoding error. In (100)

we sum out over the common prefixes (xl−1, yl−1), and use
the fact that the random binning is done independently at each
encoder, see Definition. 2. We get (101) by limiting ρ to the
interval 0 ≤ ρ ≤ 1, as in (96). Getting (102) from (101)
follows by a number of basic manipulations. In (102) we get
the single letter expression by again using the memoryless
property of the sources. In (103) we use the definitions of
Ex |y and Exy from (7) and (8) of Theorem 6. Noting that
the bound holds for all ρ ∈ [0, 1] optimizing over ρ results
in (105). Finally, using the definition of (29) gives (106). The
bound on pn(l, k) when l > k, is developed in an analogous
fashion.

C. Equivalence of the Two Forms of the Error Exponent
for Streaming Slepian-Wolf

In this section we prove the following lemma.

Lemma 5:

Ex(Rx , Ry, γ)

= sup
ρ∈[0,1]

{
γ Ex |y(Rx , ρ) + (1 − γ)Exy(Rx , Ry, ρ)

}
(107)

= inf
qxy ,oxy

{
γ D(qxy ||pxy) + (1 − γ)D(oxy ||pxy)

+ max{0, γ (Rx −H (qx |y))+(1−γ)(Rx + Ry −H (oxy))}
}
,

(108)

where Ex |y(·) and Exy(·) are defined in (7) and (8). For
notational simplicity, we write qxy and oxy as two arbitrary
joint distributions on X × Y (instead of px̄ȳ and p ¯̄x ¯̄y). We
retain pxy to indicate the joint distribution of the source.
The equivalence between the forms of Ey(Rx , Ry, γ) in (29)
and (30) can be proved using the same approach.

The proof of Lemma 5 is given in Section E. We start by
giving some preliminary definitions in Section D. The proofs
of a number of technical lemmas are deferred to Section F.

D. Preliminaries

We recall that the first form of the exponent speci-
fied in (107) resulted from the analysis of ML decod-
ing. To help establish the lemma we define the function
Eml,x (Rx , Ry, γ , ρ) as

Eml,x (Rx , Ry, γ , ρ)

= γ Ex |y(Rx , ρ) + (1 − γ)Exy(Rx , Ry, ρ)

= ρR(γ) − γ log

⎛

⎝
∑

y

(
∑

x

pxy (x, y)
1

1+ρ

)1+ρ
⎞

⎠

−(1 − γ)(1 + ρ) log

(
∑

y

∑

x

pxy (x, y)
1

1+ρ

)
,

and define

Eml,x (Rx , Ry, γ) = sup
ρ∈[0,1]

Eml,x (Rx , Ry, γ , ρ).

In addition, we use Eun,x (Rx , Ry, γ) to denote the “univer-
sal” form (108) of the exponent, i.e.,

Eun,x (Rx , Ry, γ)

= inf
qxy ,oxy

{
γ D(qxy ||pxy) + (1 − γ)D(oxy ||pxy)

+ max
{
0, γ (Rx −H (qx |y))+(1−γ)(Rx + Ry −H (oxy))

}}

= inf
qxy ,oxy

{
γ D(qxy ||pxy) + (1 − γ)D(oxy ||pxy)

+ max{0, R(γ) − γ H (qx |y) − (1 − γ)H (oxy)}
}
.

To increase compactness we have defined

R(γ) = γ Rx + (1 − γ)(Rx + Ry).

We note that in the achievable rate region we have the relation

R(γ) > γ H (px |y) + (1 − γ)H (px ,y).

Finally, before starting the proof, we define a pair of
distributions that we will need.

1466 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 60, NO. 3, MARCH 2014

pn(l, k) =
∑

xn,yn

px,y(xn, yn) Pr[∃ (x̃ n, ỹn) ∈ Bx(xn) × By(yn) ∩ Fn(l, k, xn, yn) s.t. px,y(xn
l , yn

l) < px,y(x̃ n
l , ỹn

l)]

≤
∑

xn,yn

min
[
1,

∑

(x̃n , ỹn) ∈ Fn (l, k, xn , yn)
px,y(xn

l , yn
l) < px,y(x̃n

l , ỹn
l)

Pr[x̃ n ∈ Bx(xn), ỹn ∈ By(yn)]
]

px,y(xn, yn) (99)

≤
∑

xn
l ,yn

l

min
[
1,

∑

(x̃n
l , ỹn

l) s.t. ỹk−1 = yk−1

px,y(xn
l , yn

l) < px,y(x̃n
l , ỹn

l)

exp{−(n − l + 1)Rx − (n − k + 1)Ry}
]

px,y(xn
l , yn

l) (100)

=
∑

xn
l ,yn

l

min
[
1,
∑

x̃ n
l ,ỹn

k

exp{−(n − l + 1)Rx − (n − k + 1)Ry}

1[px,y(x̃ k−1
l , yk−1

l)px,y(x̃ n
k , ỹn

k) > px,y(xn
l , yn

l)]
]

px,y(xn
l , yn

l)

≤
∑

xn
l ,yn

l

min

[
1,
∑

x̃ n
l ,ỹn

k

exp{−(n − l + 1)Rx − (n − k + 1)Ry}

× min

[
1,

px,y(x̃ k−1
l , yk−1

l)px,y(x̃ n
k , ỹn

k)

px,y(xn
l , yn

l)

]]
px,y(xn

l , yn
l)

≤
∑

xn
l ,yn

l

[∑

x̃ n
l ,ỹn

k

e−(n−l+1)Rx −(n−k+1)Ry

[
px,y(x̃ k−1

l , yk−1
l)px,y(x̃ n

k , ỹn
k)

px,y(xn
l , yn

l)

] 1
1+ρ
]ρ

px,y(xn
l , yn

l) (101)

= e−(n−l+1)ρRx −(n−k+1)ρRy
∑

xn
l ,yn

l

[∑

x̃ n
l ,ỹn

k

[px,y(x̃ k−1
l , yk−1

l)px,y(x̃ n
k , ỹn

k)] 1
1+ρ

]ρ

px,y(xn
l , yn

l)
1

1+ρ

= e−(n−l+1)ρRx −(n−k+1)ρRy
∑

yk−1
l

[∑

xk−1
l

px,y(xk−1
l , yk−1

l)
1

1+ρ

][∑

x̃ k−1
l

px,y(x̃ k−1
l , yk−1

l)
1

1+ρ

]ρ

×
[∑

x̃ n
k ,ỹn

k

px,y(x̃ n
k , ỹn

k)
1

1+ρ

]ρ ∑

xn
k ,yn

k

px,y(xn
k , yn

k)
1

1+ρ

= e−(n−l+1)ρRx −(n−k+1)ρRy

[∑

yk−1
l

[∑

xk−1
l

px,y(xk−1
l , yk−1

l)
1

1+ρ

]1+ρ
][∑

xn
k ,yn

k

px,y(xn
k , yn

k)
1

1+ρ

]1+ρ

= e−(n−l+1)ρRx −(n−k+1)ρRy

[∑

y

[∑

x

px ,y (x, y)
1

1+ρ

]1+ρ
]k−l[∑

x,y

px ,y (x, y)
1

1+ρ

](1+ρ)(n−k+1)
(102)

= exp

{
−(k − l)

[
ρRx − log

[∑

y

[∑

x

px ,y (x, y)
1

1+ρ

]1+ρ]]
}

× exp

{
−(n − k + 1)

[
ρ(Rx + Ry) − (1 + ρ) log

[∑

x,y

px ,y (x, y)
1

1+ρ

]]}

= exp
{−(k − l)Ex |y(Rx , ρ) − (n − k + 1)Exy(Rx , Ry, ρ)

}
(103)

= exp

{
−(n − l + 1)

[k − l

n − l + 1
Ex |y(Rx , ρ) + n − k + 1

n − l + 1
Exy(Rx , Ry, ρ)

]}
(104)

≤ exp

{
−(n − l + 1) sup

ρ∈[0,1]

[k − l

n − l + 1
Ex |y(Rx , ρ) + n − k + 1

n − l + 1
Exy(Rx , Ry, ρ)

]}
(105)

= exp

{
−(n − l + 1)Ex

(
Rx , Ry,

k − l

n − l + 1

)}
. (106)

Definition 5: Tilted distribution of pxy : pρ
xy , for all

ρ ∈ [−1,∞)

pρ
xy (x, y) = pxy (x, y)

1
1+ρ

∑
t
∑

s pxy (s, t)
1

1+ρ

. (109)

The entropy of the tilted distribution is written as H (pρ
xy).

Obviously p0
xy = pxy .

Definition 6: The x − y tilted distribution of pxy , p̄ρ
xy , is

defined for all ρ ∈ [−1,+∞) as

p̄ρ
xy (x, y) =

[∑
s pxy (s, y)

1
1+ρ

]1+ρ

∑
t

[∑
s pxy (s, t)

1
1+ρ

]1+ρ

pxy (x, y)
1

1+ρ

∑
s pxy (s, y)

1
1+ρ

DRAPER et al.: LOSSLESS CODING FOR DISTRIBUTED STREAMING SOURCES 1467

= A(y, ρ)

B(ρ)
× C(x, y, ρ)

D(y, ρ)

where

A(y, ρ) =
[
∑

s

pxy (s, y)
1

1+ρ

]1+ρ

= D(y, ρ)1+ρ,

B(ρ) =
∑

s

[
∑

t

pxy (s, t)
1

1+ρ

]1+ρ

=
∑

y

A(y, ρ),

C(x, y, ρ) = pxy (x, y)
1

1+ρ ,

D(y, ρ) =
∑

s

pxy (s, y)
1

1+ρ =
∑

x

C(x, y, ρ).

The marginal distribution for y is A(y,ρ)
B(ρ) . Obviously

p̄0
xy = pxy . Write the conditional distribution of x given y

under distribution p̄ρ
xy as p̄ρ

x |y , where p̄ρ
x |y (x, y) = C(x,y,ρ)

D(y,ρ) ,
and the conditional entropy of x given y under distribution
p̄ρ
xy as H (p̄ρ

x |y). Obviously H (p̄0
x |y) = H (px |y).

The conditional entropy of x given y for the x − y tilted
distribution is

H (p̄ρ
x |y=y) = −

∑

x

C(x, y, ρ)

D(y, ρ)
log

(
C(x, y, ρ)

D(y, ρ)

)
(110)

We introduce A(y, ρ), B(ρ), C(x, y, ρ), D(y, ρ) to sim-
plify the notations. Some of their properties are shown in
Lemma 9.

While tilted distributions are common optimal distributions
in large deviation theory, it is useful to contemplate why
we need to introduce these two tilted distributions. In the
proof of Lemma 5 we show through a Lagrange multiplier
argument that {pρ

xy : ρ ∈ [−1,+∞)} is the family of
distributions that minimize the Kullback-Leibler distance to
pxy with fixed entropy and { p̄ρ

xy : ρ ∈ [−1,+∞)} is the
family of distributions that minimize the Kullback−Leibler
distance to pxy with fixed conditional entropy. Using a
Lagrange multiplier argument, we parametrize the universal
error exponent Eun,x(Rx , Ry, γ) in terms of ρ and show the
equivalence of the universal and maximum likelihood error
exponents.

E. Proof of Lemma 5

The proof of the lemma splits into two cases. Case 1 is
when γ H (px |y)+ (1−γ)H (pxy) < R(γ) < γ H (p̄1

x |y)+ (1−
γ)H (p1

xy). Case 2 is when R(γ) ≥ γ H (p̄1
x |y)+(1−γ)H (p1

xy).
Proof:
Case 1: First, from Lemma F and Lemma 14:

∂ Eml,x (Rx ,Ry,γ ,ρ)

∂ρ
= R(γ)−γ H (p̄ρ

x |y)−(1−γ)H (pρ
xy).

(111)

Then, using Lemma 6 and Lemma 10, we have:

∂2 Eml,x (Rx , Ry, γ , ρ)

∂ρ
≤ 0. (112)

So ρ maximize Eml,x (Rx , Ry, γ , ρ), if and only if:

0 = ∂ Eml,x (Rx , Ry, γ , ρ)

∂ρ

= R(γ) − γ H (p̄ρ
x |y) − (1 − γ)H (pρ

xy).

Because R(γ) is in the interval [γ H (px |y) + (1 − γ)
H (pxy), γ H (p̄1

x |y)+(1−γ)H (p1
xy)] and the entropy functions

monotonically-increase over ρ, we can find ρ∗ ∈ (0, 1), s.t.

γ H (p̄ρ∗
x |y) + (1 − γ)H (pρ∗

xy) = R(γ).

Using Lemma 13 and Lemma F we get:

Eml,x (Rx ,Ry,γ) = γ D(p̄ρ∗
xy‖pxy)+(1−γ)D(pρ∗

xy‖pxy).
(113)

Where γ H (p̄ρ∗
x |y) + (1 − γ)H (pρ∗

xy) = R(γ) , ρ∗ is generally
unique because both H (p̄ρ

x |y) and H (pρ
xy) are strictly increas-

ing with ρ.
Secondly,

Eun,x(Rx , Ry, γ)

= inf
qxy ,oxy

{
γ D(qxy ||pxy) + (1 − γ)D(oxy ||pxy)

+ max
{
0, R(γ) − γ H (qx |y) − (1 − γ)H (oxy)

}}

= inf
b

{
inf

qxy ,oxy :γ H(qx |y)+(1−γ)H(oxy)=b

{
γ D(qxy ||pxy)

+(1 − γ)D(oxy ||pxy) + max(0, R(γ) − b)
}}

= inf
b≥γ H(px |y)+(1−γ)H(pxy)

{
inf

qxy ,oxy :γ H(qx |y)+(1−γ)H(oxy)=b
{
γ D(qxy ||pxy)+(1−γ)D(oxy ||pxy)+max(0, R(γ)−b)

}}
.

(114)

The last equality is true because, as we now show,
b < γ H (px |y) + (1 − γ)H (pxy) < R(γ) cannot be the
optimizing choice of b. To see this note that the inner infimum
in (114) is at least as large as max(0, R(γ) − b), which can be
lower bounded as:

max(0, R(γ) − b)

= inf
qxy ,oxy :H(qx |y)=H(px |y),H(oxy)=H(pxy)

{
γ D(qxy ||pxy)

+(1 − γ)D(oxy ||pxy) + max(0, R(γ) − b)
}

≥ inf
qxy ,oxy :H(qx |y)=H(px |y),H(oxy)=H(pxy)

{
γ D(qxy ||pxy)

+(1 − γ)D(oxy ||pxy)

+ max(0, R(γ) − γ H (px |y) + (1 − γ)H (pxy))
}

≥ inf
qxy ,oxy :γ H(qx |y)+(1−γ)H(oxy)=γ H(px |y)+(1−γ)H(pxy){

γ D(qxy ||pxy) + (1 − γ)D(oxy ||pxy)

+ max(0, R(γ) − γ H (px |y) + (1 − γ)H (pxy))
}
,

which can be achieved in (114) through choosing
b = γ H (px |y) + (1 − γ)H (pxy). Hence, the minimizing b
must be at least this large.

Now, fixing b ≥ γ H (px |y) + (1 − γ)H (pxy), the
inner infimum in (114) is an optimization problem on
qxy , oxy with equality constraints

∑
x
∑

y qxy (x, y) = 1,∑
x

∑
y oxy (x, y) = 1 and γ H (qx |y) + (1 − γ)H (oxy) = b

and the obvious inequality constraints 0 ≤ qxy (x, y) ≤ 1,
0 ≤ oxy (x, y) ≤ 1,∀x, y. In the following formulation of the

1468 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 60, NO. 3, MARCH 2014

optimization problem, we relax one equality constraint to an
inequality constraint γ H (qx |y) + (1 − γ)H (oxy) ≥ b to make
the optimization problem convex . It turns out later that the
optimal solution to the relaxed problem is also the optimal
solution to the original problem because b ≥ γ H (px |y) +
(1 − γ)H (pxy). The resulting optimization problem is:

inf
qxy ,oxy

{
γ D(qxy ||pxy) + (1 − γ)D(oxy ||pxy)

}

s.t.
∑

x

∑

y

qxy (x, y) = 1

∑

x

∑

y

oxy (x, y) = 1

b − γ H (qx |y) − (1 − γ)H (oxy) ≤ 0

0 ≤ qxy (x, y) ≤ 1, ∀(x, y) ∈ X × Y
0 ≤ oxy (x, y) ≤ 1, ∀(x, y) ∈ X × Y (115)

The above optimization problem is convex because the objec-
tive function and the inequality constraint functions are con-
vex and the equality constraint functions are affine [1]. The
Lagrange multiplier function for this convex optimization
problem is:

L(qxy , oxy , ρ, μ1, μ2, ν1, ν2, ν3, ν4)

= γ D(qxy ||pxy) + (1 − γ)D(oxy ||pxy)

+μ1(
∑

x

∑

y

qxy (x, y) − 1) + μ2(
∑

x

∑

y

oxy (x, y) − 1)

+ρ(b − γ H (qx |y) − (1 − γ)H (oxy))

+
∑

x

∑

y

{
ν1(x, y)(−qxy (x, y))

+ν2(x, y)(1 − qxy (x, y)) + ν3(x, y)(−oxy(x, y))

+ν4(x, y)(1 − oxy (x, y))
}
,

where ρ,μ1, μ2 are real numbers and νi ∈ R|X ||Y |,
i = 1, 2, 3, 4.

According to the KKT conditions for convex optimiza-
tion [1], qxy , oxy minimize the convex optimization problem
in (115) if and only if the following conditions are simulta-
neously satisfied for some qxy , oxy , μ1, μ2, ν1, ν2, ν3, ν4
and ρ:

0 = ∂L(qxy , oxy , ρ, μ1, μ2, ν1, ν2, ν3, ν4)

∂qxy (x, y)

= γ
[

− log(pxy (x, y)) + (1 + ρ)(1 + log(qxy (x, y)))

+ρ log
(∑

s

qxy (s, y)
)]+ μ1 − ν1(x, y) − ν2(x, y)

0 = ∂L(qxy , oxy , ρ, μ1, μ2, ν1, ν2, ν3, ν4)

∂oxy (x, y)

= (1−γ)
[
− log(pxy (x, y))+(1+ρ)(1 + log(oxy (x, y)))

]

+μ2 − ν3(x, y) − ν4(x, y) (116)

For all x , y and
∑

x

∑

y

qxy (x, y) = 1

∑

x

∑

y

oxy (x, y) = 1

ρ
(
γ H (qx |y)+(1−γ)H (oxy)−b

)
= 0

ρ ≥ 0

ν1(x, y)(−qxy (x, y)) = 0, ∀x, y

ν2(x, y)(1 − qxy (x, y)) = 0, ∀x, y

ν3(x, y)(−oxy (x, y)) = 0, ∀x, y

ν4(x, y)(1 − oxy (x, y)) = 0, ∀x, y

νi (x, y) ≥ 0, ∀x, y, 1 ≤ i ≤ 4

(117)

Solving the above standard Lagrange multiplier equations
(116) and (117), we have:

qxy (x, y) = [∑s pxy (s, y)
1

1+ρb]1+ρb

∑
t [
∑

s pxy (s, t)
1

1+ρb]1+ρb

pxy (x, y)
1

1+ρb

∑
s pxy (s, y)

1
1+ρb

= p̄ρb
xy (x, y)

oxy (x, y) = pxy (x, y)
1

1+ρb

∑
t

∑
s pxy (s, t)

1
1+ρb

= pρb
xy (x, y)

νi (x, y) = 0 ∀x, y, i = 1, 2, 3, 4

ρ = ρb (118)

Where ρb satisfies the condition

γ H (p̄ρb
x |y)+(1−γ)H (pρb

xy) = b ≥ γ H (px |y)

+(1−γ)H (pxy) (119)

and thus ρb ≥ 0 because both H (p̄ρ
x |y) and H (pρ

xy) are
monotonically increasing with ρ as shown in Lemma 6 and
Lemma 10.

Notice that all the KKT conditions are simultaneously satis-
fied with the inequality constraint γ H (qx |y)+(1−γ)H (oxy) ≥
b being met with equality. Thus, the relaxed optimization
problem has the same optimal solution as the original problem
as promised. The optimal qxy and oxy are the x − y tilted
distribution p̄ρb

xy and standard tilted distribution pρb
xy of pxy

with the same parameter ρb ≥ 0. chosen s.t.

γ H (p̄ρb
x |y) + (1 − γ)H (pρb

xy) = b (120)

Now, consider the expansion of Eun,x(Rx , Ry, γ) provided
in (121). Later in the appendix we show that H (pρ

xy), H (p̄ρ
x |y),

D(p̄ρ
xy ||pxy) and D(pρ

xy ||pxy) are all strictly increasing with
ρ > 0, shown respectively in Lemma 10, Lemma 11, Lemma 6
and Lemma 7. Now, consider each term of (121). The second
term simplifies to

inf
ρ≥0:R(γ)≤γ H(p̄ρ

x |y)+(1−γ)H(pρ
xy)
{γ D(p̄ρ

xy ||pxy)

+ (1−γ)D(pρ
xy ||pxy)}

= γ D(p̄ρ∗
xy ||pxy) + (1 − γ)D(pρ∗

xy ||pxy) (122)

where R(γ) = γ H (p̄ρ∗
x |y) + (1 − γ)H (pρ∗

xy).

DRAPER et al.: LOSSLESS CODING FOR DISTRIBUTED STREAMING SOURCES 1469

Eun,x (Rx , Ry, γ)

= inf
b≥γ H(px |y)+(1−γ)H(pxy)

{
inf

qxy ,oxy :γ H(qx |y)+(1−γ)H(oxy)=b

{
γ D(qxy ||pxy) + (1 − γ)D(oxy ||pxy) + max(0, R(γ) − b)

}}

= inf
b≥γ H(px |y)+(1−γ)H(pxy)

{
γ D(p̄ρb

xy ||pxy) + (1 − γ)D(pρb
xy ||pxy) + max(0, R(γ) − b)

}

= min

[
inf

ρ≥0:R(γ)≥γ H(p̄ρ
x |y)+(1−γ)H(pρ

xy)

{
γ D(p̄ρ

xy ||pxy) + (1 − γ)D(pρ
xy ||pxy) + R(γ) − γ H (p̄ρ

x |y) − (1 − γ)H (pρ
xy)
}

,

inf
ρ≥0:R(γ)≤γ H(p̄ρ

x |y)+(1−γ)H(pρ
xy)

{
γ D(p̄ρ

xy ||pxy) + (1 − γ)D(pρ
xy ||pxy)

}
]

(121)

Applying the results of Lemma 12 and Lemma 8 to the first
term of (121) we get:

inf
ρ≥0:R(γ)≥γ H(p̄ρ

x |y)+(1−γ)H(pρ
xy)

{
γ D(p̄ρ

xy ||pxy)

+(1−γ)D(pρ
xy ||pxy)+ R(γ)−γ H (p̄ρ

x |y)−(1−γ)H (pρ
xy)
}

=
[
γ D(p̄ρ

xy ||pxy) + (1 − γ)D(pρ
xy ||pxy)

+R(γ) − γ H (p̄ρ
x |y) − (1 − γ)H (pρ

xy)
]∣∣∣

ρ=ρ∗

= γ D(p̄ρ∗
xy ||pxy) + (1 − γ)D(pρ∗

xy ||pxy). (123)

This is true because for ρ : R(γ) ≥ γ H (p̄ρ
x |y) + (1 − γ)

H (pρ
xy), we know ρ ≤ 1 because of the range of

R(γ): R(γ) < γ H (p̄1
x |y) + (1 − γ)H (p1

xy). Substituting (122)
and (123) into (121), we get

Eun,x(Rx , Ry, γ) = γ D(p̄ρ∗
xy ||pxy) + (1 − γ)D(pρ∗

xy ||pxy)

where R(γ) = γ H (p̄ρ∗
x |y) + (1 − γ)H (pρ∗

xy). (124)

So for γ H (px |y) + (1 − γ)H (pxy) ≤ R(γ) ≤ γ H (p̄1
x |y) +

(1 − γ)H (p1
xy), from (113) we have the desired property:

Eml,x (Rx , Ry, γ) = Eun,x (Rx , Ry, γ). (125)

Case 2: Recall that this is the case where R(γ) ≥
γ H (p̄1

x |y) + (1 − γ)H (p1
xy). In this case, for all 0 ≤ ρ ≤ 1

∂ Eml,x (Rx , Ry, γ , ρ)

∂ρ
= R(γ)−γ H (p̄ρ

x |y) − (1−γ)H (pρ
xy)

≥ R(γ) − γ H (p̄1
x |y) − (1 − γ)H (p1

xy) ≥ 0.

So ρ takes value 1 to maximize the error exponent
Eml,x (Rx , Ry, γ , ρ), thus

Eml,x (Rx , Ry, γ) = R(γ) − γ log
(∑

y

(∑

x

pxy (x, y)
1
2
)2)

−2(1 − γ) log
(∑

y

∑

x

pxy (x, y)
1
2
)
.

Using the same convex optimization techniques as case 1,
we notice the fact that ρ∗ ≥ 1 for R(γ) = γ H (p̄ρ∗

x |y)+ (1−γ)

H (pρ∗
xy). Then applying Lemma 12 and Lemma 8, we have:

inf
ρ≥0:R(γ)≥γ H(p̄ρ

x |y)+(1−γ)H(pρ
xy)

{
γ D(p̄ρ

xy ||pxy)

+(1−γ)D(pρ
xy ||pxy)+ R(γ)−γ H (p̄ρ

x |y)−(1−γ)H (pxyρ)
}
,

= γ D(p̄1
xy ||pxy) + (1 − γ)D(p1

xy ||pxy)

+R(γ) − γ H (p̄1
x |y) − (1 − γ)H (p1

xy).

And

inf
ρ≥0:R(γ)≤γ H(p̄ρ

x |y)+(1−γ)H(pρ
xy)

{γ D(p̄ρ
xy ||pxy)

+(1−γ)D(pρ
xy ||pxy)}

= γ D(p̄ρ∗
xy ||pxy) + (1 − γ)D(pρ∗

xy ||pxy)

= γ D(p̄ρ∗
xy ||pxy) + (1 − γ)D(pρ∗

xy ||pxy) (126)

+R(γ) − γ H (p̄ρ∗
x |y) − (1 − γ)H (pρ∗

xy)

≤ γ D(p̄1
xy ||pxy) + (1 − γ)D(p1

xy ||pxy) (127)
+R(γ) − γ H (p̄1

x |y) − (1 − γ)H (p1
xy)

Finally, in (128)–(129) we complete the derivation. where
the equality in (128) is true by setting ρ = 1 in Lemma 13
and Lemma F.

Thus, as for case 1, for this case we again find that
Eml,x (Rx , Ry, γ) = Eun,x(Rx , Ry, γ), finishing the proof.

F. Proofs of Lemmas Used to Prove Lemma 5

Lemma 6:
∂ H(pρ

xy)
∂ρ ≥ 0

Proof: From the definition of the tilted distribution we have
the following observation:

log(pρ
xy (x1, y1)) − log(pρ

xy (x2, y2))

= log(pxy (x1, y1)
1

1+ρ) − log(pxy (x2, y2)
1

1+ρ).

Using the above equality, we first derive the derivative of the
tilted distribution, for all x, y

∂pρ
xy (x, y)

∂ρ

= −1

(1+ρ)2

pxy (x, y)
1

1+ρ log(pxy (x, y))(
∑

t
∑

s pxy (s, t)
1

1+ρ)

(
∑

t

∑
s pxy (s, t)

1
1+ρ)2

− −1

(1+ρ)2

pxy (x, y)
1

1+ρ (
∑

t
∑

s pxy (s, t)
1

1+ρ log(pxy (s, t)))

(
∑

t

∑
s pxy (s, t)

1
1+ρ)2

1470 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 60, NO. 3, MARCH 2014

Eun,x (Rx , Ry, γ)

= inf
b≥γ H(px |y)+(1−γ)H(pxy)

{
inf

qxy ,oxy :γ H(qx |y)+(1−γ)H(oxy)=b

{
γ D(qxy ||pxy)+(1 − γ)D(oxy ||pxy) + max(0, R(γ) − b)

}}
(128)

= inf
b≥γ H(px |y)+(1−γ)H(pxy)

{
γ D(p̄ρb

xy ||pxy) + (1 − γ)D(pρb
xy ||pxy) + max(0, R(γ) − b)

}

= min
[

inf
ρ≥0:R(γ)≥γ H(p̄ρ

x |y)+(1−γ)H(pρ
xy)

{
γ D(p̄ρ

xy ||pxy) + (1 − γ)D(pρ
xy ||pxy) + R(γ) − γ H (p̄ρ

x |y) − (1 − γ)H (pρ
xy)
}
,

inf
ρ≥0:R(γ)≤γ H(p̄ρ

x |y)+(1−γ)H(pρ
xy)

{
γ D(p̄ρ

xy ||pxy) + (1 − γ)D(pρ
xy ||pxy)

}]

= γ D(p̄1
xy ||pxy) + (1 − γ)D(p1

xy ||pxy) + R(γ) − γ H (p̄1
x |y) − (1 − γ)H (p1

xy)

= R(γ) − γ log
(∑

y

(∑

x

pxy (x, y)
1
2
)2)− 2(1 − γ) log

(∑

y

∑

x

pxy (x, y)
1
2

)
, (129)

= −1

1+ρ
pρ
xy (x, y)

[
log(pxy (x, y)

1
1+ρ)

−
∑

t

∑

s

pρ
xy (s, t) log(pxy (s, t)

1
1+ρ)

]

= −1

1+ρ
pρ
xy (x, y)

[
log(pρ

xy (x, y))

−
∑

t

∑

s

pρ
xy (s, t) log(pρ

xy (s, t))
]

= − pρ
xy (x, y)

1 + ρ
[log(pρ

xy (x, y)) + H (pρ
xy)]

Then:

∂ H (pρ
xy)

∂ρ
(130)

= −∂
∑

x,y pρ
xy (x, y) log(pρ

xy (x, y))

∂ρ

= −
∑

x,y

(1 + log(pρ
xy (x, y)))

∂pρ
xy (x, y)

∂ρ

=
∑

x,y

(1+log(pρ
xy (x, y)))

pρ
xy (x, y)

1+ρ

× (log(pρ
xy (x, y))+H (pρ

xy))

= 1

1+ρ

∑

x,y

pρ
xy (x, y) log(pρ

xy (x, y))

× (log(pρ
xy (x, y))+H (pρ

xy))

= 1

1+ρ

[∑

x,y

pρ
xy (x, y)(log(pρ

xy (x, y)))2−H (pρ
xy)2

]

= 1

1+ρ

[∑

x,y

pρ
xy (x, y)(log(pρ

xy (x, y)))2
∑

x,y

pρ
xy (x, y)

−H (pρ
xy)2

]

≥ 1

1+ρ

[(∑

x,y

pρ
xy (x, y) log(pρ

xy (x, y))
)2−H (pρ

xy)
2
]

(131)

= 0

where (131) is true by the Cauchy-Schwartz inequality.

Lemma 7:
∂ D(pρ

xy‖P)
∂ρ = ρ

∂ H(pρ
xy)

∂ρ

Proof: As shown in Lemma 13 and Lemma F respectively:

D(pρ
xy‖pxy) = ρH (pρ

xy) − (1 + ρ) log(
∑

x,y

pxy (x, y)
1

1+ρ)

H (pρ
xy) = ∂(1 + ρ) log(

∑
y
∑

x pxy (x, y)
1

1+ρ)

∂ρ

We have:

∂ D(pρ
xy‖pxy)

∂ρ

= H (pρ
xy) + ρ

∂ H (pρ
xy)

∂ρ

− ∂(1 + ρ) log(
∑

y

∑
x pxy (x, y)

1
1+ρ)

∂ρ

= H (pρ
xy) + ρ

∂ H (pρ
xy)

∂ρ
− H (pρ

xy)

= ρ
∂ H (pρ

xy)

∂ρ
(132)

�
Lemma 8: sign

∂[D(pρ
xy‖pxy)−H(pρ

xy)]
∂ρ = sign(ρ − 1).

Proof: Combining the results of the previous two lemmas,
we have:

∂ D(pρ
xy‖pxy) − H (pρ

xy)

∂ρ
= (ρ − 1)

∂ H (pρ
xy)

∂ρ
= sign(ρ − 1)

�
Lemma 9: Properties of ∂ A(y,ρ)

∂ρ , ∂ B(ρ)
∂ρ , ∂C(x,y,ρ)

∂ρ , ∂ D(y,ρ)
∂ρ

and
∂ H(p̄ρ

x |y=y)

∂ρ
First,

∂C(x, y, ρ)

∂ρ
= ∂pxy (x, y)

1
1+ρ

∂ρ

= − 1

1 + ρ
pxy (x, y)

1
1+ρ log(pxy (x, y)

1
1+ρ)

= −C(x, y, ρ)

1 + ρ
log(C(x, y, ρ)).

DRAPER et al.: LOSSLESS CODING FOR DISTRIBUTED STREAMING SOURCES 1471

∂ D(y, ρ)

∂ρ
= ∂

∑
s pxy (s, y)

1
1+ρ

∂ρ

= − 1

1 + ρ

∑

s

pxy (s, y)
1

1+ρ log(pxy (s, y)
1

1+ρ)

= −
∑

x C(x, y, ρ) log(C(x, y, ρ))

1 + ρ
.

For a differentiable function f (ρ),

∂ f (ρ)1+ρ

∂ρ
= f (ρ)1+ρ log(f (ρ)) + (1 + ρ) f (ρ)ρ

∂ f (ρ)

∂ρ
.

(133)

So

∂ A(y, ρ)

∂ρ
= ∂ D(y, ρ)1+ρ

∂ρ

= D(y, ρ)1+ρ log(D(y, ρ))

+(1 + ρ)D(y, ρ)ρ
∂ D(y, ρ)

∂ρ

= D(y, ρ)1+ρ(log(D(y, ρ))

−
∑

x

C(x, y, ρ)

D(y, ρ)
log(C(x, y, ρ)))

= D(y, ρ)1+ρ(−
∑

x

C(x, y, ρ)

D(y, ρ)
log(

C(x, y, ρ)

D(y, ρ))
))

= A(y, ρ)H (p̄ρ
x |y=y)

∂ B(ρ)

∂ρ
=
∑

y

∂ A(y, ρ)

∂ρ
=
∑

y

A(y, ρ)H (p̄ρ
x |y=y)

= B(ρ)
∑

y

A(y, ρ)

B(ρ)
H (p̄ρ

x |y=y) = B(ρ)H (p̄ρ
x |y)

And last:
∂ H (p̄ρ

x |y=y)

∂ρ

=−
∑

x

[∂C(x,y,ρ)
∂ρ

D(y, ρ)
− C(x,y,ρ) ∂ D(y,ρ)

∂ρ

D(y, ρ)2

][
1+log

C(x,y,ρ)

D(y, ρ)

]

= −
∑

x

[−C(x,y,ρ)
1+ρ log(C(x, y, ρ))

D(y, ρ)

+C(x, y, ρ)
∑

s C(s,y,ρ) log(C(s,y,ρ))
1+ρ

D(y, ρ)2

⎤

⎦
[

1+log
C(x, y, ρ)

D(y, ρ)

]

= 1

1 + ρ

∑

x

[
p̄ρ
x |y (x, y) log(C(x, y, ρ))

−p̄ρ
x |y (x,y)

∑

s

p̄ρ
x |y (s,y) log(C(s,y,ρ))

][
1+log(p̄ρ

x |y (x,y))
]

= 1

1 + ρ

∑

x

p̄ρ
x |y (x, y)

[
log(p̄ρ

x |y (x, y))

−
∑

s

p̄ρ
x |y (s, y) log(p̄ρ

x |y (s, y))
][

1 + log(p̄ρ
x |y (x, y))

]

= 1

1 + ρ

∑

x

p̄ρ
x |y (x, y) log(p̄ρ

x |y (x, y))
[

log(p̄ρ
x |y (x, y))

−
∑

s

p̄ρ
x |y (s, y) log(p̄ρ

x |y (s, y))
]

= 1

1 + ρ

∑

x

p̄ρ
x |y (x, y) log(p̄ρ

x |y (x, y)) log(p̄ρ
x |y (x, y))

− 1

1 + ρ

[
∑

x

p̄ρ
x |y (x, y) log(p̄ρ

x |y (x, y))

]2

≥ 0

The inequality is true by the Cauchy-Schwartz inequality and
by noticing that

∑
x p̄ρ

x |y (x, y) = 1. �
These properties will again be used in the proofs in the

following lemmas.

Lemma 10:
∂ H(p̄ρ

x |y)

∂ρ ≥ 0
Proof:

∂ A(y,ρ)
B(ρ)

∂ρ
= 1

B(ρ)2

[
∂ A(y, ρ)

∂ρ
B(ρ) − ∂ B(ρ)

∂ρ
A(y, ρ)

]

= 1

B(ρ)2

[
A(y, ρ)H

(
p̄ρ
x |y=y

)
B(ρ)

− H
(

p̄ρ
x |y
)

B(ρ)A(y, ρ)

]

= A(y, ρ)

B(ρ)

[
H (p̄ρ

x |y=y) − H (p̄ρ
x |y)

]

Now,

∂ H
(

p̄ρ
x |y
)

∂ρ
= ∂

∂ρ

∑

y

A(y,ρ)

B(ρ)

∑

x

C(x,y,ρ)

D(y, ρ)

[
−log

C(x,y,ρ)

D(y, ρ)

]

= ∂

∂ρ

∑

y

A(y, ρ)

B(ρ)
H
(

p̄ρ
x |y=y

)

=
∑

y

A(y, ρ)

B(ρ)

∂ H
(

p̄ρ
x |y=y

)

∂ρ

+
∑

y

∂ A(y,ρ)
B(ρ)

∂ρ
H
(

p̄ρ
x |y=y

)

≥
∑

y

∂ A(y,ρ)
B(ρ)

∂ρ
H
(

p̄ρ
x |y=y

)

=
∑

y

A(y, ρ)

B(ρ)

[
H
(

p̄ρ
x |y=y

)
− H

(
p̄ρ
x |y
)]

×H
(

p̄ρ
x |y=y

)

=
∑

y

A(y, ρ)

B(ρ)
H
(

p̄ρ
x |y=y

)2 − H
(

p̄ρ
x |y
)2

=
[
∑

y

A(y, ρ)

B(ρ)
H
(

p̄ρ
x |y=y

)2
][
∑

y

A(y, ρ)

B(ρ)

]

−H
(

p̄ρ
x |y
)2

≥
[
∑

y

A(y, ρ)

B(ρ)
H
(

p̄ρ
x |y=y

)]2

− H
(

p̄ρ
x |y
)2

= 0

where the last inequality is again true by Cauchy-Schwartz.

1472 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 60, NO. 3, MARCH 2014

Lemma 11:
∂ D(p̄ρ

xy‖pxy)
∂ρ = ρ

∂ H(p̄ρ
x |y)

∂ρ
Proof: As shown in Lemma F and Lemma 14 respectively:

D(p̄ρ
xy‖pxy) = ρH (p̄ρ

x |y) − log(
∑

y

(
∑

x

pxy (x, y)
1

1+ρ)1+ρ)

H (p̄ρ
x |y) = ∂ log(

∑
y(
∑

x pxy (x, y)
1

1+ρ)1+ρ)

∂ρ

We have:

∂ D(p̄ρ
xy‖pxy)

∂ρ

= H (p̄ρ
x |y)+ρ

∂ H (p̄ρ
x |y)

∂ρ

−
∂ log

(∑
y

(∑
x pxy (x,y)

1
1+ρ

)1+ρ
)

∂ρ

= H (p̄ρ
x |y) + ρ

∂ H (p̄ρ
x |y)

∂ρ
− H (p̄ρ

x |y)

= ρ
∂ H (p̄ρ

x |y)
∂ρ

Lemma 12: sign
∂[D(p̄ρ

xy‖pxy)−H(p̄ρ
x |y)]

∂ρ = sign(ρ − 1).
Proof: Using the previous lemma, we get:

∂ D(p̄ρ
xy‖pxy)−H(p̄ρ

x |y)

∂ρ = (ρ − 1)
∂ H(p̄ρ

x |y)

∂ρ

Then by Lemma 10, we get the conclusion. �
Lemma 13:

ρH (pρ
xy)−(1+ρ) log

(
∑

y

∑

x

pxy (x,y)
1

1+ρ

)
= D(pρ

xy‖pxy).

(134)
Proof: By noticing that

log(pxy (x,y))

= (1+ρ)

[
log(pρ

xy (x, y))+log

(
∑

s,t

pxy (s, t)
1

1+ρ

)]

we have:

D(pρ
xy‖pxy) + H (pρ

xy) = −
∑

x,y

pρ
xy (x, y) log(pxy (x, y))

= −
∑

x,y

pρ
xy (x,y)(1+ρ)

×
[

log(pρ
xy (x, y))+log

(
∑

s,t

pxy (s, t)
1

1+ρ

)]

= (1+ρ)H (pρ
xy)−(1+ρ)

×
∑

x,y

pρ
xy (x, y) log

(
∑

s,t

pxy (s, t)
1

1+ρ

)
.

And so,

D(pρ
xy‖pxy) = ρH (pρ

xy) − (1 + ρ) log

(
∑

s,t

pxy (s, t)
1

1+ρ

)
.

�

Lemma 14:

ρH (p̄ρ
x |y) − log

⎛

⎝
∑

y

(
∑

x

pxy (x, y)
1

1+ρ

)1+ρ
⎞

⎠

= D(p̄ρ
xy‖pxy). (135)

D(p̄ρ
xy‖pxy) =

∑

y

∑

x

A(y, ρ)

B(ρ)

C(x, y, ρ)

D(y, ρ)

× log

(A(y,ρ)
B(ρ)

C(x,y,ρ)
D(y,ρ)

pxy (x, y)

)

=
∑

y

∑

x

A(y, ρ)

B(ρ)

C(x, y, ρ)

D(y, ρ)

[
log

(
A(y, ρ)

B(ρ)

)

+ log

(
C(x, y, ρ)

D(y, ρ)

)
− log

(
pxy (x, y)

)]

= − log(B(ρ)) − H (p̄ρ
x |y)

+
∑

y

∑

x

A(y,ρ)

B(ρ)

C(x,y,ρ)

D(y, ρ)

×
[

log(D(y,ρ)1+ρ) −log(C(x,y,ρ)1+ρ)
]

= − log(B(ρ)) − H (p̄ρ
x |y) + (1 + ρ)H (p̄ρ

x |y)

= − log

⎛

⎝
∑

y

(
∑

x

pxy (x, y)
1

1+ρ

)1+ρ
⎞

⎠

+ρH (p̄ρ
x |y).

�
Lemma 15:

H (pρ
xy) = ∂(1 + ρ) log(

∑
y
∑

x pxy (x, y)
1

1+ρ)

∂ρ
. (136)

Proof:

∂(1 + ρ) log(
∑

y
∑

x pxy (x, y)
1

1+ρ)

∂ρ

= log
(∑

t

∑

s

pxy (s, t)
1

1+ρ

)

−
∑

y

∑

x

pxy (x, y)
1

1+ρ

∑
t
∑

s pxy (s,t)
1

1+ρ

log
(

pxy (x, y)
1

1+ρ

)

= −
∑

y

∑

x

pxy (x, y)
1

1+ρ

∑
t

∑
s pxy (s, t)

1
1+ρ

log

⎛

⎝ pxy (x, y)
1

1+ρ

∑
t

∑
s pxy (s,t)

1
1+ρ

⎞

⎠

= H (pρ
xy).

�
Lemma 14:

H (p̄ρ
x |y) =

∂ log

(∑
y

(∑
x pxy (x, y)

1
1+ρ

)1+ρ
)

∂ρ
(137)

Proof: Notice that B(ρ) = ∑
y(
∑

x pxy (x, y)
1

1+ρ)1+ρ , and
∂ B(ρ)

∂ρ = B(ρ)H (p̄ρ
x |y) as shown in Lemma 9. It is clear

DRAPER et al.: LOSSLESS CODING FOR DISTRIBUTED STREAMING SOURCES 1473

that:

∂ log

(∑
y

(∑
x pxy (x, y)

1
1+ρ

)1+ρ
)

∂ρ
= ∂ log(B(ρ))

∂ρ

= 1

B(ρ)

∂ B(ρ)

∂ρ
= H (p̄ρ

x |y).

�

ACKNOWLEDGMENT

The authors wish to acknowledge a discussion with
Professor Zixiang Xiong during ITW 2004 that helped pre-
cipitate the current line of research. They would also like to
acknowledge the Associate Editor and an anonymous reviewer
for their extensive and useful comments and suggestions
during the revision process.

REFERENCES

[1] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, U.K.:
Cambridge Univ. Press, 2004.

[2] C. Chang, “Streaming source coding with delay,” Ph.D. dissertation,
Dept. Electr. Eng. Comput. Sci., Univ. California, Berkeley, Berkeley,
CA, USA, 2007.

[3] T. M. Cover, “A proof of the data compression theorem of Slepian
and Wolf for ergodic sources,” IEEE Trans. Inf. Theory, vol. 21, no. 2,
pp. 226–228, Mar. 1975.

[4] T. M. Cover and J. A. Thomas, Elements of Information Theory.
New York, NY, USA: Wiley, 1991.

[5] I. Csiszàr and J. Kórner, Information Theory, Coding Theorems for
Discrete Memoryless Systems. Budapest, Hungary: Akadémiai Kiadó,
1981.

[6] P. K. Dragotti and M. Gastpar, Distributed Source Coding: Theory,
Algorithms, and Applications. San Diego, CA, USA: Academic Press,
2009.

[7] S. C. Draper, “Universal incremental Slepian-Wolf coding,” in Proc.
Allerton Conf., Oct. 2004, pp. 1332–1341.

[8] S. C. Draper, C. Chang, and A. Sahai, “Sequential random binning for
streaming distributed source coding,” in Proc. Int. Symp. Inf. Theory,
Sep. 2005, pp. 1396–1400.

[9] F. Dufaux, W. Gao, S. Tubaro, and A. Vetro, “Distributed video
coding: Trends and perspectives,” J. Image Video Process., vol. 2009,
pp. 508167-1–508167-3, Jan. 2009.

[10] A. W. Eckford and W. Yu, “Rateless Slepian-Wolf codes,” in Proc. 39th
Asilomar Conf. Signals, Syst., Comput., Oct. 2005, pp. 1757–1761.

[11] G. Forney, “Convolutional codes III. Sequential decoding,” Inf. Control,
vol. 25, no. 3, pp. 267–297, 1974.

[12] R. G. Gallager, “Source coding with side information and
universal coding,” Mass. Instit. Tech., Cambridge, MA, USA,
Tech. Rep. LIDS-P-937, 1976.

[13] A. El Gamal and A. Orlitsky, “Interactive data compression,” in Proc.
25th Annu. Symp. Found. Comput. Sci., Oct. 1984, pp. 100–108.

[14] B. Girod, A. Aaron, S. Rane, and D. Rebollo-Monedero, “Distributed
video coding,” Proc. IEEE, vol. 93, no. 1, pp. 71–83, Jan. 2005.

[15] D.-K. He, L. A. Lastras-Montano, E.-H. Yang, A. Jagmohan, and
J. Chen, “On the redundancy of Slepian-Wolf coding,” IEEE Trans. Inf.
Theory, vol. 55, no. 12, pp. 5607–5627, Dec. 2009.

[16] V. N. Koshelev, “On a problem of separate coding of two dependent
sources,” Prob. Peredachi Inf., vol. 13, no. 1, pp. 26–32, 1977.

[17] P. Koulgi, E. Tuncel, S. Regunathan, and K. Rose, “On zero-error
coding of correlated sources,” IEEE Trans. Inf. Theory, vol. 49, no. 11,
pp. 2856–2873, Nov. 2003.

[18] J. Meng, E.-H. Yang, and Z. Zhang, “Tree interactive encoding and
decoding: Conditionally φ-mixing sources,” in Proc. Int. Symp. Inf.
Theory, Aug. 2011, pp. 1–5.

[19] F. Pereira, C. Brites, J. Ascenso, and M. Tagliasacchi, “Wyner-Ziv video
coding: A review of the early architectures and further developments,”
in Proc. IEEE Int. Conf. Multimedia Exposit., Jun. 2008, pp. 625–628.

[20] R. Puri, S. S. Pradhan, and K. Ramchandran, “n-channel multiple
descriptions: Theory and construction,” in Proc. Data Compress. Conf.,
Apr. 2002, pp. 262–271.

[21] S. Rajagopalan and L. Schulman, “A coding theorem for distributed
computation,” in Proc. STOC (ACM Symp. Theory Comp.), 1994,
pp. 790–799.

[22] A. Sahai, “Why block length and delay behave differently if feedback
is present,” IEEE Trans. Inf. Theory, vol. 54, no. 5, pp. 1860–1886,
May 2008.

[23] A. Sahai and S. K. Mitter, “The necessity and sufficiency of anytime
capacity for stabilization of a linear system over a noisy communication
link. Part I: Scalar systems,” IEEE Trans. Inf. Theory, vol. 52, no. 8,
pp. 3369–3395, Aug. 2006.

[24] A. Sahai and S. K. Mitter, “Source coding and channel requirements for
unstable processes,” IEEE Trans. Inf. Theory, 2006.

[25] A. Sahai and H. Palaiyanur, “A simple encoding and decoding strategy
for stabilization over discrete memoryless channels,” in Proc. Allerton
Conf., Sep. 2005, pp. 538–547.

[26] N. Shulman and M. Feder, “Source broadcasting with an unknown
amount of receiver side information,” in Proc. Inf. Theory Workshop,
Oct. 2002, pp. 127–130.

[27] D. Slepian and J. K. Wolf, “Noiseless coding of correlated information
sources,” IEEE Trans. Inf. Theory, vol. 19, no. 4, pp. 471–480, Jul. 1973.

[28] R. T. Sukhavasi and B. Hassibi, “Anytime reliable codes for stabilizing
plants over erasure channels,” in Proc. Int. Conf. Control, Dec. 2011,
pp. 5249–5259.

[29] T. Weissman and A. El Gamal, “Source coding with limited-look-ahead
side information at the decoder,” IEEE Trans. Inf. Theory, vol. 52, no. 12,
pp. 5218–5239, Dec. 2006.

[30] L. Weng, S. S. Pradhan, and A. Anastasopoulos, “Error exponent regions
for Gaussian broadcast and multiple-access channels,” IEEE Trans. Inf.
Theory, vol. 54, no. 7, pp. 2919–2942, Jul. 2008.

[31] A. D. Wyner and J. Ziv, “The rate-distortion function for source coding
with side information at the decoder,” IEEE Trans. Inf. Theory, vol. 22,
no. 1, pp. 1–10, Jan. 1976.

[32] E.-H. Yang and D.-K. He, “Interactive encoding and decoding for
one way learning: Near lossless recovery with side information at the
decoder,” IEEE Trans. Inf. Theory, vol. 56, no. 4, pp. 1808–1824,
Apr. 2010.

Stark C. Draper (S’99–M’03) received the M.S. and Ph.D. degrees in
electrical engineering and computer science from the Massachusetts Institute
of Technology (MIT), and the B.S. and B.A. degrees in electrical engineering
and history, respectively, from Stanford University.

He is an Associate Professor of Electrical and Computer Engineering at the
University of Toronto, Canada. From 2007-2014 he was an Assistant Professor
and an Associate Professor at the University of Wisconsin, Madison. Before
moving to the University of Wisconsin he was with the Mitsubishi Electric
Research Laboratories (MERL), Cambridge, MA. He has held postdoctoral
positions in the Wireless Foundations, University of California, Berkeley,
and in the Information Processing Laboratory, University of Toronto. He has
worked at Arraycomm, San Jose, CA, the C. S. Draper Laboratory, Cambridge,
MA, and Ktaadn, Newton, MA. His research interests include communication
and information theory, error-correction coding, statistical signal processing
and optimization, security, and application of these disciplines to computer
architecture.

Dr. Draper has received the NSF CAREER Award, the 2010 MERL
President’s Award, the UW ECE Gerald Holdridge Teaching Award, the
MIT Carlton E. Tucker Teaching Award, an Intel Graduate Fellowship,
Stanford’s Frederick E. Terman Engineering Scholastic Award, and a U.S.
State Department Fulbright Fellowship.

Cheng Chang received a B.E. degree from Tsinghua University, Beijing, in
2000, and a Ph.D. degree from University of California at Berkeley in 2007.
He is currently a quantitative analyst with the D. E. Shaw Group in New
York. In 2008, he spent a year in the information theory group at HP Labs
as a postdoctoral researcher. His research interests are in signal processing,
control theory, information theory and machine learning. He is the founder of
www.24theory.com.

1474 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 60, NO. 3, MARCH 2014

Anant Sahai (S’94–M’00) received the B.S. degree from the University
of California (UC), Berkeley in 1994 and the S.M. and Ph.D. degrees
from the Massachusetts Institute of Technology (MIT), Cambridge, in 1996
and 2001, respectively. He joined the Department of Electrical Engineering
and Computer Sciences at UC Berkeley in 2002 and is affiliated with the
Wireless Foundations Center and the Berkeley Wireless Research Center.
In 2001, he spent a year as a Research Scientist with the wireless startup
Enuvis, developing adaptive algorithms for extremely sensitive GPS receivers
implemented using software-defined radios. Prior to that, he was a graduate
student at the Laboratory for Information and Decision Systems at MIT.
His research interests are in wireless communication, signal processing,
information theory, and distributed control. He is particularly interested in
feedback, error exponents, and issues of spectrum sharing.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

