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Abstract—The problem of finding the rate-distortion function of
an arbitrarily varying source (AVS) composed of a finite number
of memoryless subsources is revisited. Berger’s 1971 paper “The
Source Coding Game” solves this problem when the adversary is
allowed only strictly causal access to the subsource realizations.
The case when the adversary has access to the subsource realiza-
tions non-causally is considered. This new rate-distortion function
is determined to be the maximum of the rate-distortion function
over a set of independent and identically distributed (IID) random
variables that can be simulated by the adversary. The results are
extended to allow for partial or noisy observations of subsource
realizations. The model is further explored by attempting to
find the rate-distortion function when the ‘adversary’ is actually
helpful. Finally, a bound is developed on the uniform continuity
of the IID rate-distortion function for finite-alphabet sources. The
bound is used to give a sufficient number of distributions that need
to be sampled to compute the rate-distortion function of an AVS
to within a desired accuracy. The bound is also used to give a rate
of convergence for the estimate of the rate-distortion function for
an unknown IID source.

Index Terms—Adversarial source coding, arbitrarily varying
source, finite alphabet, rate-distortion, source coding game, type
covering, uniform continuity of rate-distortion functions.

I. INTRODUCTION

A. Motivation

T HE arbitrarily varying source (AVS) was introduced by
Berger [4] as a source that samples other “subsources”

under the control of an agent called a switcher. The AVS was
used in the model of an information-theoretic ‘source coding
game’ between two players, the afore-mentioned switcher and
a coder. The goal of the coder was to encode the output of the
AVS to within a specified distortion, and the goal of the switcher
was to make the coder use as large a rate to attain the specified
distortion as possible. Berger studied the adversarial rate-distor-
tion function (the rate the coder needs to achieve a target distor-
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tion regardless of switcher strategy) under certain rules for the
switcher. Primarily, [4] gives the rate-distortion function when
the switcher is not allowed to observe present or future sub-
source realizations.

The purpose of this paper is to deepen understanding of the
source coding game by looking into variations where the capa-
bilities of the switcher are enhanced. In [4], Berger himself asks
what happens to the rate-distortion function when the switcher is
allowed to “cheat” and observe present or future realizations of
the subsources. In addition to tackling this question, we further
study scenarios where the switcher receives noisy observations
of the subsources or the switcher is not adversarial, but helpful.

As a motivation for studying the source coding game, Berger
mentions that the results might have application to situations
where multiple data streams are multiplexed into a single data
stream. Another potential application is in the field of active
sensing or active vision [5], a subfield of computer vision in
which sensors actively explore their environment using infor-
mation they have previously sensed. The idea of using an AVS
with specialized models for the switcher as a model for an ac-
tive source is explored in [3].

B. Results and Organization of Paper

Section II sets up the notation and model, and briefly re-
views the literature on lossy compression of arbitrarily varying
sources. Intuitively, a strictly causal adversary switching
amongst memoryless subsources is no more threatening than
a switcher that randomly switches. This intuition was proved
correct in [4] by Berger as he determined the rate-distortion
function for memoryless subsources and a strictly causal adver-
sarial model. Section III gives the rate-distortion function for an
AVS when the adversary has noncausal access to realizations
of a finite collection of memoryless subsources and can sample
among them. As shown in Theorem 3.1, the rate-distortion
function for this problem is the maximization of the rate-distor-
tion function over the IID sources the adversary can simulate.
The adversary requires only causal information to impose this
rate-distortion function. This establishes that when the sub-
sources are memoryless, the rate-distortion function can strictly
increase when the adversary has knowledge of the present
subsource realizations, but no further increase occurs when the
adversary is allowed knowledge of the future realizations.

In order to provide more ways to restrict the knowledge of the
switcher, we then extend the AVS model to include noisy or par-
tial observations of the subsource realizations and determine the
rate-distortion function for this setting in Section IV. As shown
in Theorem 4.1, the form of the solution is the same as for the
adversary with clean observations, with the set of attainable dis-
tributions essentially being related to the original distributions
through Bayes’ rule.

0018-9448/$26.00 © 2011 IEEE
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Next, Section V changes the perspective from the traditional
adversarial setting to a cooperative setting. It explores the
problem when the goal of the switcher is to help the coder
achieve a low distortion. Theorem 5.1 gives a characterization
of the rate-distortion function if the helper has access to future
realizations in terms of the rate-distortion function for an
associated lossy compression problem. As a corollary, we also
give bounds for the cases of causal observations and noisy
observations. However, for most helpful switcher settings, a
tight characterization of the rate-distortion function is lacking.

Simple examples illustrating these results are given in
Section VI. In Section VII, we discuss how to compute the
rate-distortion function for arbitrarily varying sources to
within a given accuracy using the uniform continuity of the
IID rate-distortion function. This task needs some discussion
because of the fact that the IID rate-distortion function is
generally nonconcave as a function of the distribution [6]. The
main tool there is an explicit bound on the uniform continuity
of the IID rate-distortion function that is of potentially inde-
pendent interest, as we use it to quickly analyze the behavior
(in probability) of a simple rate-distortion estimator for IID
sources. Finally, we conclude in Section VIII.

II. PROBLEM SETUP

A. Notation

Let and be the finite source and reconstruction alphabets
respectively. Let denote a vector from
and a vector from . When needed,

will be used to denote the first symbols in the
vector .

Let be a distortion measure on the
product set with maximum distortion . Let

(1)

be the minimum nonzero distortion. Define
for to be

Let be the set of probability distributions on , let
be the set of types (see [7], [8]) of length- strings from

, and let be the set of probability transition matrices from
to . Let be the empirical type of a vector .

For a , let

be the minimum average distortion achievable for the source
distribution . The (functional) IID rate-distortion function of

at distortion with respect to distortion
measure is defined to be

where is a set of admissable probability transition ma-
trices

and is the mutual information1

with . Let
be a codebook with

length- vectors from . Define

If is used to represent an IID source with distribution ,
then the average distortion of is defined to be

For , let be the minimum
number of codewords needed in a codebook so that

. By convention, if no such codebook exists,
. Let the (operational) rate-distortion func-

tion2 of an IID source be .
Shannon’s rate-distortion theorem ([9], [10]) states that for all

and

B. Arbitrarily Varying Sources

As mentioned earlier, the AVS is a model of a source in the
‘source coding game’ introduced by Berger in [4]. The two
players are called the “switcher” and “coder”. In a coding con-
text, the coder corresponds to the designer of a lossy source code
and the switcher corresponds to a potentially malicious adver-
sary selecting the sequence of symbols to be encoded.

Fig. 1 shows a model of an AVS. There are IID “sub-
sources” with common alphabet . In [4], the subsources are
assumed to be independent, but that restriction turns out not
to be required3. There can also be multiple subsources gov-
erned by the same distribution. In that sense, the switcher has
access to a list of subsources, rather than a set of dif-
ferent distributions. The marginal distributions of the sub-
sources are known to be and we let .
Let be the joint probability distribution for

1We use natural log, denoted ��, and nats in most of the paper. In examples
only, we use bits.

2We define ��� ���� � ��� ����. This is equivalent to
saying that a sequence of codes represent a source to within distortion � if
their average distortion is tending to � in the limit. The only distortion where
this distinction is meaningful is � ���.

3In [4], the motivation was multiplexing data streams and independence is a
reasonable assumption, but the proofs did not require it.
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Fig. 1. Model for an AVS. The switcher can set the switch position according
to the rules of the model.

the IID source . Fix an and con-
sider a block of length . We let denote the output of the
th subsource at time . We will use to denote the vector

. At each time , the AVS outputs a letter
which is determined by the position of the switch inside the
AVS. The switch positions are denoted with

for each . With this notation,
for .

The switcher can set the switch position according to the rules
for the AVS. In the next few sections, we will discuss different
rules for the switcher, particularly different levels of causality in
knowledge of the subsource realizations. The switcher may or
may not have knowledge of the codebook, but this knowledge
turns out to be inconsequential for the worst-case rate-distortion
function.

The coder’s goal is to design a codebook of minimal size
to represent to within distortion on average. The code-
book must be able to do this for every allowable strategy for the
switcher according to the model. Define

Here, is defined to be
, where

is an appropriate probability mass function on
that agrees with the model of the AVS.

We are interested in the exponential rate of growth of
with , and so we define the rate-distortion function

of an adversarial AVS to be

In every case considered, it will also be clear that
. For notational convenience, we

only refer to the rate-distortion function as , removing
its dependence on the subsource distributions as well as all the
different cases of switcher power.

C. Literature Review

a) One IID Source: Suppose . Then there is only
one IID subsource and the switch position must be

for all time. This is exactly the classical rate-distortion
problem considered by Shannon [9], and he showed

Computing can be done with the Blahut-Arimoto
algorithm [8], and also falls under the umbrella of convex
programming.

b) Compound Source: Now suppose that , but the
switcher is constrained to choose for all

. That is, the switch position is set once and remains constant
afterwards. Sakrison [11] studied the rate-distortion function for
this class of compound sources and showed that planning for
the worst subsource is both necessary and sufficient. Hence, for
compound sources

Recall that is the set of marginal distribu-
tions of the subsources. This result holds whether the switch
position is chosen with or without knowledge of the realizations
of the subsources. Here, can be computed easily since

is finite and each individual can be computed.
c) Strictly Causal Adversarial Source: In Berger’s setup

[4], the switcher is allowed to choose arbi-
trarily at any time , but must do so in a strictly causal manner
without access to the current time step’s subsource realizations.
More specifically, the switch position is chosen as a (pos-
sibly random) function of and .
The conclusion of [4] is that under these rules

(2)

where is the convex hull of . It should be noted that this same
rate-distortion function applies in the following cases [4].

• The switcher chooses at each time without any obser-
vations at all.

• The switcher chooses as a function of the first
outputs of all subsources.

Note that in (2), evaluating involves a maximization over
an infinite set, so the computation of is not trivial since

is not necessarily a concave- function. A simple,
provable, approximate (to any given accuracy) solution is
discussed in Section VII.

III. FOR THE CHEATING SWITCHER

In the conclusion of [4], Berger poses the question of what
happens to the rate-distortion function when the rules are tilted
in favor of the switcher. Paraphrasing Berger:

As another example, suppose the switcher is permitted
to observe the candidates for generated by each [sub-
source] before (randomly) selecting one of them. Then it
can be shown that [ (except in certain special cases)
strictly increases]. The determination of under these
rules appears to be a challenging task.

Suppose that the switcher were given access to the subsource
realizations before having to choose the switch positions; we
call such a switcher a “cheating switcher”. In this paper, we deal
with two levels of noncausality and show they are essentially the
same when the subsources are IID over time:
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• The switcher chooses based on the realizations of the
subsources at time . We refer to this case as 1-step

lookahead for the switcher.
• The switcher chooses based on the entire

length- realizations of the subsources. We refer to this
case as full lookahead for the switcher.

Theorem 3.1: Define the set of distributions

(3)

where the event is shorthand for
. Also, define

For a general set of distributions , let
. Suppose the switcher has either 1-step looka-

head or full lookahead. In both cases, for

For by convention because the
switcher can simulate a distribution for which the distortion
is infeasible for the coder.

Remarks:
• In non-degenerate cases, is a strict subset of , and thus

can strictly increase when the switcher is allowed to
look at the present subsource realizations before choosing
the switch position.

• As a consequence of the theorem, we see that when the
subsources within an AVS are IID, knowledge of past sub-
source realizations is useless to the switcher, knowledge
of the current step’s subsource realizations is useful, and
knowledge of future subsource realizations beyond the cur-
rent step is useless if 1-step lookahead is already given.

• Note that computing requires the further discussion
given in Section VII, just as it does for the strictly causal
case of Berger.
Proof: We give a short outline of the proof here. See

Appendix A for the complete proof. To show ,
we use the type-covering lemma from [4]. It says for a fixed
type in and , all sequences with type can be
covered within distortion with at most
codewords for large enough . Since there are at most
distinct types, we can cover all -length strings with types in

with at most code-
words. Furthermore, we can show that types not in occur
exponentially rarely even if the switcher has full lookahead,
meaning that their contribution to the average distortion can
be bounded by times an exponentially decaying term in .
Hence, the rate needed regardless of the switcher strategy is at
most with arbitrarily small.

Now, to show , we describe one potential
strategy for the adversary. This strategy requires only 1-step
lookahead and it forces the coder to use rate at least .
For each subset with and , the ad-

versary has a random rule , which is a probability mass
function (PMF) on . At each time , if the switcher observes a
candidate set , the switcher chooses to output

with probability .
If , let

(4)

is the set of IID distributions the AVS can ‘simulate’ using
these memoryless rules requiring 1-step lookahead. It is clear by
construction that . Also, it is clear that both and are
convex sets of distributions. Lemma A.3 in Appendix A uses a
separating hyperplane argument to show . The adversary
can therefore simulate any IID source with distribution in and
hence .

Qualitatively, allowing the switcher to “cheat” gives access to
distributions which may not be in . Quantitatively, the
conditions placed on the distributions in are precisely those
that restrict the switcher from producing symbols that do not
occur often enough on average. For example, let where

, and suppose that the subsources are independent of each
other. Then for every

is the probability that all subsources simulta-
neously produce the letter 1 at a given time. In this case, the
switcher has no option but to output the letter 1, hence any dis-
tribution the switcher mimics must have .
The same logic can be applied to all subsets of .

IV. NOISY OBSERVATIONS OF SUBSOURCE REALIZATIONS

A natural extension of the AVS model of Fig. 1 is to consider
the case when the adversary has noisy access to subsource re-
alizations through a discrete memoryless channel. Suppose we
let the switcher observe at time , which is probabilistically
related to the subsource realizations through a discrete memo-
ryless multiple access channel by

Since the subsource probability distributions are already
known, through an application of Bayes’ rule, this model
is equivalent to one in which the switcher observes a state,

, noiselessly. Namely

Conditioned on the state, the subsources emit symbols inde-
pendent of the past according to a conditional distribution. This
model is depicted in Fig. 2.

The overall AVS is comprised now of a “state generator” and
a “symbol generator” that outputs symbols at a time. The state
generator produces the state at time from a finite set . We
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Fig. 2. Model of an AVS encompassing both cheating and non-cheating
switchers. Additionally, this model allows for noisy observations of subsource
realizations by the switcher.

assume the states are generated IID across time with distribution
. At time , the symbol generator outputs

according to . This model allows for cor-
relation among the subsources at a fixed time. Let

, be the marginals of this joint distribution so that con-
ditioned on has marginal distribution . For a fixed

, let , where conv de-
notes the convex hull of a set of distributions.

The switcher can observe states either with full lookahead
or 1-step lookahead, but these two cases will once again have
the same rate-distortion function when the switcher is an ad-
versary. So assume that at time , the switcher chooses the
switch position with knowledge of . The
strictly causal and 1-step lookahead switchers with noiseless
subsource observations can be recovered as special cases of this
model. If the conditional distributions do not depend on
, the strictly causal switcher is recovered. The full lookahead

switcher with noiseless subsource observations is recovered by
setting and letting where the
state is an dimensional vector consisting of the outputs of
each subsource.

With this setup, we have the following extension of Theorem
3.1.

Theorem 4.1: For the AVS problem of Fig. 2, where the ad-
versary has access to the states either with 1-step lookahead or
full lookahead,

(5)

where

(6)

Proof: See Appendix B.

One can see that in the case of the cheating switcher of the
previous section, the set of (4) equates directly with
of (6). In that sense, from the switcher’s point of view, is a
more natural description of the set of distributions that can be
simulated than . Again, actually computing in (5) falls
into the discussion of Section VII.

V. THE HELPFUL SWITCHER

Arbitrarily varying sources and channels have generally been
associated with adversarial source and channel coding, but in

this section, we consider the helpful cheating switcher to more
thoroughly explore the information-theoretic game established
in [4]. The goal of the helpful switcher is to help the coding
system achieve low distortion. The model is as follows.

• The coder chooses a codebook that is made known to the
switcher.

• The switcher chooses a strategy to help the coder achieve
distortion on average with the minimum number of
codewords. We consider the cases where the switcher has
full lookahead or 1-step lookahead.

As opposed to the adversarial setting, a rate is now achievable
at distortion if there exist switcher strategies and codebooks
for each with expected distortion at most and the rates of the
codebooks tend to . The following theorem establishes
if the cheating switcher has full lookahead.

Theorem 5.1: Let . Let
be defined by

Let for all . Note that
is a sequence of IID random variables with distribution

. Let be the rate-distortion
function for this new IID source with distribution at distortion

with respect to the distortion measure . For the helpful
cheating switcher with full lookahead

(7)

Proof: Rate-distortion problems are essentially covering
problems, so we equate the rate-distortion problem for the
helpful switcher with the classical covering problem for the
observed sets . If the switcher is helpful, has full lookahead,
and knowledge of the codebook, the problem of designing
the codebook is equivalent to designing the switcher strategy
and codebook jointly. At each time , the switcher observes
a candidate set and must select an element from . For
any particular reconstruction codeword , and a string of
candidate sets , the switcher can at best output
a sequence such that

Hence, for a codebook , the helpful switcher with full looka-
head can select switch positions to output such that, at best

Therefore, for the helpful switcher with full lookahead, the
problem of covering the space with respect to the distortion
measure now becomes one of covering the space
with respect to the distortion measure .
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Remarks:
• Computing in (7) can be done by the Blahut-Ari-

moto algorithm [7].
• In the above proof, full lookahead was required in order for

the switcher to align the entire output word of the source
with the minimum distortion reconstruction codeword as a
whole. This process cannot be done with 1-step lookahead
and so the function for a helpful switcher with 1-step
lookahead remains an open question, but we have the fol-
lowing corollary of Theorems 3.1 and 5.1.

Corollary 5.1: For the helpful switcher with 1-step looka-
head,

Proof: If the switcher has at least 1-step lookahead, it im-
mediately follows from the proof of Theorem 3.1 that

. The question is whether or not any lower rate
is achievable. We can make the helpful switcher with 1-step
lookahead more powerful by giving it -step lookahead, which
yields the lower bound .

An example in Section VI-B shows that in general, we have
the strict inequality .

One can also investigate the helpful switcher problem when
the switcher has access to noisy or partial observations as in
Section IV. This problem has the added flavor of remote source
coding because the switcher can be thought of as an exten-
sion of the coder and observes data correlated with the source
to be encoded. However, the switcher has the additional ca-
pability of choosing the subsource that must be encoded. For
now, this problem is open and we can only say that

.

VI. EXAMPLES

We illustrate the results with several simple examples using
binary alphabets and Hamming distortion, i.e.,
and . Recall that the rate-distortion function
of an IID binary source with distribution is

where is the binary entropy function (in bits for this
section).

A. Bernoulli 1/4 and 1/3 Sources

Consider the example shown in Fig. 3, where the switcher
has access to two independent IID Bernoulli subsources. Sub-
source 1 outputs 1 with probability 1/4 and subsource 2 outputs
1 with probability 1/3, so and .
At time , the switcher is given access to an observation

where is a function and is independent
noise (that is, the switcher observes a potentially noisy version
of the subsource realizations).

Fig. 3. Two independent Bernoulli subsources, which produce 1’s with proba-
bilities 1/4 and 1/3.

Fig. 4. Binary distributions the switcher can mimic. �� is the set of distributions
the switcher can mimic with causal access to subsource realizations, and � is
the set attainable with noncausal access.

First, we consider the switcher as an adversary in the tradi-
tional strictly causal setting of [4] and the 1-step lookahead set-
ting, where the switcher has the subsource realizations

before choosing the switch position. For any time ,

If the switcher is allowed 1-step lookahead and has the option
of choosing either 0 or 1, suppose the switcher chooses 1 with
probability . The coder then sees an IID binary source with a
probability of a 1 occurring being equal to

By using as a parameter, the switcher can produce 1’s
with any probability between 1/12 and 1/2. The attainable dis-
tributions are shown in Fig. 4. The switcher with lookahead
can simulate a significantly larger set of distributions than the
strictly causal switcher, which is restricted to outputting 1’s
with a probability in . Thus, for the strictly causal
switcher, for and for
the switcher with 1-step or full lookahead,
for .

We now look at several variations of this example to illus-
trate the utility of noisy or partial observations of the subsources
for the switcher. In the first variation, the switcher observes the
mod-2 sum of the two subsources . Theorem 4.1
then implies that for .
Hence, the mod-2 sum of these two subsources is useless to the
switcher in deciding the switch position. This is intuitively clear
from the symmetry of the mod-2 sum. If , either both
subsources are 0 or both subsources are 1, so the switch posi-
tion doesn’t matter in this state. If , one of the subsources
has output 1 and the other has output 0, but because of the sym-
metry of the mod-2 function, the switcher’s prior as to which
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Fig. 5. ���� for the cheating switcher and the non-cheating switcher with
Bernoulli 1/4 and 1/3 subsources. Also, the rate-distortion function for the ex-
amples of Fig. 3 where � � � � � and � � � .

subsource output the 1 does not change and it remains that sub-
source 2 was more likely to have output the 1.

In the second variation, the switcher observes the second sub-
source directly but not the first, so for all . Using
Theorem 4.1 again, it can be deduced that in this case

for . This is also true if for all
, so observing just one of the subsources noncausally is as ben-

eficial to the switcher as observing both subsources noncausally.
This is clear in this example because the switcher is attempting
to output as many 1’s as possible. If , the switcher will set
the switch position to 2 and if , the switcher will set the
switch position to 1 as there is still a chance that the first sub-
source outputs a 1.

For this example, the helpful cheater with 1-step looka-
head has a rate-distortion function that is upper bounded by

for . The rate-distortion
function for the helpful cheater with full lookahead can be
computed from Theorem 5.1. In Fig. 5, the rate-distortion
function is plotted for the situations discussed so far.

Finally, consider an example where an adversarial switcher
observes only the second subsource through a binary symmetric
channel with crossover probability , i.e.,

where is a Bernoulli sequence that produces 1’s
with probability . Applying Theorem 4.1 again, it can be shown
that if

and if

Here, increasing decreases the switcher’s knowledge of the
subsource realizations. Somewhat surprisingly, the utility of the
observation is exhausted at , even before the state and
observation are completely independent at . This can
be explained through the switcher’s a posteriori belief that the

Fig. 6. ���� as a function of the noisy observation crossover probability � for
� � ��� and � � ��� for the example of Fig. 3 with � � � � � and
� � ����.

second subsource output was a 1 given the state. If the switcher
observes and

so the switch position will be set to 2. When the switcher
observes , if ,
so the switch will be set to position 1. However, if

, so the switch position will be set
to 2 even if because the switcher’s a posteriori belief is
that the second subsource is still more likely to have output a 1
than the first subsource. Fig. 6 shows for this example as
a function of for two values of .

B. Two Bernoulli 1/2 Subsources

Suppose , and the subsources are independent
Bernoulli 1/2 IID processes. For this example, the rate-dis-
tortion function is for
whether the adversarial switcher is strictly causal, causal or
noncausal. When the helpful switcher has 1-step lookahead,

for . One
can also think of this upper bound as being the rate-distortion
function for the helpful switcher with 1-step lookahead that is
restricted to using memoryless, time-invariant rules. Using The-
orem 9.4.1 of [12] and Theorem 5.1, one can show that when
the helpful switcher has full lookahead with

The plot of these functions in Fig. 7 shows that the rate-dis-
tortion function can be significantly reduced if the helpful
switcher is allowed to observe the entire block of sub-
source realizations. It is also interesting to note how the
switcher with full lookahead helps the coder achieve a rate
of . In this example

and . The achieving distribution
on is , but . The coder
is attempting to cover strings with types near but
with far fewer codewords than are needed to actually cover
all such strings. This problem is circumvented through the aid



4552 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 7, JULY 2011

Fig. 7. ���� function for an AVS with two Bernoulli 1/2 sources when the
switcher is helpful with full lookahead. For 1-step lookahead, the upper bound
is shown.

provided by the switcher in pushing the output of the source
inside the Hamming -ball of a codeword. This is in contrast
to the strategy that achieves , where the switcher makes
the output an IID sequence with as few 1’s as possible and the
coder is expected to cover all strings with types near .

VII. COMPUTING FOR AN AVS

The function for an adversarial AVS with either causal
or noncausal access to subsource realizations is of the form

(8)

where is a set of distributions in . In (2), (3), and (6)
is defined by a finite number of linear inequalities and hence

is a polytope. The number of constraints in the definition of
is exponential in or when the adversary has something
other than strictly causal knowledge. Unfortunately, the problem
of finding is not a convex program because is
not a concave- function of in general. In fact, may
not even be quasi-concave and may have multiple local maxima
with values different from the global maximum, as shown by
Ahlswede [6].

Since standard convex optimization tools are unavailable for
this problem, we consider the question of how to approximate

to within some (provable) precision. That is, for any
, we will consider how to provide an approximation, ,

such that . Note that for fixed
can be computed efficiently by the Blahut-Arimoto algorithm to
any given precision, say much less than . Therefore, we assume
that can be computed for a fixed and . We also
assume since otherwise . Checking
this condition is a linear program since is a polytope and

is linear in .
We will take a ‘brute-force’ approach to computing .

That is, we wish to compute for (finitely) many and
then maximize over the computed values to yield . Since

is uniformly continuous in , it is possible to do this
and have provided enough distributions

are ‘sampled’. Undoubtedly, there are other algorithms to com-
pute that likely have better problem-size dependence. In
this section, we are only interested in showing that can
provably be computed to within any required precision with a
finite number of computations.

A. Uniform Continuity of

The main tool used to show that the rate-distortion function
can be approximated is an explicit bound on the uniform conti-
nuity of in terms of
for distortion measures that allow for 0-distortion to be achieved
regardless of the source. In [7], a bound on the continuity of the
entropy of a distribution is developed in terms of .

Lemma 7.1 (Uniform Continuity of Entropy, [7]): Let and
be two probability distributions on such that ,
then

In the following lemma, a similar uniform continuity is stated
for . The proof makes use of Lemma 7.1.

Lemma 7.2 (Uniform Continuity of ): Let
be a distortion function. is the minimum nonzero

distortion from (1). Also, assume that for each , there is an
such that . Then, for

with , for any

(9)

Proof: See Appendix C.

The restriction that has at least one zero for every can
be relaxed if we are careful about recognizing when is
infinite. For an arbitrary distortion measure ,
define another distortion measure by

Now let and
. We have defined

so that Lemma 7.2 applies, so we can prove the following
lemma.

Lemma 7.3: Let and let
. If

Proof: See Appendix D.

As goes to 0, goes to infinity slowly
and it can be shown that for any and

(10)

In the sequel, we let for
with by continuity. It can be checked that is strictly
monotonically increasing and continuous on and
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hence has an inverse function , i.e.,
for all . Note that is not expressible

in a simple ‘closed-form’, but can be computed numerically.
Also, by inverting (10), we have a lower bound on for any

and

(11)

B. A Bound on the Number of Distributions to Sample

Returning to the problem of computing in (8), consider
the following simple algorithm. Without loss of generality, as-
sume . Let and let
be the dimensional integer lattice scaled by . Let

. Now, define

In words, sample the dimensional unit cube,
, uniformly with points from a scaled integer lattice.

Embed these points in by assigning the last coordinate
of the new vector to be 1 minus the sum of the values in the
original point. If this last value is non-negative, the new point
is a distribution in . The algorithm to compute is
then one where we compute for distributions
that are in or close enough to .

1) Fix a . If , compute
, otherwise do not compute . Repeat for

all .
2) Let be the maximum of the computed values of

, i.e.,

Checking the condition is a linear
program, so it can be done efficiently. By setting according to
the accuracy we want, we get the following result.

Theorem 7.1: The preceding algorithm computes an approx-
imation such that if

The number of distributions for which is computed to
determine to within accuracy is at most4

Proof: The bound on is clear because the number of
points in is at most and every distribution
in is associated with one in , so .

4This is clearly not the best bound as many of the points in the unit cube do
not yield distributions on ��� �. The factor by which we are overbounding is
roughly �� ��, but this factor does not affect the dependence on �.

Now, we prove . For this discussion, we
let . First, for all , there is a with

. To see this, let

for . Then , and we let for
. Note that

Therefore , and furthermore

By Lemma 7.3, . This distribu-
tion (or possibly one closer to ) will always be in-
cluded in the maximization yielding , so we have

.
Conversely, for a , if ,

Lemma 7.3 again gives

Therefore, .

To get a sense of how scales as goes to 0, we can use the
bound of (11) with an arbitrary value of . For example,
with , the scaling becomes

C. Estimation of the Rate-Distortion Function of an Unknown
IID Source

An explicit bound on the continuity of the rate-distortion
function has other applications. Recently, Harrison and Kon-
toyiannis [13] have studied the problem of estimating the
rate-distortion function of the marginal distribution of an un-
known source. Let be the (marginal) empirical distribution
of a vector . They show that the ‘plug-in’ estimator

, the rate-distortion function of the empirical mar-
ginal distribution of a sequence, is a consistent estimator for
a large class of sources beyond just IID sources with known
alphabets. However, if the source is known to be IID with
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alphabet size , estimates of the convergence rate (in prob-
ability) of the estimator can be provided using the uniform
continuity of the rate-distortion function.

Suppose the true source is IID with distribution
and fix a probability and an . We wish
to answer the question: How many samples need to be taken so
that with probability at least ?
The following lemma gives a sufficient number of samples .

Lemma 7.4: Let be a distortion measure
for which Lemma 7.2 holds. For any , and

if

(12)

Proof: From Lemma 7.2, we have

The last line follows from [14, Theorem 2.1]. This bound is
similar to, but a slight improvement over, the method-of-types
bound of Sanov’s Theorem. Rather than an term, we
just have a term multiplying the exponential. Taking of
both sides gives the desired result.

We emphasize that this number is a sufficient number of
samples regardless of what the true distribution is.
The bound of (12) depends only on the distortion measure ,
alphabet sizes and , desired accuracy and “estimation
error” probability .

VIII. CONCLUDING REMARKS

In this paper, we have seen how the rate-distortion function
for an AVS is affected by various constraints on the switcher’s
knowledge involving causality and noise in observations (see
Table I). Several other natural constraints come to mind. First,
there might be a constraint on how much information the
switcher has when making its decisions on subsampling. This
could be handled by performing an optimization in Theorem
4.1 over all channels from the subsources to the state observa-
tions that satisfy a mutual information constraint. Secondly, one
might be interested in studying the rate-distortion function if the
switching speed is fixed or constrained in some way. Another
interesting area to study might be “mismatched objectives”
where the switcher is trying to be helpful for some particular
distortion metric but the source is actually being encoded with a
different metric in mind. Here, some understanding of how the
rate-distortion function behaves with continuity of the metric
might prove useful.

TABLE I
SUMMARY OF RESULTS

Aside from thinking of different settings for switcher knowl-
edge, analyzing subsources with memory makes the study of the
source coding game even more interesting and potentially rel-
evant to compression. Dobrushin [15] has analyzed the case of
the non-anticipatory AVS composed of independent subsources
with memory with different distributions when the switcher is
passive and blindly chooses the switch position. In the case of
subsources with memory, additional knowledge will no doubt
increase the adversary’s power to increase the rate-distortion
function. If we let be the rate-distortion function for
an AVS composed of subsources with memory and an adver-
sary with step lookahead, one could imagine that in general

APPENDIX A
PROOF OF THEOREM 3.1

1) Achievability for the Coder: The main tool of the proof is:
Lemma A.1 (Type Covering): Let

be the set of strings that are within dis-
tortion of a given string . Fix an . Then for all

, for any , there exists a codebook
where

and

where is the set of strings with type .
Proof: See [8, Lemma 2.4.1]. Note that is inde-

pendent of both and .

We now show how the coder can get arbitrarily close to
for large enough . For a ,

Lemma A.2 (Converse for Switcher): Let . For all
sufficiently large

Proof: Fix a and to be
defined later. We know is a continuous function
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of ([8]). It follows then that because is monotonically de-
creasing (as a set) with that for all , there is a so
that

We will have the coder use a codebook such that all
strings with types in are covered within distortion .
The coder can do this for large with at most codewords in
the codebook , where

Explicitly, this is done by taking a union of the codebooks
provided by the type-covering lemma and noting that the
number of types in is less than . Next, we will
show that the probability of the switcher being able to produce
a string with a type not in goes to 0 exponentially with .

Consider a type . By definition,
there is some such that

. Let be the indicator function

indicates the event that the switcher cannot output a symbol
outside of at time . Then is a Bernoulli random vari-
able with a probability of being 1 equal to

. Since the subsources are IID over time,
is a sequence of IID binary random variables with distribution

.
Now for the type , we have that

there exists a such that for all strings in the type class
. Let be the binary distribution

. Therefore , and
hence we can bound the binary divergence
by Pinsker’s inequality. Using standard properties of types [7]
gives

This bound holds for all , so we sum over types
not in to get

Then, regardless of the switcher strategy

So for large we can get arbitrarily close to distortion
while the rate is at most . Using

the fact that the IID rate-distortion function is continuous in
(uniformly over such that , see (20)) gives us
that the coder can achieve at most distortion on average while
the asymptotic rate is at most (provided is
small enough). Since is arbitrary, .

2) Achievability for the Switcher: This section shows that
when the switcher has 1-step lookahead. We

show that the switcher can target any distribution and
produce a sequence of IID symbols with distribution . In
particular, the switcher can target the distribution that yields

, so .
The switcher will use a memoryless randomized strategy.

Let and suppose that at some time the set of sym-
bols available to choose from for the switcher is exactly , i.e.,

. Recall
is the probability that at any time the switcher must choose

among elements of and no other symbols. Then let be
a probability distribution on with support , i.e.,

if , and . The
switcher will have such a randomized rule for every nonempty
subset of such that . Let be the set of distribu-
tions on that can be achieved with these kinds of rules

It is clear by construction that because the conditions
in are those that only prevent the switcher from producing
symbols that do not occur enough on average, but put no further
restrictions on the switcher. So we need only show that .
The following gives such a proof by contradiction.

Lemma A.3 (Achievability for Switcher): The set relation
is true.

Proof: Without loss of generality, let .
Suppose but . It is clear that is a convex set. Let
us view the probability simplex in . Since is a convex
set, there is a hyperplane through that does not intersect .
Hence, there is a vector such that

for some real but . Without loss of
generality, assume (otherwise permute
symbols). Now, we will construct so that the resulting
has , which contradicts the initial
assumption. Let

So for example, if , then and
if . Call the distribution on induced by this
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choice of . Recall that .
Then, we have

By the constraints in the definition (3) of , we have the fol-
lowing inequalities for :

...

Therefore, the difference of the objective is

The last step is true because of the monotonicity in the
and the inequalities we derived earlier. Therefore, we see that

for the we had chosen at the
beginning of the proof. This contradicts the assumption that

, therefore it must be that
.

APPENDIX B
PROOF OF THEOREM 4.1

It is clear that because the
switcher can select distributions for all
and upon observing a state , the switcher can randomly se-
lect the switch position according to the convex combination
that yields . With this strategy, the AVS is simply an
IID source with distribution . Hence,

.
We will now show that . This

can be done in the same way as in Appendix A. We can use the
type covering lemma to cover sequences with types in or very
near and then we need only show that the probability
of having a type -far from goes to 0 with block
length .

Lemma B.1: Let be the type of and for let
be the set of with distance at most

from a distribution in . Then, for

where for all . So for large is in
with high probability.

Proof: Let be the -length vector of the observed states.
We assume that the switcher has advance knowledge of all these
states before choosing the switch positions. First, we show that
with high probability, the states that are observed are strongly
typical. Let be the count of occurrence of in the
vector . Fix a and for , define the event

(13)

Since and each term in the sum is
an IID Bernoulli variable with probability of 1 equal to , we
have by Hoeffding’s tail inequality [16]

Next, we need to show that the substrings output by the AVS
at the times when the state is have a type in or very near

. This will be done by a martingale argument similar to that
given in [4, Lemma 3]. Let denote the infinite state sequence

and let be the sigma field generated by
the states . For , let .
Note that is a filtration and for each is included in

trivially because .
Let be the -dimensional unit vector with a 1 in the

position of . That is, for each .
Define to be

and let . For

We claim that is a martingale5 with respect to the fil-
tration defined previously. To see this, note that

for all since is bounded (not uniformly). Also,
because for each . Finally

Now, define for each

5� is a vector, so we show that each component of the vector is a martingale.
For ease of notation, we drop the dependence on the component of the vector
until it is explicitly needed.



PALAIYANUR et al.: THE SOURCE CODING GAME WITH A CHEATING SWITCHER 4557

and analogously

It can be easily verified that is a martingale with respect
to for each . Expanding, we also see that

(14)

The first term in the difference above is the type of the output
of the AVS during times when the state is . For any such that

,

In the above, represents the switcher’s possibly
random strategy because the switcher chooses the switch
position at time with knowledge of events in . The
symbol generator’s outputs, conditioned on the state at
the time are independent of all other random variables, so

is the probability distribution of the
output at time conditioned on .

Thus, the second term in the difference of (14) is in be-
cause it is the average of terms in and is
a convex set. Therefore, measures the difference
between the type of symbols output at times when the state is
and some distribution guaranteed to be in .

Let be the empirical type of the string , and let be
the empirical type of the sub-string of corresponding to the
times when . Then

Let be the set of distributions at most in dis-
tance from a distribution in . Recall that for dimensional
vectors, implies . Hence, we
have

(15)

Let denote the complement of the event . So, for
every , we have

In the event of , we have , so

is a martingale with bounded differences since
. Hence, we can apply

Azuma’s inequality [17] to get

(16)

Plugging this back into (15)

where

We assume without loss of generality that since is
finite. We will soon need that , so let

and note that it is always positive provided , since
whenever . Hence

We have shown that with probability at least
, for each there is some

such that and occurs. Let
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By construction, . To finish, we show that

From (13), we are assumed to be in the event that

Hence

We have proved ,
so we arrive at the conclusion of the lemma by letting

.

APPENDIX C
PROOF OF LEMMA 7.2

Let . Then

Consider , the distortion of source across ’s dis-
tortion achieving channel

By definition, is in , so

(17)

Expanding mutual informations yields

Above, for a distribution on and channel from to
denotes the entropy of a distribution on with

probabilities . denotes
the entropy of the joint source on with probabilities

. It is straightforward to verify
that and

. So using Lemma 7.1 three times, we have

Now, we have seen . We
will use the uniform continuity of in to bound

. This will give an upper
bound on as seen through (17), namely

(18)

where the last step follows because is monotonically
decreasing in . For a fixed , the rate-distortion function in

is convex- and decreasing and so has steepest descent at
. Therefore, for any

Hence, we can restrict our attention to continuity of
around . By assumption, .
Now consider an arbitrary , and let .
We will show that there is some that is close
to in an -like sense (relative to the distribution ). Since

, we have by definition

(19)

Now, we will construct a channel in , denoted . First,
for each such that , let . For
all other , set . Note that is not a channel
matrix if since it is missing some probability
mass. To create , for each , we redistribute the missing mass
from to the pairs with . Namely, for

with , we define
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For all with , define . So,
is a valid channel in . Now for a fixed

Therefore, using (19)

So, for , there is a with the above
“modified distance” with respect to between and
being less than . Going back to the bound on

It can be easily verified that is at most .
Similarly, .

Now, assuming , we can again invoke Lemma 7.1
to get

(20)

Going back to (18), we see that if ,

The last step follows because . Substituting into (18)
gives

Finally, this bound holds uniformly on and as long as the
condition on is satisfied. Therefore, we can interchange

and to get the other side of the inequality

APPENDIX D
PROOF OF LEMMA 7.3

We now assume to be arbitrary. How-
ever, we let

so that Lemma 7.2 applies to . Let be the IID rate-
distortion function for at distortion with respect to
distortion measure . By definition, is the IID
rate-distortion function for with respect to distortion measure

. From [7, Problem 13.4], for any ,

Hence, for

(21)

Now, we note that . The
first term of (21) can be bounded using (20) and the second
term of (21) can be bounded using Lemma 7.2. The first term
can be bounded if and the second can be
bounded if . Since , we only require
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