
IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 10, OCTOBER 2011 6877

Error Exponents for Joint Source-Channel Coding
With Side Information

Cheng Chang, Member, IEEE

Abstract—In this paper, we study upper and lower bounds on
the error exponents for joint source-channel coding with decoder
side-information. The results in the paper are nontrivial extensions
of Csiszár’s classical paper “Joint Source-Channel Error Expo-
nent”, Problems of Control and Information Theory, 1980. Unlike
the joint source-channel coding result in Csiszár’s paper, it is not
obvious whether the lower bound and the upper bound are equiva-
lent even if the channel coding error exponent is known. For a class
of channels, including symmetric channels, we apply a game-theo-
retic result to establish the existence of a saddle point and, hence,
prove that the lower and upper bounds are the same if the channel
coding error exponent is known. More interestingly, we show that
encoder side-information does not increase the error exponents in
this case.

Index Terms—Error exponent, error exponent game, joint
source-channel coding, source coding with side-information.

I. INTRODUCTION

I N Shannon’s very first paper on information theory [3], it
is established that separation-based coding is optimal for

memoryless source-channel pairs. Reliable communication is
possible if and only if the entropy of the source is lower than
the capacity of the channel. However, the story is different when
the error exponent is considered. It is shown that joint source-
channel coding achieves a strictly better error exponent than
separation-based1 coding [4]. The key technical component of
[4] is a channel coding scheme to protect different message sets
with different channel coding error exponents. In this paper, we
are concerned with the joint source-channel coding with side
information problem as shown in Fig. 1. For a special setup
of Fig. 1, where the discrete memoryless channel (DMC) is a
noiseless channel with capacity2 , i.e., the source coding with
side-information problem, the reliable reconstruction of at
the decoder is possible if and only if is larger than the condi-
tional entropy [6]. The error exponent of this problem
is also studied in [7], [8] and more importantly in [9].

The duality between source coding with decoder side-infor-
mation and channel coding was established in the 80’s [9]. This
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1In [4], Csiszár shows that the obvious separation-based coding scheme is
suboptimal in terms of achieving the best error exponent. A more detailed treat-
ment is given in [5].

2In this paper, we use bits and ��� , and rate � is always non-negative.

Fig. 1. Joint source-channel coding with decoder only side-information. Both
the source and the channel are discrete memoryless.

is an important result that all the channel coding error exponent
bounds can be easily applied to source coding with side-infor-
mation error exponent. The result is a consequence of the type
covering lemma [8], also known as the Johnson-Stein-Lovász
theorem [10]. With this duality result, we know that finding
the error exponent of channel coding for channel with
channel code composition is essentially the same problem
as that finding the error exponent of source coding with decoder
side-information where the joint distribution is .
Hence, a natural question is what if we put these two dual prob-
lems together, what is the error exponent of joint source-channel
coding with decoder side-information?

This more general case, where is a noisy channel in
Fig. 1, is studied in [11] and recently in [12], [5]. It is shown
in [11] that the reliable reconstruction of is possible if and
only if the channel capacity of the channel is larger than the
conditional entropy of the source. In [12], [5], a suboptimal
error exponent based on a mixture scheme of separation-based
coding and the joint source-channel coding first developed in [4]
is achieved. In this paper, we follow Csiszár’s idea in [4] and de-
velop a new coding scheme for joint source-channel coding with
decoder side-information. For a class of channels, including the
symmetric channels, the resulting lower and upper bound have
the same property as the joint source-channel coding error expo-
nent without side-information in [4]: they match if the channel
coding error exponent is known at a critical rate. We use a game
theoretic approach to interpret this result.

The outline of the paper is as follows. We review the problem
setup and classical error exponent results in Section III. Then
in Section IV, we present the error exponent result for joint
source-channel coding with both decoder and encoder side in-
formation which provides a simple upper bound to the error ex-
ponent investigated in the paper. This is a simple corollary of
Theorem 5 in [4]. The main result of this paper is presented
in Section V. Some implications of these bounds are given in
Section VI.

II. NOTATION

We use serifed-fonts, e.g., to indicate sample values, and
sans-serif, e.g., , to indicate random variables. We denote fi-
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nite sets by , , and . A probability distribution on finite
set is denoted by or , a distribution on is simply

. A channel, or a probability transition matrix from finite set
to is denoted by or . If a sequence ’s em-

pirical distribution is , then we simply write . The
empirical entropy of , , is defined as the entropy of
the empirical distribution, i.e., . Similarly, for
a sequence pair with empirical distribution , the
empirical conditional entropy and the empirical mu-
tual information are defined respectively as the condi-
tional entropy and the mutual information of the joint empirical
distribution . The KL divergence between two distributions

and is denoted by .
There are numerous error exponents in this paper. The main

topic of the paper, , is the error exponent for
joint source-channel coding with decoder side information,
where the source/side-information channel pair is and

. is the error exponent if a sepa-
ration-based coding scheme is applied. is
the error exponent while both encoder and decoder have access
to the side-information. For channel coding, the error exponent
for channel at rate is denoted by , the
random coding lower bound is denoted by and
the sphere packing upper bound is denoted by .
For source coding with decoder side-information, the error
exponent for source/side-information distribution at rate

is is denoted by , the lower bound and upper
bound of this error exponent are denoted by and

respectively. Other error exponents are defined
later as they appear.

III. REVIEW OF SOURCE AND CHANNEL CODING

ERROR EXPONENTS

A. System Model of Joint Source-Channel Coding With
Decoder Side-Information

As shown in Fig. 1, the source and side-information, and
respectively, are random variables drawn i.i.d from distribu-

tion on a finite alphabet . The channel is memoryless
with input/output probability transition matrix , where the
input/output alphabets and are finite. Without loss of gen-
erality, we assume that the number of source symbols and the
number of channel uses are equal, i.e., the encoder observes
and sends a codeword of length to the channel, the de-
coder observes the channel output and side-information
which is not available to the encoder, the estimate is .

The probability of error over all channel and source behaviors
is

(1)

The error exponent, for optimal coding, is defined as

(2)

The main goal of this paper is to establish both upper and lower
bounds on and show the tightness of these
bounds.

B. Classical Error Exponent Results

We review some classical results on channel coding error ex-
ponents and source coding with side-information error expo-
nents.3 These bounds are investigated in [13], [8], [7] and [14].

1) Channel Coding Error Exponent : Channel
coding is a special case of joint source-channel coding with
side-information: the source and the side-information
are independent, i.e., , and is a uniform
distributed random variable on . For the sake
of simplicity, we assume that is an integer. If is not an
integer, we can lump symbols together and approximate

by an integer for large , this is not a problem because
. With this interpretation of channel

coding, the definitions of error probability in (1) and error
exponent in (2) still hold.

The channel coding error exponent is lower
bounded by the random coding error exponent and upper
bounded by the sphere packing error exponent

(3)

where

(4)

and , where

(5)

Here and is the input composition
(type) of the code words.
in the high rate regime that where is de-
fined in [13] as the minimum rate for which the sphere
packing and random coding error exponents

match for channel . There are tighter
bounds on the channel coding error exponents in
the low rate regime for , known as straight-line lower
bounds and expurgation upper bounds [13]. However, in this
paper, we focus on the basic random coding and sphere packing
bounds, as the main message can be effectively carried out.

It is well known [13] that both the random coding and the
sphere-packing bounds are decreasing with and are convex
in . And they are both positive if and only if ,
where is the capacity of the channel .

2) Error Exponents for Source Coding With Decoder Side-
Information: This is also a special case of the general setup in
Fig. 1. This time the channel is a noiseless channel with

3In this paper, we write the error exponents (both channel coding and source
coding) in the style of Csiszár’s method of types, equivalent Gallager style error
exponents can be derived through Fenchel duality. This is discussed in detail in
Problem 23 on pg. 192 [8].
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input-output alphabet and . Again, we can
reasonably assume that is an integer.

The source coding with side-information error expo-
nent4 can be bounded as follows [15]:

(6)

where

The duality between channel coding and source coding with
decoder side information is well understood [9]. We give the
following duality results on error exponents

or equivalently

where is the channel coding error exponent
for channel at rate and the codebook composition is .

is the source coding with side information error
exponent at rate with source sequences uniformly distributed
in type and the side information is the output of channel

with input sequence of type . So obviously, we have

These results are established by the type covering lemma
[4] on the operational level, i.e., a complete characterization
of the source coding with side information error exponent

implies a complete characterization of the
channel coding error exponent
and vice versa.

From these duality results, it is well known that both the lower
and the upper bounds are increasing with and are convex in

. And they are both positive if and only if .
A special case of the source coding with decoder side informa-
tion problem is when the side information is independent of the
source, i.e., . In this case, the error exponent
is completely characterized [8]

3) Joint Source-Channel Coding Error Exponents [4]: In
Csiszár’s seminal paper [4], the joint source-channel coding
error exponents is studied. This is yet another special case of
the general setup in Fig. 1. When and are independent, i.e.,

4In this paper, if� � ��� ��� for source coding with side-information error
exponents, we let the error exponent be �.

, we can drop all the terms in (1). Hence, the
error probability is defined as

(7)

We denote the error exponent of (7) by . The
lower and upper bounds of the error exponents are derived in
[4]. It is shown that:

(8)

The upper bound is derived by using standard method of types
arguments. The lower bound is a direct consequence of the
channel coding Theorem 5 in [4].

The difference between the lower and upper bounds is in the
channel coding error exponent. The joint source-channel coding
error exponent is “almost” completely characterized because the
only possible improvement is to determine the channel coding
error exponent which is still not completely characterized in the
low rate regime where . However, let be the rate
that minimizes , if or
equivalently , then we have
a complete characterization of the joint source-channel coding
error exponent

(9)

The goal of this paper is to derive a similar result for
defined in (2) as that for the joint source-

channel coding in (8) and (9).
4) A Restatement of Theorem 5 in [4]: Fix a sequence of

positive integers with and message
sets each with size . Then there exists
a channel code , where the encoder

with for and the decoder
, let s.t. for any message

, the decoding error

for every channel , and . In particular, if the
channel is known to the encoder, each can be picked
to maximize ; hence, for each

This channel coding theorem as Csiszár put it, is the “main
result of this paper” in [4]. We use this theorem directly in the
proof of the lower bound in Proposition 1 and modify it to show
the lower bound in Theorem 1.
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Fig. 2. Joint source-channel coding with both decoder and encoder side-infor-
mation. Both the source and the channel are discrete memoryless.

IV. JOINT SOURCE-CHANNEL CODING ERROR EXPONENT

WITH BOTH DECODER AND ENCODER SIDE-INFORMATION

As a warmup to the more interesting scenario where the side-
information is not known to the encoder, we present the upper/
lower bounds when both the encoder and the decoder know the
side-information. This setup is shown in Fig. 2.

The error probability of the coding system is, similar to (1)

(10)

The error exponent of this setup is denoted by
, which is defined in the same way

as in (2). The difference is that the encoder
observes both source and the side-information , hence,
the output of the encoder is a function of both: .
So obviously, is not smaller than

.
Comparing (10) and (7), we can see the connections between

joint source-channel coding with both decoder and encoder side
information and joint source-channel coding. Knowing the side
information , the joint source-channel coding with both en-
coder and decoder side information problem is essentially a
channel coding problem with messages distributed on with
a distribution . Hence, we can extend the results for
joint source-channel coding error exponent [4]. We summarize
the bounds on in the following proposition.

Proposition 1: Lower and upper bound on

While not explicitly stated, it should be clear that the range of
is .

Proof: see Appendix A. Because
is no smaller than , the lower bound of

in Theorem 1 is also a lower bound for
. It is later shown that the lower bound in

Theorem 1 is the same as the lower bound in Proposition 1 for
symmetric channels, but otherwise not larger than the lower
bound in Proposition 1. In the Appendix, we give a simple
direct proof of the lower bound on which
is a corollary of Theorem 5 in [4].

Comparing the lower and the upper bounds for the case
with both encoder and decoder side-information, we can easily
see that if minimizes and

, then the upper bound and
the lower bound match. Hence

(11)

In this case is completely characterized.5

V. JOINT SOURCE-CHANNEL ERROR EXPONENTS WITH ONLY

DECODER SIDE INFORMATION

We study the problem where only the decoder knows the side-
information in this section. We first give a lower and an upper
bound on the error exponent of joint source-channel coding with
decoder only side-information. The result is summarized in the
following Theorem.

Theorem 1: Lower and upper bound on the joint source-
channel coding with decoder side-information only, as setup
in Fig. 1, error exponent: For the error probability

and error exponent defined in (1)
and (2), we have the following lower and upper bounds:

(12)

(13)

Proof: The main technical tool used here is the method of
types. For the lower bound we propose a joint coding scheme
for the joint source-channel coding with side information
problem. This scheme is a modification of the coding scheme
first proposed in [4]. However, we cannot directly use the
channel coding of Theorem 5 in [4] because of the presence
of the side information. In essence, we have to study a more
complicated case using the method of types. For details, see
Appendix B.

To simplify the expressions of the lower and upper bounds
and later give a sufficient condition for these two bounds to
match, we introduce the “digital interface” so that the channel
and side-information only interact through .

Corollary 1: Upper and lower bounds on
with “digital interface”

(14)

(15)

where is the standard random coding
error exponent for channel at rate with input distribu-

5A special case is when the channel is noiseless with capacity �. This is the
source coding with both encoder and decoder side-information problem. In this
special case, we see that for any �, both the lower bound and the upper bound
are � ���� �. This is similar to the source coding error exponent studied in
[8].
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tion defined in (4), while is the error
exponent of the peculiar source coding with side-information
problem for source at rate , where the empirical source
distribution is fixed at . That is, for fixed

(16)

Proof: The proof is in Appendix C.

With the simplified expression of the lower and upper bounds
in Corollary 1, we can give a game theoretic interpretation of
the bounds. And more importantly, we present some sufficient
conditions for the two bounds to match.

A. Game Theoretic Interpretation of the Bounds

The lower and upper bounds established in Corollary 1 clearly
have a game theoretic interpretation. This is a two player zero
sum game. The first player is “nature”, the second player is the
coding system, the payoff from “nature” to the coding system
is the bounds on the error exponents in Corollary 1. “Nature”
chooses the marginal of the source (observable to the coding
system) and , which is essentially the side information
and the channel behavior (nonobservable to the coding
system). The coding system chooses after observing

. Hence, in this game, the “nature” has two moves, the first
move on and the last move on which is essentially
and , while the coding system has the middle move on

.
Comparing Corollary 1 for joint source-channel coding with

decoder side information and the classical joint source-channel
coding error exponent [4] in (8), it is desirable to have a suf-
ficient condition for the lower bound and the upper bound to
match, i.e., the complete characterization as in (9). It is sim-
pler for the case in (8) since all that is needed is that the sphere
packing bound and the random coding bound to match at the
critical rate as discussed in Section III-B-III. However, for
the two bounds in Corollary 1, it is not clear what the conditions
are such that these two bounds match. Suppose that the solution
of the game in (14) is and solution of the
game in (15) is . An obvious sufficient con-
dition for the two bounds to match is as follows:

(17)

This condition is hard to verify for any source-channel pair. In
Section VI, we try to simplify the condition under which these
two bounds match for a class of channels.

B. Sufficient Condition to Reduce to

The difficulty in studying the bounds in Corollary 1 is that the
and operators are nested. The problem will be simpli-

fied if we can change the order of the and operators.

Corollary 2: For a symmetric channel6 , as defined on
Page 94 in [13], for which the input distribution to maxi-

6We quote the definition in [13]: “a DMC is defined to be symmetric if the set
of outputs can be partitioned into subsets in such a way that for each subset the
matrix of transition probabilities (using inputs as rows and outputs of the subset
as columns) has the property that each row is a permutation of each other row
and each column (if more than 1) is a permutation of each other column”. This
includes the binary symmetric and binary erasure channels.

mize the random coding error exponent is
uniform on for all , the upper and lower bounds in The-
orem 1 and Corollary 1 can be further simplified to the following
forms:

(18)

(19)

Note: in this case, the upper and lower bounds for
is the same as those for

in Proposition 1. For more discussions, see Section VI.
Proof: An important property for symmetric channels is

that the input distribution that maximizes the random coding
error exponent is constant for all rates [13]; hence, the inner

is equal to , i.e.,

(20)

(21)

where (20) follows the definition of random coding bound in (3)
and (21) follows the obvious equality

The upper bound in (18) is trivial by noticing that
and the upper bound

for in Proposition 1. However, we can also
prove it by directly applying [16]
to (14)

(22)

Corollary 2 is proved.

With this corollary proved, we can give a sufficient condition
under which the lower bound and upper bound match similar to
that for the joint source-channel coding case in Section III-B-III.
For more discussions, see Section VI.
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C. Why is it Hard to Generalize Corollary 2 to Nonsymmetric
Channels?

Whether

is equal to
is

not obvious for general (nonsymmetric) channels. A sufficient
condition of the existence of a unique saddle point for the
equality to hold is known as Sion’s Theorem [17], which
states that:

(23)

if and are convex, compact spaces and is quasi-convex7

on for all , quasi-concave on for all and continuous on
. For the function of interest

(24)
we examine the sufficient condition under which a unique
equilibrium exists, according to Sion’s Theorem. First,

is quasi-convex in
because both and

are convex, hence, quasi-convex in . However, (24) is not
necessarily quasi concave on

notice that the first term is linear in , the second term is
quasi-concave but not concave. But the sum of a linear function
and a quasi-concave function might not be quasi-concave. This
shows that the theorem cannot be easily established
by using Sion’s Theorem. This does not mean that the
theorem cannot be proved. However, for a non-quasi-concave
function that may have multiple peaks, is not nec-
essarily equal to .

VI. “ALMOST” COMPLETE CHARACTERIZATION OF

FOR SYMMETRIC CHANNELS

The sufficient condition in Corollary 2 is important, since bi-
nary symmetric and binary erasure channels are among the most
well studied discrete memoryless channels. We further discuss
the implications of the “almost” complete characterization of

for symmetric channels.
First we give an example shown in Figs. 3 and 4. The source

is a Bernoulli 0.5 random variable and the joint source has the
distribution

(25)

The channel is a binary symmetric channel with
crossover probability 0.025. The channel coding error ex-
ponent bounds and and the
source coding with decoder side-information upper bound

7As defined in [16], a function � � � � � is called quasi-convex if its
domain and all its sublevel sets: �� � ������ �� � ��	�
 � �� for all � are
convex. A function � is quasi-concave if �� is quasi-convex.

Fig. 3. Upper bound on source coding with side-information error exponent
� 	��� 
 is the dotted line. The random coding bound � 	��	 
 and
sphere packing bound � 	��	 
 for channel coding error exponents are
the solid line and the dashed line respectively.

are plotted in Fig. 3. The channel coding bounds
match while , where is defined in [13]. Note: the
lower bound of the source coding with side information error
exponent is not plotted in the figure.

In Fig. 4, we add both the lower and upper bounds on the joint
source-channel coding with decoder side information to the plot
in Fig. 3. For this source-channel pair and , we have
a complete characterization of because the
channel is symmetric and the two bounds match at the minimal
point, i.e., the two curves: and

match at the minimal point as
shown in Fig. 4. The value of the minimum is shown in
Fig. 4.

A. Encoder Side Information Does Not Always Help

Similar to Proposition 1, we can see the conditions under
which we can give a complete characterization of the joint
source-channel coding with decoder only side informa-
tion error exponent . If minimizes

and
, then the upper bound and the lower bound

match. Hence

(26)

Comparing Corollary 2 and Proposition 1, we bound the
error exponent with or without encoding side-information by
the same lower and upper bounds. This does not mean that
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Fig. 4. � ���� � � � ���� � and � ���� � � � ���� �
are added to Fig. 3 in dashed line and solid line respectively. They
match at the minimal point; hence, the joint source-channel coding with
decoder side-information error exponent is completely determined as
��� �� � � � . And� is the separation-based coding error exponent
� �� �� � defined in (30).

always holds. But if
the lower bound and upper bound match, which is shown in
Fig. 4, then we have

where minimizes and
. This is another example8 for block coding where knowing

side-information at the encoder does not help increase the error
exponent. In contrast, as discussed in [18], in the delay con-
strained setup, there is a penalty for not knowing the side-infor-
mation even if the channel is noiseless.

B. Separation-Based Coding is Strictly Sub-Optimal

An obvious coding scheme for the problem in Fig. 1 is to im-
plement a separation-based coding scheme. A source encoder
first encodes the source sequence into a rate , where
is determined later, bit stream . Then an independent
channel encoder encodes the bits into channel inputs .
The channel decoder first decodes the channel output into
bits and then the independent source decoder reconstructs

8For the classical source coding with decoder side-information problem,
knowing side-information at the encoder does not help increase the error
exponent if � � � , where � is the minimum rate that the sphere packing
bound and random coding bound agree [9].

from and side information . This is a separation-based
coding scheme with outer source with side information coding
and inner channel coding, both at rate . If both coding schemes
are random coding that achieves the random coding error expo-
nents for both source coding and channel coding respectively,
the union bound of the error probability is as follows:

(27)

(28)

(29)

where and converges to zero as goes to infinity. Equation
(27) follows the union bound argument that a decoding error oc-
curs if either the inner channel coding fails or the outer source
coding fails. Equation (28) is true because conditional proba-
bility is at least as large or equal to joint probability. Finally (29)
is true because both the outer source coding and inner channel
coding achieve the random coding error exponents. From (29)
and that the optimization of the digital interface rate between
the channel coder and source coder, we know that a lower bound
of the separation-based coding error exponent is

(30)

This separation-based coding scheme is also discussed for
joint source-channel coding in [4], in which a similar bound
is given. We next show why the separation-based coding error
exponent is in general strictly smaller
than the lower bound of in (19).

First, obviously,
. Secondly

is monotonically decreasing, is
monotonically increasing, and both are continuous and convex
as shown in Fig. 4. This means that for rate such that

Now let be the rate to minimize
, i.e.,

There are three scenarios. First if , then
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Secondly, if

Finally if

So in all cases, the joint source channel coding error expo-
nent is strictly larger than the separation-based
coding error exponent . This is clearly
illustrated in Fig. 4.

Note: is an achievable error expo-
nent from the obvious separation-based coding scheme. What
we prove is that this obvious one is strictly smaller than the
joint source-channel coding error exponent. This is similar to
the claim Csiszár makes in [4]. It should be clear that the upper
bound of any separation-based source-channel coding error ex-
ponent is which is
comparable to (30). The proof hinges on the complete trans-
parency between the source coding and channel coding, other-
wise we have a joint coding scheme. A detailed discussion is
in [5].

VII. CONCLUSIONS

We studied the joint source-channel coding with decoder
side-information problem, with or without encoder side-infor-
mation. This is an extension of Csiszár’s joint source-channel
coding error exponent problem in [4]. To derive the lower
bound, we used a novel joint source-channel with decoder
side-information decoding scheme. We further investigated the
conditions under which the lower bounds and upper bounds
match. A game theoretic approach was applied to show the
equivalence of the lower and upper bound. This approach might
be useful in simplifying other error exponents with a cascade
of min-max operators, for example, the Wyner-Ziv coding error
exponent recently studied in [19].

APPENDIX

A) Proof of Upper and Lower Bounds on
: We prove Proposition 1 in this

section. The upper bound and lower bounds are simple
corollaries of the method of types and Theorem 5 in [4]
respectively.

2) Upper Bound: Consider a distribution , the joint
source-channel encoder observes the realization of the source

with type , for the case where the decoder knows
the side-information . There are9 many
equally likely sequences conditioned on . These are
the sequences with the same joint probability with as the
sequence . Even knowing the joint type (given by a

9Here � goes to zero as � goes to infinity, � � 1, 2, 3.

genie) and the side-information , the decoder needs to guess
the correct one from the channel output . This is a channel
coding problem with rate .

Now consider the channel input where is
the side-information. Notice that there are at most
many different input types, there is a type , such that
more than fraction of the channel inputs
given side-information and the joint type of being

have type . For a channel , such that the
channel capacity of the channel given the input distribution
is smaller than , i.e.,

if the channel behaves like with the code book
with type , with high probability, the decoder cannot
correctly decide from one of the sequences. This is
guaranteed by the Blowing up Lemma [8] or see a detailed proof
in [14].

The probability that both the source behaves like and
the channel behaves like is

(31)

Notice that the source behavior and the channel
behavior are arbitrary. As long as

, we can upper bound the error expo-
nent as follows:

(32)

(33)

(34)

(35)

(36)

(32) is a direct consequence of (31). In (33), we introduce the
“digital interface” , the equivalence in (33) and (34) should be
obvious. Equation (35) and (36) are by definitions of the channel
coding and source coding error exponents.

3) Lower Bound: Fix a side-information sequence
which is known to both the encoder and the decoder. We parti-
tion the source sequence set based on their joint type with

. The number of joint types and denote
by , the joint types. It should be clear that
the ’s here all have the same marginal distribution as
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Obviously, ’s form a partition of . And each set has size
. Now we can apply Theorem 5 of [4] as

recited earlier: there exists a channel code , , such that for
each , i.e.,

(37)

The joint source-channel coding error probability is hence

(38)

(39)

Equation (38) follows by substituting in (37) and the rest of the
inequalities are by method of types. , so we can lower
bound the error exponent as

(40)

(41)

(42)

(43)

(44)

(45)

(46)

Equation (40) is a direct consequence of (39), in (41) we again
introduce the “digital interface” variable . Equations (42)
and (45) are by definitions of and
respectively. Equation (43) is true because is
monotonically decreasing with and for

Equation (44) is true because is convex
in and the global minimum is , but

which means the minimum point
is on the boundary. Lastly (46) is because for ,

is constant at 0, while is monoton-
ically decreasing with .

D) Lower and Upper Bounds on : We give
the proof of Theorem 1 here.

5) Lower Bound: From the definition of the error expo-
nent, we need to find an encoding rule and de-
coding rule such that the error probability:

is upper bounded by where , where is the
right hand side of (12).

We first describe the encoder and decoder, then prove that this
coding system achieves the lower bound.

The encoder only observes the source sequence . For all
those sequences with type , the channel input is
that has type , i.e., the channel input type only depends
on the type of the source, where is the distribution to
maximize the following exponent:

The decoder observes both the side-information and the
channel output , the decoder takes both the conditional en-
tropy and mutual information across the channel into account:

We next need to show that there exists such a encoder/decoder
pair that achieve the error exponent in (12). We also use the
method of random selection of codebooks. We denote by the
set of the codebooks such that the codewords for all
have composition . Obviously is finite, we let be the
random variable uniformly distributed on . We use codebook

if , i.e., we use the codebooks with equal probability.10

10In the rest of this section, we use �� to denote the probability under the

codebook distribution � and use �� to denote the probability when a particular
codebook � is used.
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The most important property of this codebook distribution is
the point-wise independence of the codewords, for all
and , for any two valid codewords and

We calculate the average error probability on the whole code-
book set under codebook distribution . Write the average
error probability as , then first we have:

(47)

where is the expected error probability
over all codebooks under the codebook distribution .

For a fixed codebook

(48)

For , the source sequence has marginal dis-
tribution from the codebook generation we know that the
codeword . For side-information ,
we partition according to the joint type with

We partition according to the joint distribution
with . For a joint distribution s.t. and

For and channel output , s.t.
, a decoding error is made if there ex-

ists a source sequence , s.t. , where
may or may not be and the code word

, where and

(49)

In (49), we rewrite the entropy and mutual information terms
according to the empirical distributions of the sequence pairs.
Specifically, is the mutual information between
and where , and is the
mutual information between and where
and .

Now we can expand the indicator function in (48) as follows,
for a codebook

(50)

Under the uniform codebook distribution , for ,
is uniformly distributed in independent of

, so for all and with the proper marginals
( , ) and ) and satisfying (49)

(51)

(52)

(53)

(54)

where . Equation (51) is by a union bound argument.
Equation (52) is true because the codeword is uniformly
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distributed in . Equation (53) is by the method of types.
Equation (54) is true because the condition in (49) is satisfied.

Combining (50) and (54) and noticing that the numbers of
types, and , is polynomials of , hence sub-exponen-
tial, we have

(55)

Finally, we substitute (55) and (48) into (47). Notice that the
number of types of and are polynomials in and the
usual method of types argument (upper bounding the probability
of etc.), we have

where and for , 2, 3. Notice that
is the average error probability of the codebook set , so there
exists at least a codebook , such that the error probability is no
bigger than .

Now we lower bound the achievable error exponent by

The last equality is true because the codeword composition
can be picked according to the source composition

. And by our code book selection we always pick the com-
position to maximize the error exponent

Here we slightly abuse the notations where is al-
ways the optimal distribution to maximize the above exponent
given .

The lower bound on in Theorem (1) is just
proved.

6) Upper Bound: 11 First we fix the source composition
, there are sequences in with type .

When the encoder observes the source sequence , it has to
send a code word to the channel . There are at
most different types, so at least

of the codewords for have the same composition,
we write this composition , and

, where .
Now we fix the conditional type , so we have the mar-

ginal and the joint distribution determined by
and . Write and

. Obviously
and for all : ,

for all : .
Let

where . We show next that the size of is
of the order .

Let , we
compute the size of from two different ways.

First

(56)

Secondly

(57)

(58)

(59)

11In this section, � � � and � � �, � � �� �� � � �� �� � � �� �� and 	.
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Equation (57) is by the definition of and , (58) is by the
definition of , (59) is true because all ’s are positive.

Combining (56) and (59) and use the fact that
, we have

Hence, .
Now we consider the decoding error of the following events

and show that this error event gives us an upper bound on the
error exponent stated in the theorem:

source and side information pair
.

First, for each

Secondly, the size of is lower bounded as follows from the
definition of and the lower bound on

(60)

So obviously the probability of is

(61)

Thirdly, if the side-information is there are at least
many ’s such that , that

is, there are at least many source sequences
with the same likelihood given the side-information (even
if there exists a “genie” that tells the decoder that the joint
distribution of is ). Furthermore, the channel input
codeword for these source sequences all have composi-
tion . Hence, we have a channel coding problem with
rate and fixed input composition . This
is the standard channel coding sphere packing bound studied in
[14].

So if , then the average error probability for
is at least

(62)

where , and goes to zero as goes to infinity.
Hence, because is continuous in

and is convex in .
Finally we combine (61) and (62), and notice that the above

analysis is true for any(adversary) distribution of the source ,
and any(optimal) channel codebook composition , and
any(adversary) after and are chosen, the
error probability is lower bounded by

Both and converges to zero as goes to infinity, the upper
bound in Theorem 1 is just proved.

G) Proof of Corollary 1: The proofs for both lower and
upper bounds with the “digital interface” are similar.

8) Proof of (15), the Lower Bound: By introducing the
auxiliary variable to separate the source coding and channel
coding error exponents and the definition of error exponents, the
following equalities should be obvious:

(63)

(64)

(65)

where in (63), is the standard random
coding error exponent for channel at rate and input dis-
tribution , (64) is trivial and , defined
in (16), is the upper bound of the error exponent of a peculiar
source coding problem with side-information for source at
rate , where the empirical source distribution is fixed at .
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9) Proof of (14), the Upper Bound: Similar to the proof
for (15), we have the following equalities:

(66)

(67)

where is the standard sphere packing
bound defined in (5) and is defined in (16).
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