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Abstract—Berger’'s paper ‘The Source Coding Game',IEEE  function when the rules of the game are tilted in favor of
Trans. Inform. Theory, 1971, considers the problem of finding the the switcher. Suppose that the switcher were given access to
rate-distortion function for an adversarial source comprised of the source realizations before having to choose the switch

multiple known IID sources. The adversary, called the ‘switcher’, iti Th . It of thi is that der th
was allowed only causal access to the source realizations and thePOSIlIoNS. € main resuit of this paper IS that unaer these

rate-distortion function was obtained through the use of a type rules,
covering lemma. In this paper, the rate-distortion function of R(D) = maXRp(D) 4)
the adversarial source is described, under the assumption that peC
the switcher has non-causal access to all source realizations. Thewhe
- . h o re
proof utilizes the type covering lemma and simple conditional,

random ‘switching’ rules. The rate-distortion function is once > ievp(i) = I, 2icv Pi(d)
again the maximization of the R(D) function for a region of C = peEP v V such that (5)
attainable 11D distributions. VCXx

|. INTRODUCTION Here, thep, are the distributions of the: sources an is
The rate distortion functionR(D), specifies the number the set of all probability distributions o’.

of codewords, on an exponential scale, needed to represent gection Il sets up the notation for the paper, and is followed
source to within a distortio®. Shannon [1] showed that for anpy a description of the source coding game in Section IIl. The
additive distortion function/ and a known discrete source thamain result is stated in Section IV, and an example illustrating
produces independent and identically distributed (IID) letteffe main ideas is given in Section V. The proofs are located in
according to a distributiom, Section VI and some concluding remarks are made in Section
R(D) = R,(D) 2 min Ip,w) @ VI
(D)= B (D) W, , p(@)W (yle)d(z,y)<D W) @)

Il. DEFINITIONS

whereI(p, W) is the mutual information for an input distrib- i , ,
ution p and probability transition matri¥V’. We work in essentially the same setup as Berger’'s source

Sakrison [2] studied the rate distortion function for the clagding game [3], and with most of the same notation. There are
of compoundsources. That is, the source is assumed to corf¥ finite alphabetst’ andy. Without loss of generalityt’ =
from a known set of distributions and is fixed for all imecf 11:2:---||} is the source alphabet ad = {1,2,... |J[}
is the set of possible sources, Sakrison showed that planniidhn€ reproduction aIphabet.ngt: (z1,...,2,) denote an
for the worst case source is both necessary and sufficien@fRitrary vector fromx™ andy = (yi,...,y,) an arbitrary

‘#k: _ .
the discrete memoryless source case. Hence, for compolgtor fromy™. When neededx” = (xlﬁ"'fck) will be
SOUrCes used to denote the firét symbols in the vectok.

R(D) = max R,(D) ) Letd : X x ) — [0,00) be a distortion measurgany
peEG nonnegative function) on the product s€tx ). Then define
In Berger’s ‘source coding game’ [3], the source is assuméd : X" x V" — [0,00) for n > 1 to be
to be an adversarial player called the ‘switcher’ in a statistical 1o
game. In this setup, the switcher is allowed to choose any d.(X,¥) = —Zd(xk,yk) (6)
source fromG at any time, but must do so in a causal manner "

W'thOIUt .acce]f’s;‘? tt‘ﬁ f“”g”t f’;.ep's source realizations. Thg o 1 e the set of probability distributions oti, P, the
conclusion of [3] is that under this scenario, set of types of lengt strings fromX’, and letW be the
R(D) = max R, (D) (3) set of probability transition matrices frod' to ) . The rate

peqG

h Gis th hull ofc. In hi lusi B 1We could allow for infinite distortions and require that the probability that
where & IS the convex hull olG. In NiS conclusion, Berger e gistortion exceed + € go to zero for alle > 0. The main result would

poses the question of what happens to the rate-distortied in this setup as well.
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distortion function ofp € P with respect to distortion measure
d is defined to be F 2 —

R,(D) = in T 7
»(D) oo (p, w) (7 s

where .
x| 1Y) :

WD) = {w e W: 3 p@uliliG.) < D} @

i=1 j=1

(r1,22,...)
+————o0

Pm [

andI(p,w) is the mutual informatioh

x| |V "y Fio. 1. Th di
) o w(ili g. 1. e source coding game.
Ip.w) = 33 piyu(ili log; [ i ] ©
i=1j=1 Zi’:l p(i")w(jli")
The only interesting domain of values fdt,(D) is D € <Lk be the output of thé!" source at timek. When needed,
(Din(p), Dmax(p)) Where %, will denote the block ofn symbols for thel’* source.

The other person in the game is called the ‘coder’. The
N coder’'s goal is to construct a codebook of minimal size to
Din(p) = Zp(z) mjmd(zd) (20)  ensure the average distortion between the switcher’s output

=1 and reconstruction in the codebook is at méstFix » and

| X

) ] N D > 0. Let B denote the codebook chosen by the coder,
Dinax(p) = mjmzp@)d(w 11 ang d,(X; B) be the distortion between a vect&rand the
=t best reproduction ok in B; in the sense of least distortion.
Let B = {¥1,...,¥x} be a codebook of length vectors The payoff of the game is the average distortion, which for a
in Y™. Define particular switching strategy is
dn(X; B) = min dn(X,Y) 12) E[d(X; B)] = zxj Ps(X)d,,(X; B) (16)
XeXn

If B is used to represent an IID source with distributjgn L N ) )
then the average distortion @ is defined to be Here Pg(X) is the probability of the switcher outputting
the sequenc& averaged over any randomness the switcher

d(B) = Z P(X)d,(X; B) = E[d,(X; B)] (13) chooses to use, as well as the randomness in the sources. Let

Reamn P(s,X) be the probability of the switcher using a switching
where . vectors and outputting a stringt. Then,
PR) =[] plar) (14) Ps(X)= )  P(s,%) (17)
k=1 se{l,....m}m

Let K (n, D) be the minimum number of codewords needed |, Berger's original game, the coder chooses a codebook

in a codebookB C Y™ so thatd(B) < D. Then, Shannon's that is revealed to the switcher. The switcher must then choose
Rate-Distortion Theorem ([1], [4]) says that if the source ifhe switch position at every integer time without access

IID with distribution p, to the actual letters that the sources produce at that time.
.1 The switcher, however, has access to the previous outputs of
Jim - log, K(n, D) = Ry(D) (15)  the switch. So in [3], an admissible joint probability rule for

Ill. THE SOURCE CODING GAME P(s,X) is of the form

P(s,X) = ﬁ P(s|s" 1, %M Py, (w) (18)
k=1

We suppose as in Berger’s paper that a ‘switcher’ is a player
in a two person game with access to the position of a switch
which can be in one afn positions. The switch positioh 1 <
I < m corresponds to a memoryless source with distribution In this discussion, we consider the case when the switcher
pi(+) that is independent of all the other sourteset s = gets to see the outputs of the sources and then has to output
(s1,82,-..,8,) be the vector of switch positions chosen by letter from one of the letters that the sources produced.
the switcher. Let:;, be the switcher’s output at timeand let The switcher outputs a letter,,, which must come from the

(possibly proper) subset ot, {z1%,...,zmk}. Hence, for

“We uselog; in the report, but any base can be used. this ‘cheating’ switcher, allowable strategies are of the form
3There can be multiple copies of the same source. For example, there can

be any number of copies of a Bernou(li/10) source, so long as they are P(s )-('|5('1 % ) —

all independent. In that sense, the switcher has acces$isbad m sources, ’ P Tm

rather than a set of different distributions. P(s|X1,....Xm)l(zp =25, 5,1 <k <n) (19)
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Since the sources are still 1ID,

m n

P(Xi,...,%m) = H H pi(xrk) (20)

I=1k=1

Define the minimum number of codewords needed by the
coder to guarantee average distortibnas M (n, D).

1
BcCY", EldX B)] <D 2
M(n,D) =min\< |B|: for all allowable 3
switcher strategies 1
(21) 6

We are interested in the exponential rate of growth of P(x =0)
M (n, D) with n. Define
R(D) = lim llogz M(n, D) (22)
n—oo Fig. 2. The binary distributions the switcher can mim@. is the set

Let G = {pl(.)7 . ,pm(.)} be the set ofm distributions of distributions the switcher can mimic without cheating, ahds the set
on X the switcher has access to. L@tbe the convex hull of 2t@inable with cheating.
G. Then let

R*(D) =max R,(D)

pel havep(1) > [T,", pi(1). The same logic can be applied to all

. . subsetsy of X.
The conclusion of [3] is tha?(D) = R*(D) when the As commented in Section V of [B]R(D) = R*(D) if
switcher is not allowed to witness the source realizations un};y*(D) — maxycp Ry(D). Before giving the proof of the
- pE P .

committing to a switch position. result, an example is presented.
IV. MAIN RESULT

The main result is the determination &{D) in the case
when the switcher gets to see the entire blockrof source  Suppose the switcher has access to two IID binary sources.
outputs ahead of choosing the switching sequence. Sourcel outputsl with probability 1/3 and source outputs
Theorem 1:Let the switcher ‘cheat’ and have access to thkWith probability 1 /4. Then, since the sources are 11D across
n outputs of allm sources before choosing a symbol for eactime and independent of each other, for any tile

time k. Then, 2 3 1

V. AN EXAMPLE

R(D) = R(D) £ max Ry(D) (23) Similarly,

where( is defined in (5). 1 (25)

W =
| =
p—
[N}

) . P(:I:l,k = LUQ’]C = 1) =
Here, we have defined?(D) = max,ec R,(D). The
theorem’s conclusion is that when the switcher is allowed tdence,
‘cheat’, R(D) = R(D). The number of constraints in the set 1 1 5
C is exponential in the size at. Depending on the source P({zir, 22k} ={01}) =1-5 -5 =35 (26)
distributions, a large number of these constraints could be ) ] ] ] ]
inactive. UnfortunatelyR, (D) is generally not concave in If at time k, the swﬁcher has the op‘uon of ch_qosmg e|t_her
for a fixed D, so computation oﬁ(D) may not be easy. orl, suppose the switcher cho_oslesnth probability f1. This
Qualitatively, allowing the switcher to ‘cheat’ gives accessirategy is memoryless, but it is an allowable strategy for the
to distributionsp € C which may not b&7. Quantitatively, the ‘cheatmg’ swﬂ_c_her. The Coder_ then sees an [ID binary source
conditions placed on the distributions Ghare precisely those With @ probability of al occurring being equal to:
that restrict the switcher from producing symbols that do not 1 5 27
occur often enough on average. For example Vet {1}. p() =15+ ﬁfl (27)

T 12
Then for everyp € C, By using f, as a parameter, the switcher can prodLlisavith a

e probability betweeri /12 and1/2. The attainable distributions
p(1) = le(l) are shown in Figure 2. This kind of memoryless, ‘conditional’
=1 switching strategy will be used for half of the proof of the main

Since the sources are independ€ft, , p;(1) is the prob- result. If the distortion measure is Hamming distortion, clearly
ability that all m sources produce the lettdr at a given the switcher will choosg; = 1 and produce a Bernoulli/2
time. In this case, the switcher has no option but to outpptocess. Regardless of the distortion meas@repntains all
the letter1, hence any distribution the switcher mimics mushe distributions onY’ that the switcher can mimic.
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VI. PROOFS a sequence of IID binary random variables with distribution
A
A. Achievability for the coder ¢ =(1-QW),QV)).

. i ) . Now for our typep € P, N (P — Cs), we have that for all
First, the main tool of §h|s section is stated. strings in the type clasg, %Z?ﬂ 1(z; € V) < Q(V) -4,
Lemma 1 (Type Coverlng [3])Let P, denot:a ﬂle S_‘et of Let p/ be the binary distributior(l - Q(V) + 5,Q(V) _ 5)'

types for lengthn. sequences from’:. Let Sp(¥) = {X €  assumings is small enough to make this a distribution  (if
A" 1 dy(X,¥) < D} be the set oft™ strings that are within ¢ “make delta small enough). Therefdfg — ¢/||, = 24,
distortion D of_ay string y. Fix ag eﬂPn ang ane > 0. 44 henceD(p'||¢') > 6/1n2 by Pinsker's inequality. Using
Then there exists a codebodk = {y1,¥2,...,¥u} wWhere oo qard types properties [6] gives

M < expy(n(R,(D) +¢€)) and

1 n
M Pl — an(V V) -6 < XQ—TI,D T
77 | So(¥k) (n; #V) < Q) ) < expy(=nD(p'llg))

k=1 < expy(—nd/In2)
where T} is the set ofX™ strings with typep for n large

If we let £ be the event thak has a type which is not in
enough.

Cs, We just sum over types not i to get

_We now show how the coder can get arbitrarily close to P(E) < Z expo(—n6/In2)

R(D) for large enough. For § > 0, defineCs as PEP(P—Cs)

Dievp()) 2 ILZ sy mi(i) =6 < (n+1)*lexpy(—nd/In2)
C;&£{ peP vV such that s In(n + 1)
e - e (g )
Lgr_nma 2 (Converse for switcherlet ¢ > 0. For all n Now let d* = max,_, d(z,y) < co. Then, regardless of the
sufficiently large switcher strategy,

1 ~

~log, M(n,D) < R(D 1 1

o M D)= D) v e Eld(% B)) < D +d" - exp, <_”<m52‘ X )>>

Proof: We know R,(D) is a continuous function of

p ([8]). It follows then that becaus€s is monotonically  So for largen we can get arbitrarily close to distortia
decreasing (as a set) with that for all ¢ > 0, there is a while the rate is at mosR(D) + ¢. Using the fact that the

0 > 0 so that rate-distortion function is continuous i gives us that the
coder can achieve at most distortiéhon average while the

=N Ry(D) < s Ry(D) +¢/2 rate is at mosf(D) + e. Sincee is arbitrary, R(D) < R(D).

|

We will have the coder use a codebook such thati&t
strings with types irCs are covered within distortiod. The B. Achievability for the switcher
coder can do this for large with at most)\/ codewords where  This section considers whR(D) > }NE(D). We will show
M < (n+ 1)|X\ expy(nmax R,(D)) (28) that the switcher can target any Qistribuf@r@ C anq produce
peCs a sequence of 11D symbols with distributipnin particular, the
< (n+1)* expy(n(max R,(D) +¢)) (29) switcher can target the distribution that yieldsx,cc R, (D)
pec and Shannon’s rate distortion theorem givesD) > R(D).
Explicitly, this is done by taking a union of the codebooks The switcher will use a memoryless randomized strategy.
provided by the type covering lemma and noting that tHeetV C X and suppose that at some tifh¢he set of symbols
number of types is less tham + 1)I*1. Next, we will show available to choose from for the switcher is exadflyThat is
that the probability of the switcher being able to produce fr; 4, ..., 2, )} = V. Define3(V) & P({z11,...,Zm1} =
string with a type not irCs goes to0 exponentially withn. V) to be the probability that at any time the switcher can
Consider a type € P,, N (P — Cs). By definition, there is choose any element of and no other symbols. Then let
someV C X such that)", .\, p(i) < [[,%, >,y (i) — 6. f(i]V) be a probability distribution on¥ with supportV,

Let (V) be the indicator function ie. f(ily) > 0, Vi € X, f(z]V) = 0if i ¢ V, and
m > ey f(i]V) = 1. The switcher will have such a randomized

ap(V) = H 1(zp € V) rule for every nonempty subsét of X such that|V| < m.
=1 Let D be the set of distributions of’ that can be achieved

ay, indicates the event that the switcher cannot output a syml%'fh these kinds of rules, so

outside ofV at time k. Then ai(V) is a Bernoulli random p() =2y x,pi<m BV,
variable with a probability of beingl equal to Q(V) £ D2 peP VVsStVCAX, |V <m,
[T > ey mi(i). That is, we can envisiomy, (V) as being f(:|V) is a PMF onV
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It is clear from the construction db that D C C because

The last step is true because of the monotonicity indhe

the conditions inC are those that prevent the switcher onlynd the inequalities we derived earlier. Therefore, we see that

|

from producing symbols that do not occur enough, but put @‘;{‘1 a;p(i) > > .71 aiq(i) for the p we had chosen at the
further restrictions on the switcher. So we need only show thaéginning of the proof. This contradicts the assumption that

C C D. The following gives such a proof by contradiction.
Lemma 3 (Achievability for switcher)The set relatio C
D is true.

Proof: Supposep € C butp ¢ D. It is clear thatD is a
convex set. Let us view the probability simplex®¥*!. Since

S aip(i) < mingep S21F aiq(i), therefore it must be that
CCD. |
VIl. CONCLUSION

The rate-distortion function for the ‘cheating’ switcher has
been described. It is the maximization of the 11D rate-distortion

D is a convex set, there is a hyperplane thropghat does not function over the distributions the switcher can simulate. It was

intersectD. Hence, there is a vectquy, ..., a x|) such that
Z‘Zi‘)'l a;p(i) =t for some reat but¢ < mingec Z‘li‘l a;q(i).
Without loss of generality, assumg > ax > ... > ax|
(otherwise permute symbols). Now, we will constryit|V)
so that the resulting has>_*! a;p(i) > %! aiq(4), which
contradicts the initial assumption. Let

1 if ¢ = max(V)

fay) £
0 else
For example, ifV = {1,5,6,9}, then f(9]V) = 1 and

f@EV) =0if i #9. Call ¢ the distribution ont’ induced by

this choice of f(-|V). Recall thatQ(V) = [T}, >,cp mi(3).
Then, we have

|X]

Zaiq(i) = aQ({1}) +a2[Q({1,2} —Q({1}] +
+ax QUL - X)) — QUL ..., [X] = 1})]

By the constraints in the definition of, we have the
following inequalities forp:

p(1) > Q({1}) =q(1)
p()+p(2) > Q({1,2}) =q(1)+q(2)
[xX]—1 |xX|—1
_Z p(i) = QU{L,....|X|-1}) = Z q(7)

Therefore, the difference of the objective is

|X]

Z ai(p(i) — q(i))

|X]

ajx| [;p(i) - Q(i)} +
(ajxj-1 — ajx)) [l%lp(i) - Q(i)] +

i=1

o+ (a1 — an) |:p(1) - q(l)]

|X|—1 i i

= Z (a; —ait+1) [ZP(J) - ZQ(J)}
i=1 J=1 J=1

> 0

assumed the switcher had access to all source outputs ahead of
time, but the proof required only that the switcher had access
to the source realizations for one step ahead at each time.

In this paper, the sources were independent and memoryless.
A minor tweak to the argument also gets the rate-distortion
function if the sources are dependent but still memoryless.
The regionC would just be modified to become:

iy p(i) > P(U 21 C V)
YV V such that
VX

A more interesting problem is to consider what happens
when the sources are independent but have memory. Appar-
ently, Dobrushin [7] has analyzed the case of the non-cheating
switcher with independent sources with memory. One could
imagine that, perhaps, giving the switcher access to all source
realizations could result in the ability to simulate memoryless
sources from a collection of sources with memory.

Similar techniques might also prove useful in considering a
cheating ‘jammer’ for an arbitrarily varying channel. While the
problem is mathematically well defined, it seems unphysical
in the usual context of jamming or channel noise. The idea
may make more sense in the context of watermarking, where
the adversary can try many different attacks on different letters
of the input before deciding to choose one for each.

C=4 peP
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