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Delay-Constrained Source Coding for a Peak Distortion Measure

Cheng Chang and Anant Sahai

Abstract—We consider the problem of lossy source source coding and lossy source coding under peak dis-
coding under a peak distortion measure in which source tortion constraint. This is not the case for rate distortion

symbols are revealed to the encoder in real time and functions under average distortion measures [4
need to be reconstructed by the decoder within a fixed 9 [4].

end-to-end delay. Following the lossless case in [3], we A Source coding for streaming data with an end-to-end
investigate the tradeoff between end-to-end delay and the delay constraint

probability of distortion violation. As in the lossless case,
the delay-constrained error (distortion-violation) exponent In [3], [2], we studied the special case of lossless

is generally much higher than the fixed-block coding case. c¢oding. We showed that the error exponent with fixed
end-to-end delay isnuch higherthan its fixed block-
length counterpart. The delay exponent also turned out
to be related to the buffer overflow exponent studied by
The core issue we are interested in is the impacielinek in [6].

I. INTRODUCTION

of “causality” on lossy source coding. In [9], the ratesource X1 X X3 x4 X X6 ..

distortion performance for a strictly causal decoder is i i i i i

studied, and it is shown that the optimal performance can R 4 .
Encoding by (x7) ba (x7) b3 (xy) ...

be obtained by time-sharing between memoryless codes.
Thus, it is in general strictly worse than the performance
of classical fixed-block source coding that allows arbiRate limited Channel
trarily large delay. The large deviation performance of
the zero delay decpdgr problem is studied in [8]. Decoding yi(d) ya(5)  ya(6) ..

Allowing some finite end-to-end delay, [11] shows i for del e i )

; f : g. 1. Time line for delay constrained source coding: &te- 5,

that thg average block coding rate .dlstort.lon performanc,FeIayA 3. yili + A) is the reconstruction of; at imei + A 2
can still be approached exponentially with delay.

In this paper, we consider a coding system for a
streaming source, drawn iid from a distributigp on In this paper, we relax the lossless coding constraint
finite alphabet¥. The encoder, mapping source symbolgo allow some distortion on a per-symbol basis. This is
into bits at fixed rateR, is strictly causal and the decoderdifferent from the time-averaged distortion studied in
has to reconstruct the source symbols (under a pe&¥, [9], [11].
dlstorthn constraint) W'F“'T‘ a fixed gnd-fco-end IatencyB' Rate distortion under a peak distortion constraint
constraint. The system is illustrated in Figure 1. i _ _

Generalizing our previous work in [3], [2] on end- [4] introduced peak distortion measures:
to-end dglay perfor'mance of Io§sles§ source 'codmg, we A, yN) 2 max d(z:,y:) 1)
have derived the fixed-delay distortion-violation expo- 1<i<n
nent for lossy source coding under a peak distortiognd the corresponding rate distortion theorem:

constraint. A “focusing” type bound is derived that is proposition 1: The rate-distortion functio®(D) for
quite similar to its lossless source coding counterparpeak distortion:

As shown in the appendix, the technical reason for the A
similarity is that the length of optimal variable-length R(px, D) = pin I(px, W) 2)
codes, or equivalently the rate distortion functions, are

concave in the empirical distribution for both Iosslesg\'h?re Wp is the_set _Of all trans_ltlor_1 matrices that
satisfy the peak distortion constraint, iX/p = {W :
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D) = 0, we can implement a universal variable length 1. MAIN RESULT
prefix-free code with code lengtty (1) where We investigate the relation between delAyand the
Ip(x)) = n(R(p,~, D) + on) (3) probability of distortion violationPr(d(x;, y; (i + A)) >

D), wherey;(i + A) is the reconstruction of; at time

wherep, v is the empirical distribution of:Y, anddn ;' and D is the peak distortion constraint.
goes to0 as N goes to infinity.

This | imol I  the t ing | Definition 1: A rate R sequential source code shown
IS 1S a simple corofary ol In€ type covering lemma,, Figure 1 achieves error (distortion violation) exponent

[4]. The problem is only interesting if the target peak : . :
distortion D is higher thanD and lower thanD, where SEf(v]j)AwihOdelay iffor alle >0, there exists’ < oo,

Pr(d(x;, yi(i + A)) > D) < K2~ AFp()=¢)

Note that bothD and D only dePe"!d o_n the distortion Theorem 1:Consider fixed rate source coding of iid
measurel(-, -), not the source distributiop,. streaming datax; ~ p,, with a non-negative peak
distortion measured. For D € (D,D), and rates

D 2 maxmind(z,y) and D £ min max d(z,y)
TEX yeY yeY zeX

Source Reconstruction

y X y X y R € (R(px, D), Rp), the following error exponent with
2 © © © delay is optimal and achievable.
a el
o o o Ep(R) = Olgli) aED((a +1)R) ®)
3 where E% (R) is the block coding error exponent under
- o e 5 o o peak distortion constraint, as defined in Proposition 2.
d(x,y) D € [2,3) De[l,2) Del0.2,1) A. Numerical Examples

Fig. 2. d(z,y) and valid reconstructions under different peak ConSIderpX = {0'1’0'7’0'_2} a_nd a distortion mea-
distortion constraintsD. (z,y) is linked if d(z,y) < D. D = 0.2 sSure onX x Y as shown in Figure 2. We plot the
andD = 3. ForD € [0.2,1), this is a lossless source coding problem.rate distortion2 — D curve and the error exponents in

Figure 3. We have a higher delay error exponent than
The rate distortion function is in general non-concav®lock coding, just as in the lossless case of [3].
in the source distributiop as pointed out in [7]. But

for peak distortion,R(p, D) is concave inp for a fixed _ _ Ill. PROOFS _
distortion constraintD. The proof is in the appendix. In this section, we show that the error exponent in
Lemma 1: R(p, D) is concave irp for fixed D. Theorem 1 is both achievable asymptotically with delay

) ) and that no better exponents are possible.
As a simple corollary of the block-coding error ex-

ponents for average distortion from [7], we have thé\. Converse

following result. The proof of the converse is similar to the upper
Proposition 2: Block coding error exponent under bound argument in [3] for lossless source coding with
peak distortion: delay constraints. To bound the best possible delay
L. 1 exponent, a genie-aided encoder/decoder pair is used to
lim inf — - log, Pr(d(xi",y1") > D) = Ep(R)  yangiate the block-coding bounds in Proposition 2 to
whereE%(R) = min D(qy||px) (4) the fixed delay context. The arguments are analogous to
4x:R(g,D)>R the “focusing bound” derivation in [10] for the case of
wherey{" is the reconstruction of{" using an optimal channel coding with feedback.
rate R code. Proof: For simplicity of exposition, we ignore in-

loss| i h teger effects arising from the finite nature &f R, etc.
Forb OST_ ess sour(;:ehcodlng, 1 > log, | ], ft € €IMOT  Eor everya > 0 and delayA, consider a fixed-rate code
probability is0 and the error exponent is infinite. Simi- ., ning ynti| time2 + A. By this time, the decoder will

larly, for lossy source coding under peak distortion, th¢ e committed to estimates for the source symbols up

error exponent is infinite whenever to timei = 2. The total number of bits used during this
R > Rp = sup R(qx, D) period is(£ + A)R.
B ax Now consider a genie that gives the encoder access
where R, only depends or(-,-) and D. to the firsti source symbols at the beginning of time,
2
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The « that minimizes (6) tells how much of the past
(%) is involved in the dominant error event. |

1.157 ——

Rate

B. Achievability

0278 We prove achievability by giving a universal coding
°53 i 3 s scheme illustrated in Figure 4.
Distortion A block-length N is chosen that is much smaller
(@ R — D curve under peak distortion than the target end-to-end deldyshile still being large
constraint is a staircase function enough. For a discrete memoryless souttedistortion
©= ., [— Blockcoding D, 1 [1.9 . measured(-, -), peak distortion c_onstrainD, _and large
) o vmaoy 321 oy Ry block-length N, we use the universal variable length
8 | J |--- wimaeiay 0,002 | : preflx—free code in Proposition 1 to encode the i'th plock
o ; Z, = xéﬁlw“ € XN. The code lengthp(Z;) is
§ 7 shown in (3),
i 15t . /
s . 7 NR(pz,, D) <lp(Z) < N(R(pz,, D) +n)  (7)
" ost The overheadiy is negligible for largeN, sincedy
ok _ /_ goes to0 as N goes to infinity. The binary sequence
R(p, D) Ry RlPe D7) Ro, describing the source is fed into a FIFO buffer described
Rate in Figure 4. The buffer is drained at a fixed rafeto

(b) Error exponents of delay constrained and block  obtain the encoded bifsThe decoder uses the bits it has
source coding under different peak distortion constrains  recejved so far to get the reconstructions. If the relevant
B bits have not arrived by the time the reconstruction is
Eig-g FO[rD1 % [1H 3), Rt()inx,D&) =0.275 anlepi = 0.937- due, it just guesses and we presume that a distortion-
or Do € [0.2,1), the problem fgenerates to lossless coding, sQ,: . .
R(px, D1) = H(px) = 1.157 and Rp, = log,(3) = 1.585 Violation will occur. L ,
As the following proposition indicates, the coding
scheme is delay universal, i.e. the distortion-violation

rather than forcing the encoder to get the source symbdksobability goes to0 with exponentEp(R) for all
gradually. Simultaneously, loosen the requirements ofPurce symbols and for all delays big enough.
the decoder by only demanding correct estimates for Proposition 3: For the iid source~ p., peak distor-
the firsti source symbols by the tim@ + A. In effect, tion constraintD, and largeN, using the universal real-
the deadline for decoding thpast source Symbo|s is time code described above, for all> 0, there exists
extended to the deadline of theh symbol itself. K < oo, s.t. for allt, A

Any lower-bound to the distortion-violation proba- > o —AN(Ep(R)—e¢
bility of the new problem is clearly also a bound forPr(d(Xt’yt((tJr AN)) > D) < K2 o
the original problem. Furthermore, the new problem isvherey;((t + A)N) is the estimate o¥; at time (¢ +
just a fixed-length block-coding problem requiring theA)N.
encoding ofi source symbols intt()% + A)R bits. The

rate per symbol is Before proving Proposition 3, we state the following

lemma (proved in the appendix) bounding the proba-

((A + A)R) 1 _ <<A + A)R) a bility of atypical source behavior.
o i o A Lemma 2:(Source atypicality) For ale > 0, block
= (a+ 1R length N large enough, there exists < oo, s.t. for all

Proposition 2 implies that the probability of distortion”" forallr < Rp:

violation is at least exponential inE% (o + 1)R).
Since: = %, this translates into a distortion-violation Pr

b .
exponent of at mo D((‘L“)R) with parameterA.
Since this is true for alte > 0, we have a bound on  2we are interested in the performance with asymptotically large

the distortion violation exponent with fixed deldy:. delaysA.

SNotice that if the buffer is empty, the output of the encoder
6 buffer can be gibberish binary bits. The decoder simply discards these
( ) meaningless bits because it is aware that the buffer is empty.

> (%) > nNr> < K27"NEb-9  (g)

i=1

NP RS
Il S Ep((a+1R)
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Streamlng data
—{leed to variable length Enco%e:‘

FIFO

“Lossy” reconstruction with delayA

Encoder Buffe i .
Rate R bit stream Decod e Yit+ A,

Fig. 4. A delay optimal lossy source coding system.

Now we are ready to prove Proposition 3. IV. FUTURE WORK
Proof: At time (t+A) N, the decoder cannot decode
X, within peak distortionD only if the binary strings
describingx; are not all out of the buffer. Since the

Both the converse (focusing bound) and the achiev-
ability analysis can be adapted for average distortion
measures. However there is a gap between the two
®ounds on the error exponent due to the non-concavity
of the rate-distortion function in the empirical distribu-
(t+A)N is less than the number of the bits in the buf‘fetlon Hence, the optimal end-to-end d(flay constrained

at t'me t1 plus the number of mco_mmg bits from tw_ne error exponent for lossy source coding under average
t; to time¢tN. Suppose the buffer is last empty at time

IN — nN where0 < n < , given this condition, the distortion constraints remain unknown.

peak distortion is not satisfied only """ I (%;_;) > APPENDIX

(n+ A)NR. Write [ p max as the longest possible code

length. L, maz < |¥|logy(N + 1) + N log, | X|. Then A. Proof of Lemma 1

Pr(>°0, "Ip(%_i) > (n+ A)NR) > 0 only if n > Proof: To show thatR(p, D) is concave irp, it is

(nlJrA)NR > lANR A BA. So enough to show that for any two distributiopg andp;
pmaz pmas and for any\ € [0, 1],

Pr(d(Z:, 7:((t + A D
(d( y (( ) )) > D) R(px, D) > AR(po, D) + (1 — \)R(p1, D)

of outgoing bits from some time;, wheret; < tN to

< X_i)>(n+A)NR 9 .
B nep ; . INR) () wherepy = Apg + (1 — \)py. Define:
n (n+ANRY W* =argmin I (py, W
<(a) Z K 27N ER (T —e) WgEWD P, W)
n=pA
Of Then, from the definition ofR(p, D) we know that
<@ Z K2 N (Ep(R)=e2) R(px, D)
n=yA %
! A = I(px, W)
1Y Kpp AN (R ) > M(po,W*) + (1= NI(p1, W) (10)
- > A I(po, 1— I(py, W
pa = A min I(po, W)+ (1—A) min I(p, W)

<() KBQ*"/AN(EI’D(R)*@)
_|_|,YA _ ﬂA|K32_AN(ED(R)_€2)

AR(po, D) + (1 = A)R(p1, D)

(10) is true becausé(p, W) is concave inp for fixed

—AN(Ep(R)—e
<@ K2 (Ep =9 W andpy = Apg + (1 — A)p;. The rest is from the
where K/s and ¢,s are properly chosen real numbers definitions. O
is true because of Lemma 2. Define2 £2) |n
(a) e B (m) B. Proof of Lemma 2

the first part of(b), we only need the fact thatt®, (R 7 (R)
is non decreasing witti. In the second part o(fb), we
write o = % and take then to minimize the error 1(Px;

Proof: We only need to show the case for >
D). By Craner’s theorem [5], for alk; > 0, there

exponents. The first term @f) comes from the sum of €XIStSK1, such that :
a convergent geometric series and the second is by the n 1
definition of Ep(R). (d) is by the definition ofy. W Pr(>_Ip(%) >nNr) = Pr(=) Ip(%) > Nr)
Combining (6) and Proposition 3, we establish the i=1 s
desired results summarized in Theorem 1. < K2 ninfesnre I(z)—er)
4
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where the rate functior(z) is [5]:

Z px(f)QplD(f))}

(FexnN

I(2) = sup{pz — logy( (11)
p20

It is clear thatl(z) is monotonically increasing with

z andI(z) is continuous. Thus

Z1>n]\ffr I(z) =I(Nr)

Using the upper bound oy (%) in (7):
logy( Y pu(@)2717)

12)

FEXN
< logy( Z Q*ND(qxpr)2p(5N+NR(qx,D)))
g €TN
< 10g2(2N€N2—Nminqx{D(qxpr)—pR(qx,D)—p&N})

N( — H;in{D(QXpr) — pR(gx, D) — pon} + GN)

where7 " is the set of all types o’ ,and2™¥¢~ is the
number of types iMt™, 0 < ey < X8 ED "ang
SO ey goes to0 as N goes to infinity.

Substitute the above inequalities infoNr) in (11):

I(Nr) > N(sup{minp(r — R(gx, D) — 6n)
p>0

+D(Qx||px)} - 6N) (13)
We next show thaf (Nr) > N(E%(r) + ex) wheree

dn +u < Rp. Thus there exists a distributiap, s.t.
R(qx, D) > r — dn + u. (c) is becauseR(qx, D) >
r—dny +u andp > 0. (d) is true because we might
as well assume that.(z) > 0 for all z € X, and
r—3dn +u < Rp. Thus we proved the existence of the
saddle point off(q, p).

sup{min f(q, p)} = min{sup f(q, p)} (15)
p>0 4 9 p>0

Note that if R(¢qx, D) < r — dn, p can be chosen to
be arbitrarily large to make(r — R(qx, D) — dn) +
D(qx||lpx) arbitrarily large. Thus they, to minimize
sup, p(r — R(qx, D) — 0n) + D(qx||px) satisfiesr —
R(qX,D) — 0y > 0. So
Héin{i‘ilg p(r — R(gx, D) = 0n) + D(qyIPxy )}

min sup
qx:R(gx,D)>r—dN p>0

{p(r — R(qx, D) — 0n) + D(qx|lpx)}
{D(qxllpx)}

—(a)

=(b) min
ax:R(qx,D)>r—én

=@ Eb(r—in) (16)

(a) follows from the argument abovéb) is because
r — R(q,D) — 6y < 0andp > 0, and thusp = 0
maximizesp(r — R(gx, D) — dn). (c) is by definition
in (4). Combining (13) (15) and (16), lettingv be
sufficiently big so thatéy is sufficiently small, and

goes to0 as N goes to infinity. We show the existencenoticing that £ (r) is continuous onr, we get the

of a saddle point of the min-max for a function

f(@x; p) = p(r — R(qx, D) — 6n) + D(qxllpx)

Obviously, for fixedgy, f(gx,p) is a linear function
of p, thus concave. Also for fixed > 0, f(gx,p) is
a convex function ofy,, because both-R(q,, D) and
D(gx||lpx) are convex ing,. Write

9(u) = minsup(f(gx, p) + pu)
9 p>0

Showing thaty(u) is finite aroundu = 0 establishes the

existence of the saddle point as shown in Exercise 5.2?6]

desired bound in (8). O

REFERENCES
(1]
(2]

Stephen Boyd and Lieven Vandenbergl@anvex Optimization
Cambridge University Press, 2004.

Cheng Chang and Anant Sahai. The error exponent with delay
for lossless source codingnformation Theory Workshop, Punta
del Este, UruguayMarch 2006.

Cheng Chang and Anant Sahai. Price of ignorah€g&E Trans.
Inform. Theory submitted.

Imre Csiszr and &nos Korner. Information Theory Akadémiai
Kiads, Budapest, 1986.

Amir Dembo and Ofer Zeitounilarge Deviations Techniques
and Applications Springer, 1998.

Frederick Jelinek. Buffer overflow in variable length coding of

(3]
(4]
(5]

[1]- fixed rate sourceslEEE Transactions on Information Theory
. 14:490-501, 1968.
min sup (q, p) + pu [7] Katalin Marton. Error exponent for source coding with a fidelity
I p>0 criterion. IEEE Transactions on Information Theor$0(2):197—
_ : _ _ 199, 1974.

(a) T ffi}g plr = B(gx, D) = On +u) + D(gxlpx) [8] Neri Merhav and loannis Kontoyiannis. Source coding exponents
< . for zero-delay coding with finite memorjEEE Transactions on
O R ggggi St Sg{)’ Information Theory 49(3):609-625, 2003.

TReT= p= [9] David L. Neuhoff and R. Kent Gilbert. Causal source codes.
p(r — R(qx, D) — dn + u) + D(gx|lpx) IEEE Transactions on Information Theg38(5):701-713, 1982.
. [10] Anant Sahai. Why block length and delay are not the same thing.
(o) R g;gi,_(s tu D(gullpx)  <(a) o0 (14) IEEE Trans. Inform. Theorysubmitted, arXiv: cs.IT/0610139.
Dl o) = oN T [11] D. Tse, R.G. Gallager, and J.N. Tsitsiklis. Optimal buffer control

(a) is a definition.(b) is true becaus&(px, D) < r <
Rp, thus for very smallly and u, R(px, D) < r —

580

for variable-rate lossy compressio1st Allerton Conference
1993.



