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Abstract— We consider the problem of lossy source
coding under a peak distortion measure in which source
symbols are revealed to the encoder in real time and
need to be reconstructed by the decoder within a fixed
end-to-end delay. Following the lossless case in [3], we
investigate the tradeoff between end-to-end delay and the
probability of distortion violation. As in the lossless case,
the delay-constrained error (distortion-violation) exponent
is generally much higher than the fixed-block coding case.

I. I NTRODUCTION

The core issue we are interested in is the impact
of “causality” on lossy source coding. In [9], the rate
distortion performance for a strictly causal decoder is
studied, and it is shown that the optimal performance can
be obtained by time-sharing between memoryless codes.
Thus, it is in general strictly worse than the performance
of classical fixed-block source coding that allows arbi-
trarily large delay. The large deviation performance of
the zero delay decoder problem is studied in [8].

Allowing some finite end-to-end delay, [11] shows
that the average block coding rate distortion performance
can still be approached exponentially with delay.

In this paper, we consider a coding system for a
streaming source, drawn iid from a distributionpx on
finite alphabetX . The encoder, mapping source symbols
into bits at fixed rateR, is strictly causal and the decoder
has to reconstruct the source symbols (under a peak
distortion constraint) within a fixed end-to-end latency
constraint. The system is illustrated in Figure 1.

Generalizing our previous work in [3], [2] on end-
to-end delay performance of lossless source coding, we
have derived the fixed-delay distortion-violation expo-
nent for lossy source coding under a peak distortion
constraint. A “focusing” type bound is derived that is
quite similar to its lossless source coding counterpart.
As shown in the appendix, the technical reason for the
similarity is that the length of optimal variable-length
codes, or equivalently the rate distortion functions, are
concave in the empirical distribution for both lossless
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source coding and lossy source coding under peak dis-
tortion constraint. This is not the case for rate distortion
functions under average distortion measures [4].

A. Source coding for streaming data with an end-to-end
delay constraint

In [3], [2], we studied the special case of lossless
coding. We showed that the error exponent with fixed
end-to-end delay ismuch higherthan its fixed block-
length counterpart. The delay exponent also turned out
to be related to the buffer overflow exponent studied by
Jelinek in [6].
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Fig. 1. Time line for delay constrained source coding: rateR = 1
2

,
delay∆ = 3. yi(i + ∆) is the reconstruction ofxi at time i + ∆

In this paper, we relax the lossless coding constraint
to allow some distortion on a per-symbol basis. This is
different1 from the time-averaged distortion studied in
[8], [9], [11].

B. Rate distortion under a peak distortion constraint

[4] introduced peak distortion measures:

d(xN
1 , yN

1 ) , max
1≤i≤n

d(xi, yi) (1)

and the corresponding rate distortion theorem:
Proposition 1: The rate-distortion functionR(D) for

peak distortion:

R(px , D) , min
W∈WD

I(px ,W ) (2)

where WD is the set of all transition matrices that
satisfy the peak distortion constraint, i.e.WD = {W :
W (y|x) = 0, if d(x, y) > D}. To havePr(d(xN

1 , yN
1 ) >

1The difference is for our case, we can not relax the distortion from
one symbol to another.
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D) = 0, we can implement a universal variable length
prefix-free code with code lengthlD(xN

1 ) where

lD(xN
1 ) = n(R(pxN

1
, D) + δN ) (3)

wherepxN
1

is the empirical distribution ofxN
1 , andδN

goes to0 asN goes to infinity.
This is a simple corollary of the type covering lemma

[4]. The problem is only interesting if the target peak
distortionD is higher thanD and lower thanD, where

D , max
x∈X

min
y∈Y

d(x, y) andD , min
y∈Y

max
x∈X

d(x, y)

Note that bothD andD only depend on the distortion
measured(·, ·), not the source distributionpx .
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Fig. 2. d(x, y) and valid reconstructions under different peak
distortion constraintsD. (x, y) is linked if d(x, y) ≤ D. D = 0.2
andD = 3. ForD ∈ [0.2, 1), this is a lossless source coding problem.

The rate distortion function is in general non-concave
in the source distributionp as pointed out in [7]. But
for peak distortion,R(p,D) is concave inp for a fixed
distortion constraintD. The proof is in the appendix.

Lemma 1:R(p,D) is concave inp for fixed D.

As a simple corollary of the block-coding error ex-
ponents for average distortion from [7], we have the
following result.

Proposition 2: Block coding error exponent under
peak distortion:

lim inf
n→∞

− 1
N

log2 Pr(d(xN
1 , yN

1 ) > D) = Eb
D(R)

whereEb
D(R) , min

qx :R(qx ,D)>R
D(qx‖px) (4)

whereyN
1 is the reconstruction ofxN

1 using an optimal
rateR code.

For lossless source coding, ifR > log2 |X |, the error
probability is0 and the error exponent is infinite. Simi-
larly, for lossy source coding under peak distortion, the
error exponent is infinite whenever

R > RD , sup
qx

R(qx , D)

whereRD only depends ond(·, ·) andD.

II. M AIN RESULT

We investigate the relation between delay∆ and the
probability of distortion violationPr(d(xi, yi(i+∆)) >
D), whereyi(i + ∆) is the reconstruction ofxi at time
i + ∆ andD is the peak distortion constraint.

Definition 1: A rate R sequential source code shown
in Figure 1 achieves error (distortion violation) exponent
ED(R) with delay if for all ε > 0, there existsK < ∞,
s.t. ∀i,∆ > 0

Pr(d(xi, yi(i + ∆)) > D) ≤ K2−∆(ED(R)−ε)

Theorem 1:Consider fixed rate source coding of iid
streaming dataxi ∼ px , with a non-negative peak
distortion measured. For D ∈ (D, D), and rates
R ∈ (R(px , D), RD), the following error exponent with
delay is optimal and achievable.

ED(R) , inf
α>0

1
α

Eb
D((α + 1)R) (5)

whereEb
D(R) is the block coding error exponent under

peak distortion constraint, as defined in Proposition 2.

A. Numerical Examples

Considerpx = {0.1, 0.7, 0.2} and a distortion mea-
sure onX × Y as shown in Figure 2. We plot the
rate distortionR −D curve and the error exponents in
Figure 3. We have a higher delay error exponent than
block coding, just as in the lossless case of [3].

III. PROOFS

In this section, we show that the error exponent in
Theorem 1 is both achievable asymptotically with delay
and that no better exponents are possible.

A. Converse

The proof of the converse is similar to the upper
bound argument in [3] for lossless source coding with
delay constraints. To bound the best possible delay
exponent, a genie-aided encoder/decoder pair is used to
translate the block-coding bounds in Proposition 2 to
the fixed delay context. The arguments are analogous to
the “focusing bound” derivation in [10] for the case of
channel coding with feedback.

Proof: For simplicity of exposition, we ignore in-
teger effects arising from the finite nature of∆, R, etc.
For everyα > 0 and delay∆, consider a fixed-rate code
running until time∆

α +∆. By this time, the decoder will
have committed to estimates for the source symbols up
to time i = ∆

α . The total number of bits used during this
period is(∆

α + ∆)R.
Now consider a genie that gives the encoder access

to the first i source symbols at the beginning of time,

2
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(b) Error exponents of delay constrained and block
source coding under different peak distortion constrains

Fig. 3. ForD1 ∈ [1, 3), R(px , D1) = 0.275 and RD1 = 0.997.
For D2 ∈ [0.2, 1), the problem degenerates to lossless coding, so
R(px , D1) = H(px ) = 1.157 andRD1 = log2(3) = 1.585

rather than forcing the encoder to get the source symbols
gradually. Simultaneously, loosen the requirements on
the decoder by only demanding correct estimates for
the firsti source symbols by the time∆α + ∆. In effect,
the deadline for decoding thepast source symbols is
extended to the deadline of thei-th symbol itself.

Any lower-bound to the distortion-violation proba-
bility of the new problem is clearly also a bound for
the original problem. Furthermore, the new problem is
just a fixed-length block-coding problem requiring the
encoding ofi source symbols into(∆

α + ∆)R bits. The
rate per symbol is

(
(
∆
α

+ ∆)R
)

1
i

=
(

(
∆
α

+ ∆)R
)

α

∆
= (α + 1)R

Proposition 2 implies that the probability of distortion
violation is at least exponential iniEb

D((α + 1)R).
Since i = ∆

α , this translates into a distortion-violation

exponent of at mostE
b
D((α+1)R)

α with parameter∆.
Since this is true for allα > 0, we have a bound on

the distortion violation exponent with fixed delay∆:

inf
α>0

1
α

Eb
D((α + 1)R) (6)

The α that minimizes (6) tells how much of the past
(∆

α ) is involved in the dominant error event. ¥

B. Achievability

We prove achievability by giving a universal coding
scheme illustrated in Figure 4.

A block-length N is chosen that is much smaller
than the target end-to-end delays2, while still being large
enough. For a discrete memoryless sourceX , distortion
measured(·, ·), peak distortion constraintD, and large
block-length N , we use the universal variable length
prefix-free code in Proposition 1 to encode the i’th block
~xi = xiN

(i−1)N+1 ∈ XN . The code lengthlD(~xi) is
shown in (3),

NR(p~xi
, D) ≤ lD(~xi) ≤ N(R(p~xi

, D) + δN ) (7)

The overheadδN is negligible for largeN , since δN

goes to0 as N goes to infinity. The binary sequence
describing the source is fed into a FIFO buffer described
in Figure 4. The buffer is drained at a fixed rateR to
obtain the encoded bits.3 The decoder uses the bits it has
received so far to get the reconstructions. If the relevant
bits have not arrived by the time the reconstruction is
due, it just guesses and we presume that a distortion-
violation will occur.

As the following proposition indicates, the coding
scheme is delay universal, i.e. the distortion-violation
probability goes to0 with exponentED(R) for all
source symbols and for all delays∆ big enough.

Proposition 3: For the iid source∼ px , peak distor-
tion constraintD, and largeN , using the universal real-
time code described above, for allε > 0, there exists
K < ∞, s.t. for all t, ∆:

Pr(d(~xt, ~yt((t + ∆)N)) > D) ≤ K2−∆N(ED(R)−ε)

where~yt((t + ∆)N) is the estimate of~xt at time (t +
∆)N .

Before proving Proposition 3, we state the following
lemma (proved in the appendix) bounding the proba-
bility of atypical source behavior.

Lemma 2: (Source atypicality) For allε > 0, block
lengthN large enough, there existsK < ∞, s.t. for all
n, for all r < RD:

Pr

(
n∑

i=1

lD(~xi) > nNr

)
≤ K2−nN(Eb

D(r)−ε) (8)

2We are interested in the performance with asymptotically large
delays∆.

3Notice that if the buffer is empty, the output of the encoder
buffer can be gibberish binary bits. The decoder simply discards these
meaningless bits because it is aware that the buffer is empty.

3
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Fig. 4. A delay optimal lossy source coding system.

Now we are ready to prove Proposition 3.
Proof: At time (t+∆)N , the decoder cannot decode

~xt within peak distortionD only if the binary strings
describing~xt are not all out of the buffer. Since the
encoding buffer is FIFO, this means that the number
of outgoing bits from some timet1, wheret1 ≤ tN to
(t+∆)N is less than the number of the bits in the buffer
at time t1 plus the number of incoming bits from time
t1 to time tN . Suppose the buffer is last empty at time
tN − nN where0 ≤ n ≤ t, given this condition, the
peak distortion is not satisfied only if

∑n−1
i=0 lD(~xt−i) >

(n + ∆)NR. Write lD,max as the longest possible code
length. lD,max ≤ |X | log2(N + 1) + N log2 |X |. Then
Pr(

∑n−1
i=0 lD(~xt−i) > (n + ∆)NR) > 0 only if n >

(n+∆)NR
lD,max

> ∆NR
lD,max

∆= β∆. So

Pr (d(~xt, ~yt((t + ∆)N)) > D)

≤
t∑

n=β∆

Pr(
n−1∑

i=0

l(~xt−i) > (n + ∆)NR) (9)

≤(a)

t∑

n=β∆

K12−nN(Eb
D(

(n+∆)NR
nN )−ε1)

≤(b)

∞∑

n=γ∆

K22−nN(Eb
D(R)−ε2)

+
γ∆∑

n=β∆

K22−∆N(minα>1{Eb
D(αR)
α−1 }−ε2)

≤(c) K32−γ∆N(Eb
D(R)−ε2)

+|γ∆− β∆|K32−∆N(ED(R)−ε2)

≤(d) K2−∆N(ED(R)−ε)

whereK ′
is and ε′is are properly chosen real numbers.

(a) is true because of Lemma 2. Defineγ , ED(R)

Eb
D(R)

. In

the first part of(b), we only need the fact thatEb
D(R)

is non decreasing withR. In the second part of(b), we
write α = n+∆

n and take theα to minimize the error
exponents. The first term of(c) comes from the sum of
a convergent geometric series and the second is by the
definition of ED(R). (d) is by the definition ofγ. ¥

Combining (6) and Proposition 3, we establish the
desired results summarized in Theorem 1.

IV. FUTURE WORK

Both the converse (focusing bound) and the achiev-
ability analysis can be adapted for average distortion
measures. However there is a gap between the two
bounds on the error exponent due to the non-concavity
of the rate-distortion function in the empirical distribu-
tion. Hence, the optimal end-to-end delay constrained
error exponent for lossy source coding under average
distortion constraints remain unknown.

APPENDIX

A. Proof of Lemma 1

Proof: To show thatR(p,D) is concave inp, it is
enough to show that for any two distributionsp0 andp1

and for anyλ ∈ [0, 1],

R(pλ, D) ≥ λR(p0, D) + (1− λ)R(p1, D)

wherepλ = λp0 + (1− λ)p1. Define:

W ∗ = arg min
W∈WD

I(pλ, W )

Then, from the definition ofR(p,D) we know that
R(pλ, D)

= I(pλ,W ∗)
≥ λI(p0,W

∗) + (1− λ)I(p1,W
∗) (10)

≥ λ min
W∈WD

I(p0,W ) + (1− λ) min
W∈WD

I(p1,W )

= λR(p0, D) + (1− λ)R(p1, D)

(10) is true becauseI(p,W ) is concave inp for fixed
W and pλ = λp0 + (1 − λ)p1. The rest is from the
definitions. ¤

B. Proof of Lemma 2

Proof: We only need to show the case forr >
R(px , D). By Craḿer’s theorem [5], for allε1 > 0, there
existsK1, such that :

Pr(
n∑

i=1

lD(~xi) > nNr) = Pr(
1
n

n∑

i=1

lD(~xi) > Nr)

≤ K12−n(infz>Nr I(z)−ε1)

4
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where the rate functionI(z) is [5]:

I(z) = sup
ρ≥0

{ρz − log2(
∑

(~x∈XN

px(~x)2ρlD(~x))} (11)

It is clear thatI(z) is monotonically increasing with
z andI(z) is continuous. Thus

inf
z>Nr

I(z) = I(Nr) (12)

Using the upper bound onlD(~x) in (7):

log2(
∑

~x∈XN

px(~x)2ρlD(~x))

≤ log2(
∑

qx∈T N

2−ND(qx‖px )2ρ(δN+NR(qx ,D)))

≤ log2(2
NεN 2−N minqx {D(qx‖px )−ρR(qx ,D)−ρδN})

= N
(−min

qx

{D(qx‖px)− ρR(qx , D)− ρδN}+ εN

)

whereT N is the set of all types ofXN ,and2NεN is the
number of types inXN , 0 < εN ≤ |X | log2(N+1)

N , and
so εN goes to0 asN goes to infinity.

Substitute the above inequalities intoI(Nr) in (11):

I(Nr) ≥ N
(
sup
ρ≥0

{min
qx

ρ(r −R(qx , D)− δN )

+D(qx‖px)} − εN

)
(13)

We next show thatI(Nr) ≥ N(Eb
D(r) + εN ) whereε

goes to0 asN goes to infinity. We show the existence
of a saddle point of the min-max for a function

f(qx , ρ) = ρ(r −R(qx , D)− δN ) + D(qx‖px)

Obviously, for fixedqx , f(qx , ρ) is a linear function
of ρ, thus concave. Also for fixedρ ≥ 0, f(qx , ρ) is
a convex function ofqx , because both−R(qx , D) and
D(qx‖px) are convex inqx . Write

g(u) = min
qx

sup
ρ≥0

(f(qx , ρ) + ρu)

Showing thatg(u) is finite aroundu = 0 establishes the
existence of the saddle point as shown in Exercise 5.25
[1].

min
qx

sup
ρ≥0

f(q, ρ) + ρu

=(a) min
qx

sup
ρ≥0

ρ(r −R(qx , D)− δN + u) + D(qx‖px)

≤(b) min
qx :R(qx ,D)≥r−δN+u

sup
ρ≥0

ρ(r −R(qx , D)− δN + u) + D(qx‖px)
≤(c) min

qx :R(qx ,D)≥r−δN+u
D(qx‖px) <(d) ∞ (14)

(a) is a definition.(b) is true becauseR(px , D) < r <
RD, thus for very smallδN and u, R(px , D) < r −

δN + u < RD. Thus there exists a distributionqx , s.t.
R(qx , D) ≥ r − δN + u. (c) is becauseR(qx , D) ≥
r − δN + u and ρ ≥ 0. (d) is true because we might
as well assume thatpx(x) > 0 for all x ∈ X , and
r− δN + u < RD. Thus we proved the existence of the
saddle point off(q, ρ).

sup
ρ≥0

{min
q

f(q, ρ)} = min
q
{sup

ρ≥0
f(q, ρ)} (15)

Note that ifR(qx , D) < r − δN , ρ can be chosen to
be arbitrarily large to makeρ(r − R(qx , D) − δN ) +
D(qx‖px) arbitrarily large. Thus theqx to minimize
supρ ρ(r − R(qx , D) − δN ) + D(qx‖px) satisfiesr −
R(qx , D)− δN ≥ 0. So
min

qx

{sup
ρ≥0

ρ(r −R(qx , D)− δN ) + D(qxy‖pxy )}

=(a) min
qx :R(qx ,D)≥r−δN

sup
ρ≥0

{ρ(r −R(qx , D)− δN ) + D(qx‖px)}
=(b) min

qx :R(qx ,D)≥r−δN

{D(qx‖px)}

=(c) Eb
D(r − δN ) (16)

(a) follows from the argument above.(b) is because
r − R(qx , D) − δN ≤ 0 and ρ ≥ 0, and thusρ = 0
maximizesρ(r − R(qx , D) − δN ). (c) is by definition
in (4). Combining (13) (15) and (16), lettingN be
sufficiently big so thatδN is sufficiently small, and
noticing that Eb

D(r) is continuous onr, we get the
desired bound in (8). ¤
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Kiadó, Budapest, 1986.

[5] Amir Dembo and Ofer Zeitouni.Large Deviations Techniques
and Applications. Springer, 1998.

[6] Frederick Jelinek. Buffer overflow in variable length coding of
fixed rate sources.IEEE Transactions on Information Theory,
14:490–501, 1968.

[7] Katalin Marton. Error exponent for source coding with a fidelity
criterion. IEEE Transactions on Information Theory, 20(2):197–
199, 1974.

[8] Neri Merhav and Ioannis Kontoyiannis. Source coding exponents
for zero-delay coding with finite memory.IEEE Transactions on
Information Theory, 49(3):609–625, 2003.

[9] David L. Neuhoff and R. Kent Gilbert. Causal source codes.
IEEE Transactions on Information Theory, 28(5):701–713, 1982.

[10] Anant Sahai. Why block length and delay are not the same thing.
IEEE Trans. Inform. Theory, submitted, arXiv: cs.IT/0610139.

[11] D. Tse, R.G. Gallager, and J.N. Tsitsiklis. Optimal buffer control
for variable-rate lossy compression.31st Allerton Conference,
1993.

5

ISIT2007, Nice, France, June 24 – June 29, 2007

580


