
IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 10, OCTOBER 2011 6827

On Multi-Directional Context Sets
Erik Ordentlich, Fellow, IEEE, Marcelo J. Weinberger, Fellow, IEEE, and Cheng Chang

Abstract—The classical framework of context-tree models used
in sequential decision problems such as compression and predic-
tion is generalized to a setting in which the observations are multi-
tracked, multi-sided, or multi-directional, and for which it may
be beneficial to consider contexts comprised of possibly differing
numbers of symbols from each track or direction. Tree represen-
tations of context sets and pruning algorithms for those trees are
extended from the uni-directional setting to two directions.We fur-
ther show that such tree representations do not extend, in general,
to directions, , and that, as a result, determining the best
-directional context set for may be substantially more

complex than in the case of . An application of the proposed
pruning algorithm to denoising, where , is presented.

Index Terms—Context trees, denoising, dynamic programming,
multi-directional context sets, multi-tracked data, tree pruning
algorithms.

I. INTRODUCTION

T HE classical context modeling technique [1]–[3] used in
data compression and other sequential decision problems

decomposes a data sequence into a set of subsequences based
on the occurrence of certain substrings (sequences) of symbols,
the substrings being elements of a finite context set.1 Additional
processing steps such as probability assignment or estimation
then treat the resulting subsequences independently. Let be
the data sequence alphabet and let denote a finite set of
finite length strings of symbols comprising a context set, where

is the set of all finite length strings (including the empty
string) over the alphabet . For define

where denotes the length of and is the symbol prefix of
. Further, for any given nonnegative integer ,

define

A valid context set must satisfy the following two properties,
where denotes the (finite) length of the longest string in :

(1) (exhaustive), and

Manuscript received November 14, 2009; February 02, 2011; accepted June
06, 2011. Date of current version October 07, 2011. The material in this paper
was presented in part at the 2004 IEEE Information Theory Workshop, San An-
tonio, TX, October 2004, and at the 2005 IEEE International Symposium on
Information Theory, Adelaide, Australia, September 2005.
E. Ordentlich and M. J. Weinberger are with Hewlett-Packard Laboratories,

Palo Alto, CA 94304 USA (e-mail: eord@hpl.hp.com; marcelo@hpl.hp.com).
C. Changwaswith Hewlett-Packard Laboratories, Palo Alto, CA 94304USA.

He is now with D. E. Shaw & Co., L.P., New York, NY 10036 USA (e-mail:
chechang@ocf.berkeley.edu).
Communicated by E.-H. Yang, Associate Editor for Source Coding.
Digital Object Identifier 10.1109/TIT.2011.2165818

1In this paper we will always assume finite context sets; the reader is referred
to [4] for a discussion on infinite context sets.

(2) for any pair (disjoint).2

Given a data sequence , the subsequence
of symbols associated with a context in a valid context set
consists of those symbols whose preceding symbols sat-

isfy . For each , let de-
note the subsequence of data symbols associated in this manner
with . The “exhaustive” and “disjoint” properties guarantee
that each belongs to one and only one such subsequence. Any
given may be empty, however. It is well known that the
“exhaustive” and “disjoint” properties also imply that the set of
strings in can be represented as the leaves of a (context) tree
having nodes , where each node is either a leaf or has
the children . Context tree models are exten-
sively studied in [2].
In this work, we generalize the above classical context mod-

eling framework to a setting in which the observations are multi-
tracked, multi-sided, or multi-directional, and for which it may
be beneficial to consider contexts comprised of possibly dif-
fering numbers of symbols from each track or direction. For
example, with two directions (“left” and “right”), our setting
involves a data sequence where, for each ,
left- and right-directional sequences and are available
for forming contexts. In one example of such a setting, corre-
sponding to a stereo audio system, and con-
sists of two tracks so that and the left and right
directional sequences correspond to
and . In a second example, corre-
sponding to a digital image compression or processing appli-
cation, , where throughout
denotes cartesian product. Here, represents the pixel value
in row and column of the image and and may
be set as follows. Let be the set of pixels that appear ei-
ther in the same row but to the left of or in rows above

. Let and represent the components of a par-
tition of into two subsets. We can let and re-
spectively correspond to and under suitable order-
ings, say based on proximity to . For example, could
include all pixels occurring on or above a diagonal line of pixels
extending up from and to the left of with being the
complementary subset of . This would introduce consider-
ably greater modeling flexibility over the prevailing approach,
which derives uni-directional contexts based on a certain or-
dering of the full set (see, e.g., [5]). One could more gen-
erally partition and order into partitions, thus naturally
giving rise to -directional context sets. The denoising setting
of [6] involves with
(past symbols) and (future symbols).

2Clearly, the exhaustive property can be equivalently formulated with any
integer , whereas the disjoint property is equivalent to requiring

for any pair .

0018-9448/$26.00 © 2011 IEEE

6828 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 10, OCTOBER 2011

With such scenarios in mind, this paper starts by formalizing
the notion of a valid multi-directional context set.
We further show in this paper that the above tree-based rep-

resentation of a valid uni-directional context set can be gener-
alized to the case of two directions. Such representations are of
paramount importance in applications of context models, where
the processing of a context-induced subsequence of data sym-
bols results in a numerical, measurable loss. In compression, this
loss might be the ideal code length corresponding to the prob-
ability assigned to the subsequence by a sequential probability
assignment procedure, such as one based on the Krichevsky-
Trofimov (KT) estimator [7]. In a prediction application, the loss
might be the prediction error incurred by a sequential predic-
tion algorithm, such as that of Hannan [8], applied to the subse-
quence. In denoising, the loss might be an estimate of the error
(with respect to an unobserved “clean” sequence) incurred by
a context-based denoiser, such as the DUDE algorithm [6], ap-
plied again to the subsequence.3 To each subsequence we asso-
ciate a weight, given by the loss incurred by processing the sub-
sequence. A useful computation that arises in such settings is the
determination of a context set that, for a given individual data se-
quence (which generates context formation sequences), min-
imizes the sum of the weights of the resulting set of context-de-
pendent subsequences. More formally, assume that an applica-
tion induces a weight function on sequences of symbols over
.4 Given and an individual data sequence , of interest is

that valid context set that minimizes . In the
uni-directional case, an efficient dynamic-programming-based
algorithm that relies on the tree representation of valid context
sets is known for carrying out this computation [9]. The algo-
rithm “prunes” the (large) context tree formed by all contexts
occurring in the given sequence, keeping as leaves those nodes
that correspond to the optimal context set. In the general se-
quential decision setting, the that is the target of such a com-
putation may be training data and the context set derived by the
preceding computation might be a good candidate for use on ac-
tual data. A “plug-in” sequential decision approach (“plugging
in” what is best for the past) employs training data consisting of
previously observed data and the computation is repeated often
as new data is observed. In the compression setting the compu-
tation of the best context set is central to several two-part uni-
versal source codes proposed in the literature (see [10] and ref-
erences therein). One weight function on sequences arising in
some of these cases consists of the ideal code length induced by
the KT probability assignment (which is obtained by accumu-
lation of instantaneous losses) plus a constant (subsequence-in-
dependent) offset to account for the cost of describing the con-
text set itself. The overall two-part code then consists first of a
description of the best choice of contexts determined via
the aforementioned computation, and second of the sequence
compressed via arithmetic coding based on symbol probabili-
ties generated by context-dependent KT estimators.
Our generalization to two directions of the above tree-based

representation (bi-directional context trees) leads to the notion

3The use of an error estimate based only on observed data makes the loss
measurable. Such estimates are investigated in [13].
4The weight function is often obtained by accumulation of instantaneous

losses corresponding to the symbols in the sequence.

of a context “split,” by which a bi-directional context tree can
be interpreted as specifying a recursive sequence of context
splits. In [11], weighting and pruning algorithms are proposed
for classes of context sets that are generated according to a va-
riety of context splits. By applying the algorithms in [11] to the
specific context splits derived in this paper, we obtain an ana-
logue of the efficient algorithm in [9] for determining the best set
of 2-directional (bi-directional) contexts for a given individual
sequence and subsequence weight function.
Our final result states that, in general, the context splits noted

above do not apply to -directional context sets for .
In fact, we demonstrate a family of context sets that cannot be
obtained by any nontrivial recursive sequence of context splits
in which a context is split into a number of contexts having
as prefix. Moreover, this family further demonstrates that no
finite set of recursively applied prefix-like context splits suffices
to generate all 3-directional context sets. This negative result
highlights the nontrivial nature of the representation for .
It also implies that determining the best context set for
may be substantially more complex than in the case of .
It is well known that uni-directional context sets can also

be interpreted as prefix-free source codes. In the case of
, one can similarly employ multi-directional context sets as
prefix-like codes whose constituent tracks are transmitted or
stored on distinct parallel channels. This source coding coun-
terpart to multi-directional context sets was recently studied in
[12]. We remark that although many of the structural results
(e.g., the bi-directional context tree representation of bi-direc-
tional context sets) are isomorphic in the two settings, the re-
spective optimization problems on the relevant structures are
quite distinct.
The rest of this paper is organized as follows. In Section II, we

define the concept of a bi-directional context set and show that
any such set admits a tree representation. In Section III, we use
this representation to derive a pruning algorithm for obtaining
the optimal set for an individual sequence. In Section IV, we
consider the case , for which we show that, in general,
such a representation does not exist. In Section V, we discuss in
greater depth the denoising application, which was the original
motivation of this work. Section VI concludes our paper.

II. BI-DIRECTIONAL CONTEXT SETS: DEFINITION
AND STRUCTURE

Paralleling the classical, uni-directional case, a bi-directional
context set is a finite set of ordered pairs of
finite length strings over the observation alphabet specifying the
bi-directional contexts. For , define

namely, the set of all the pairs of strings whose first and second
components respectively have and as prefixes. For

, if we say that is an ancestor of (and a
descendant of). In analogy to the uni-directional case

is the subset of comprising all the strings in which both
components have length . Let be the

ORDENTLICH et al.: ON MULTI-DIRECTIONAL CONTEXT SETS 6829

length of the longest string in any pair in . For a bi-directional
context set to be well defined or valid, the set must satisfy
the following generalizations of the “exhaustive” and “disjoint”
conditions from the uni-directional case:

(1) (exhaustive);
(2) for any pair

(disjoint).5

Mapping finite-length binary strings to subintervals in
, as customary in the arithmetic coding literature,

leads to a geometric interpretation of the binary case that
will prove useful in providing intuition to the results in
this paper. Specifically, a binary string corresponds to
the subinterval , where

denotes a base-2 fractional representation (in
particular, for corresponds to the entire unit in-
terval). Similarly, a pair corresponds to the (axis
parallel) rectangle

in the unit square. This
rectangle strictly contains all the rectangles corresponding
to descendants of , and in fact coincides with the
union of all the rectangles corresponding to the elements of

, as well as with the (disjoint) union of all the
rectangles corresponding to the elements of for
all . Clearly, the exhaustive and disjoint prop-
erties imply that a valid context set corresponds to a partition
of the unit square into such rectangles.
Given a data sequence and, for each ,

context formation sequences and (as exemplified in
Section I), the subsequence of symbols associated with a context
pair consists of those symbols with indexes
satisfying

and

As in the classical case, the new “exhaustive” and “disjoint”
properties guarantee that each belongs to one and only one
such subsequence. For each , let denote
the subsequence of data symbols associated in the abovemanner
with .
The new “exhaustive” and “disjoint” properties also lead to a

tree-based representation of a valid bi-directional context set .
In the bi-directional case, the tree, which is defined in the next
theorem and which we shall refer to as a bi-directional context
tree, has a somewhat different structure from the uni-directional
case, and is not necessarily unique for a given .

Theorem 2.1: The string pairs in a valid bi-directional con-
text set can be represented as the leaves of a rooted tree
(bi-directional context tree) having nodes in where
the root node is the pair of empty strings and each node

is either a leaf or the set of its children is either
or .

We note for future reference the easily seen fact that, con-
versely, the leaves of any bi-directional context tree, as defined

5Again, as in the uni-directional case, there is an equivalent formulation of
the disjoint property in terms of , which we will occasionally use.

in Theorem 2.1, determine a valid bi-directional context set. Ad-
ditionally, the structure of a bi-directional context tree can be
inferred from its nodes. In the sequel, a bi-directional context
tree will be represented using the set of its nodes.

Proof of Theorem 2.1: Our proof is by induction on ,
defined as the maximum sum of the lengths of the context pair
components, that is

Only satisfies the base case , and the
theorem clearly holds for this case with a bi-directional context
tree consisting only of the root-node/leaf . Next, con-
sider any valid with and assume, by induc-
tion, that the theorem holds for all valid with .
We show how it follows that the theorem also holds for .
First, note that cannot contain since there must be

at least one other pair in and
could not be disjoint with , where denotes
the length of the longest string in any pair in . Second,
cannot contain both a pair of the form and with

and since then would be contained
in both and , again violating the “disjoint”
condition in the definition of a valid . Thus, we are faced with
two possibilities: Either all right contexts of each pair in are
non-empty strings, or all left contexts are non-empty strings.
Assume, without loss of generality, that the former is the case.
It is therefore possible to classify the pairs in into disjoint
subsets of the form

for each . The “exhaustive” property of implies that
is non-empty for each . For each define

It follows that each is non-empty (though may consist of
the empty pair). Additionally, since is valid, it is not
hard to see that each must also be a valid context set. Since

, the induction hypothesis implies that
associated with each is a bi-directional context tree . For
each , let denote the subtree rooted at obtained by
changing each node of to while retaining
the parent-child relationships of .
Consider now the tree consisting of a root node con-

nected to the subtrees (i.e., the root-node’s children consist
of the root-nodes of). The properties of the subtrees
then imply that is a bi-directional context tree and that its

leaves constitute . Since and were arbitrary,
the theorem is proved by induction.
The following is an example of a valid bi-directional context

set and an associated bi-directional context tree, as guaranteed
by Theorem 2.1. Note that the sets of strings formed from either
the left components or the right components of the pairs in
fail to constitute valid uni-directional context sets.

6830 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 10, OCTOBER 2011

Example 2.2: Let and
. An associated bi-directional context

tree is given as shown below.

An equivalent (but different) tree representation can be obtained
by letting and be the nodes at level 1 of the tree,

, and (from left to right), be the nodes
at level 1 of the tree, and keeping the same sets of children for
nodes and .
A bi-directional context tree can be interpreted as specifying,

for a valid such that the longest string in any pair has length
, a recursive sequence of splits of the set into the
sets for . Theorem 2.1 thus shows that
valid bi-directional context sets can be obtained as a sequence
of splits, where the three possible splits are “not splitting” and
splitting based on the value of the next left context string symbol
or the value of the next right context string symbol. In terms
of the geometric representation described earlier, Theorem 2.1
states that any partition of the unit square into rectangles corre-
sponding to a valid bi-directional context set can be obtained by
a recursive sequence of bisections of rectangles along the axes.

Remark 1: The non-uniqueness of the bi-directional context
tree representation introduces a modest redundancy into the de-
scription of the optimal context set in the two-part universal
source coding application alluded to in the introduction, since
trees that represent the same context set are still assigned sep-
arate code words. This redundancy can be considered to be of
a second-order nature since it amounts to a constant number of
bits per context (at most bits) and one would expect the
optimal number of contexts to be fixed or very slowly growing
with the sequence length in most applications. Nevertheless, it
would be of some interest to obtain a non-redundant representa-
tion of bi-directional context sets, particularly one that is com-
patible with the algorithm for optimizing context sets described
in the next section.

Remark 2: A related tree structure called Bidirectional
Context Tree (BCT) was independently proposed in [14],
[15]6 in the context of probabilistic bi-directional modeling.
While bi-directional context sets are not formally defined in
[14], [15], the use of the BCT structure in [16], in conjunction
with a mixing algorithm [11], suggests the generation of a
bi-directional context set through a recursive sequence of splits

6Notice that [14] is contemporaneous with the conference versions of this
paper.

different from the one described in Theorem 2.1. Specifically,
in the BCT-based approach, nodes can split in either
direction (or in both directions) provided , whereas
they can split only in the direction of the longer string, if

. In contrast to the statement of Theorem 2.1, it is
easy to see that such a sequence of splits cannot generate every
bi-directional context set. A simple counterexample is given
by the set . However, such restricted
sequences of splits may be appropriate for certain specific
applications (see Section V).

III. BI-DIRECTIONAL PRUNING

Applications similar to those described in Section I for uni-di-
rectional context sets motivate the computation of the best bi-di-
rectional context set for a given individual sequence. In [11],
weighting and pruning algorithms are proposed for classes of
context sets that are generated according to a variety of context
splits. While the context splits relevant to bi-directional context
sets described in Section II are not specifically considered in
[11], it is straightforward to extend to this case the algorithms in
[11] for finding optimal context sets (and for weighting among
these sets in compression applications). For completeness, we
describe such an algorithm, based on dynamic programming,
next.
Given a sequence , a set of context formation sequences

, a subsequence weight function , and a max-
imum context length , let

(1)

Of interest is

where is the set of strings over of length at most , and
ties are broken according to a deterministic but arbitrary rule.
In words, we are seeking a valid context set , whose contexts
have length at most , that minimizes the loss for .7

For any pair we define the weight of
as

i.e., the weight of the subsequence of data symbols whose left
and right context formation sequences have prefixes equal to

. We set if this subsequence is empty.
By (1), for a valid context set is equal to the sum of the
weights of the elements of and, correspondingly, of the leaves
of a representative bi-directional context tree.
For any bi-directional context tree , as defined in Theorem

2.1, let denote the weight of defined as the sum of
the weights of the leaves. Let be the set of bi-directional
context trees with nodes in having minimal weight.

7The context length limitation is not critical since, in principle, the algorithm
can be applied with . In the uni-directional case, this idea can be ef-
ficiently implemented by use of compact suffix trees (see [10]). In the bi-di-
rectional case, an analogous data structure, the compact bi-directional context
graph, is introduced in [17], which combined with algorithms for finding lowest
common ancestors yields an efficient pruning algorithm.

ORDENTLICH et al.: ON MULTI-DIRECTIONAL CONTEXT SETS 6831

In general, this set will have cardinality greater than one, even
when is unique, due to the multiple representations of
the context set. Theorem 2.1 and the above observations then
imply that corresponds to the leaves of an element of

, thereby reducing the problem of determining to the
problem of determining an element of .
Given any pair , a bi-directional con-

text subtree rooted at has nodes in where, as in
the definition of a full bi-directional context tree, a node
is either a leaf or the set of its children is either

or . Let denote the set of
bi-directional subtrees rooted at such that every node
is in . Extend the definition of the weight function

to bi-directional subtrees in the obvious way and let
be the subset of bi-directional subtrees in

having minimal weight. We then have the following principle
of optimality, whose proof follows from [11].
Lemma 3.1: For any pair

(2)

where we take to be empty if
and the minimum of any function over an empty set to be in-
finity. If the minimum on the right-hand side of (2) is achieved
by the first argument, then the tree .
Otherwise,

where, if the minimum is achieved by the second argument,
denotes any member of , whereas if the minimum
is achieved by the third argument, denotes any member of

.

Lemma 3.1 parallels a similar principle of optimality for
the uni-directional case (where the minimum in (2) is over
two values), and suggests the following dynamic programming
algorithm for determining an element of .

Algorithm 3.2

for each

determine

end

for to 0

for each with

determine

if then

if then

end

end

We shall refer to Algorithm 3.2 as carrying out a bi-direc-
tional context pruning. Although the output of the algorithm
is a bi-directional context tree, it should be noticed that the
data structure being pruned is not a tree [17]. In the algorithm,

is taken to be empty for and
the weight of an empty tree is taken to be infinity. The following
theorem, which follows from Theorem 2.1 and Lemma 3.1, es-
tablishes that Algorithm 3.2 carries out the desired computation.

Theorem 3.3: The tree generated by Algorithm 3.2
is an element of and its leaves constitute .
In many applications, such as two-part codes with KT esti-

mation [10] and denoising using loss estimates (see Section V),
is a relatively simple function of the vector of counts

(3)

for all . In these cases, the sequence need only be
processed to determine the counts of the contexts of maximal
length, as done in the first for loop. The counts for the shorter
contexts can then be determined as the sum of the counts of
either the left children or right children. Specifically, for
with

Finally, we note that the complexity of Algorithm 3.2 can be
reduced by restricting processing only to those contexts that
actually occur in the sequence (see [17] for a more efficient
implementation).

IV. THE GENERAL MULTI-DIRECTIONAL CASE

An -directional context set consists of -tuples of strings
from . The notion of a valid context set, expressed in terms
of the “exhaustive” and “disjoint” properties in Section II, as-
suming the obvious generalization of and , extends
readily to . The geometric interpretation also extends,
so that a valid -directional context set corresponds to a parti-
tion of a unit cube in -dimensional space into -dimensional
prisms.
It seems natural to conjecture that Theorem 2.1 continues

to hold with an -directional context tree that is the obvious
generalization of the case defined in the theorem.
Such a tree would have -tuples of strings as nodes. Its root
would be the null -tuple and each node would be a leaf, or
have as its children the -tuples obtained by appending, in
turn, all symbols in to any single component of the -tuple
determining the node. Thus, for and , an

6832 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 10, OCTOBER 2011

internal node might be with possible child sets
,

or . It is easy to see, however, that
this conjecture is not true. Indeed, consider the set of triples

(4)

This set is a valid 3-directional context set, as the “exhaustive”
and “disjoint” conditions can be seen to hold. To see that
this set cannot be represented as the leaves of a 3-directional
context tree as described in Section II, note that in such a tree
the children of the root node are either

, or . Each case, how-
ever, splits at least one of the three subsets of string triples

, or , respectively.
While the above counterexample demonstrates that the con-

jectured context splits cannot generate all valid 3-directional
context sets, it is conceivable that a different, fixed and finite
set of context splits based on prefixes can. For example, if the
counterexample were an isolated case, one could think of aug-
menting the set of possible splits with one that splits a context
into 5 contexts, following precisely the pattern of (4) (namely,
obtain the first context by extending the first two components
with a 0, the second by extending the first component with a 1
and the third with a 0, and so forth).
In this section, we show that no such finite set of context splits

exists in the 3-directional case. We do it by demonstrating an
arbitrarily large family of context sets such that no recursive
sequence of context splits into less than subsets, in which a
context is split into a number of descendant contexts,8 can gen-
erate . In other words, only the trivial process of splitting the
root node into subsets generates . Thus, for , any
, and any , the collection of valid -directional context sets

is richer than what can be represented by the recursive applica-
tion of any finite set of such context splits. Notice that the com-
plexity of the corresponding pruning algorithm (with the above
restriction on splitting based on prefixes only) is determined, to
a large extent, by the number of possible context splits appli-
cable at each node, which the constructed family of examples
shows to be necessarily growing doubly exponentially in .
The construction of the above family of 3-directional context

sets for requires some additional definitions. In the
sequel, a context denotes a triple of strings in .

Definition 4.1: We say that context
can be -split into contexts

, if and only if
(1) ;
(2) if .
In the above counterexample, is 5-split into

.

Definition 4.2: A valid context set is -splittable if the
contexts in can be represented as the leaves of a rooted tree
having nodes in , where the root node is
and each non-leaf node is -split, where for any non-
leaf node .

8Here we assume the obvious generalization of the definition of descendant
context from the beginning of Section II.

Clearly, a valid context set is always -splittable. Thus, the
context set in the above counterexample is 5-splittable, but it
can be checked that it is not 4-splittable. Also, by Theorem 2.1,
any bi-directional context set is -splittable (with an obvious
extension of definitions 4.1 and 4.2 to the case).
The main result of this section builds on the following three

observations, where are 3-directional
contexts, and we remind the reader that is an ancestor of if

.
Fact 1: If and , then (transi-

tivity of ancestry).
Fact 2: Let denote the longest common ancestor of and
, defined as the 3-directional context formed by taking, for

each component, the longest common prefixes of the corre-
sponding components of and . If and
then .
Fact 3: Let the context set be -splittable, let , and

let be a node on the corresponding tree. If
then .
Facts 1 and 2 are straightforward consequences of the an-

cestry relationship, whereas Fact 3 clearly follows from the dis-
jointness of a valid context set and the tree structure defining an
-splittable set.
Next, we construct a 3-directional context set from three

valid, arbitrary uni-directional context sets,
, and , each of length less than

some fixed integer . To this end, we arbitrarily pick three col-
lections of binary symbols ,
and , and let

(5)

where denotes the complement of . The length of
each component of is therefore at most . Notice that the
counterexample (4) is a particular case of , where the three
uni-directional context sets are the empty set (namely,

), , and .

Theorem 4.3: The 3-directional context set is valid and is
not -splittable.
Discussion: In general, and

for each arbitrary choice of the uni-directional context set triple
there are such 3-directional context sets. In particular,

could be as large as , and hence the number of con-
text sets in the constructed family grows doubly exponentially
in . This fact and Theorem 4.3 readily imply that for any fixed,
finite set of context splits based on descendants, for all suffi-
ciently large , there will exist a context set that cannot be
obtained via successive applications of the given context splits.

ORDENTLICH et al.: ON MULTI-DIRECTIONAL CONTEXT SETS 6833

Moreover, we also have that the number of such exceptional
context sets grows doubly exponentially in , for any fixed, fi-
nite set of context splits. Note that these conclusions extend to
descendant-based context splits that can be a function of the set
being split, as long as the range of this function (i.e., the number
of possible splits) at each point does not grow (or is sufficiently
slowly growing) with .

Proof of Theorem 4.3: First, we show that is valid. Due
to the structure of the union of cartesian products forming in
(5), we have

(6)

where, for indexes , and

(7)

To prove disjointness, we observe that (6) implies that, for any
pair of contexts , there exists a component (where
is either , or) such that the corresponding components

of and are and , for some pair of indexes
. The property then follows from the fact that such strings

cannot be prefixes of each other due to the disjointness of the
corresponding uni-directional context set (if) or to the
discrepancy in the last bit (if).
As for the exhaustiveness, notice that since the given uni-di-

rectional context sets are valid, for all
there exists a unique triple such that

, and . It is then easy to verify that
.

Next, suppose that is -splittable. Then, there exists
an intermediate node (i.e., not root or leaf) in the resulting tree,
namely and , such that can be -split (pos-
sibly in multiple steps) into a subset of contexts

. Hence, and .
By (6) and the symmetries in the right-hand side of (7), we

can assume, without loss of generality, that takes the form
of either or ,
for some integers . We show that, in both cases,
has to contain , and

, and thus, by Fact 2, must necessarily be
, leading to a contradiction.

Case 1:
Since and , then must contain at least
one of its ancestors, or . As-
sume that (the other case is omitted as
it can be treated similarly). Since is,
in turn, in , by Fact 1, it is also in .
Moreover, its ancestor is, by (6) and (7), in
, so according to Fact 3. Now, we
have and

which, by Fact 2, implies that . In turn,

this implies that its descendant , which
is also a descendant of the context in ,
is in . Thus, again by Fact 3, ,
leading to the desired contradiction.
Case 2:

Since and , then one of the following
three contexts must belong to :

, or . Noticing
the symmetry, we assume that .
By Fact 1, its descendant .
This context has an ancestor . Thus,
by Fact 3, . Following the same
argument as in Case 1, we have

, and ,
leading again to the desired contradiction.
Since both cases lead to a contradiction, namely that has

to be the root node, we conclude that the context set is not
-splittable.

Comments on the Proof: Fig. 1 depicts, according to our
geometric interpretation, the constituent contexts (7) in the
characterization (6) of the 3-directional context set of (5). The
figure depicts the prisms corresponding to the five contexts in
(7) for a generic choice of the uni-directional contexts ,
and (which correspond, respectively, to the , and axis
projections of the sides of the
in-plane squares bounding the long prisms, as shown in the
figure) and the choice , and . Note that
the small prisms and
look like cubes in the figure and would be if the strings ,
and were of equal length, but they need not be cubes in
general. As expressed by (6), the context set corresponds to a
decomposition of the cube into prisms that
can be grouped into structures of the sort depicted in the figure,
where each such structure corresponds to a different
in (6). Note that a given (long) prism in the decomposition is
actually a part of many such structures, since the sets
are not disjoint.
We can interpret the proof of Theorem 4.3 in terms of Fig. 1

as follows. Under our geometric interpretation, if a nontrivial
tree-like split exists, the prism corresponding to any ancestor

of one of the five
contexts in (7), must strictly contain the prism corresponding
to that context, denoted . With respect to the case depicted
in the figure (with the specific choices of), the
proof shows that for each of the five prisms, the only strictly
containing prism corresponding to an ancestor (of the cor-
responding context) that does not also cut any of the three
long prisms,9 is the entire cube, which corresponds to .
Note that there do exist prisms that strictly contain one of the
prisms in the figure and do not cut any of the long prisms. Con-
sider, for example, the one containing the prism corresponding
to and extending to the unit-cube boundaries in
the increasing and directions. This prism, however, does not
correspond to an ancestor of .

9Notice that cutting a prism corresponds to splitting the corresponding context
in and therefore does not lead to a valid ancestor.

6834 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 10, OCTOBER 2011

Fig. 1. A geometric interpretation of the constituent contexts (7) in the charac-
terization (6) of the 3-directional context set of Theorem 4.3 (defined by (5)).

The intuition behind the existence of a tree decomposition for
the bi-directional case is that interwoven structures of prisms of
the sort depicted in Fig. 1 are not possible in two dimensions.

V. APPLICATION TO DENOISING

The bi-directional context set framework described in
Sections II and III can be applied to context-based denoising, in
particular to enhance the DUDE algorithm proposed in [6]. This
application was the original motivation of this work, and as
hinted in Section I, it is less straightforward than compression
or prediction. Therefore, we further discuss it in this section.
In the (semi-stochastic) universal denoising setting, we con-

sider an individual sequence , which is corrupted by a discrete
memoryless channel with known transition probability matrix
. For simplicity, we will assume that the input and output al-

phabets coincide, so that . It is also as-
sumed that is invertible. A (noisy) sequence is observed
at the output of the channel, and the goal is to denoise without
any knowledge of the (clean) sequence , to obtain a sequence

, where a given loss function , rep-
resented by the matrix , determines the
loss incurred by estimating each symbol with the symbol

. The cumulative loss is determined by adding the in-
stantaneous losses over time. The denoiser is allowed to observe
the entire sequence before starting to make its decisions.
A family of context-based denoisers, parameterized by a non-

negative integer parameter (context length) , is proposed in [6].
For a given , the denoiser output at time for a noisy
input , is given by

(8)

where, similar to (3), is a -dimensional
row vector whose -th component, , is the number of
appearances of the string in denotes the -th

column of denotes the -th column of , and for two vec-
tors and with the same dimensions, denotes the vector
obtained through componentwise multiplication. Thus, the de-
cision made at time by the denoiser of (8) upon observing a
(noisy) sequence is viewed as a function of the noisy symbol
to be corrected. This function depends on the occurrences of

a left context , denoted , and a right context , de-

noted , in (as well as on the parameters and of the
system).10 For a given pair of contexts , this function will
be denoted by .
It is shown in [6] that for every underlying sequence , the

above denoiser is guaranteed to attain asymptotically, with prob-
ability one, the performance of the best -th order sliding-
window denoiser, tuned to and to the observed noisy se-
quence , provided grows sufficiently slowly with . These
results provide asymptotic guidance on the choice of in (8) as
a function of , but do not reveal how ought to be selected
upon observation of a specific sequence . The goal of se-
lecting the denoiser in the family that minimizes the loss, which
corresponds precisely to the setting of this paper, is unreachable
as it depends on the unobserved sequence . It is then natural
to minimize, instead, an estimate of the actual loss, that depends
on only. Properties of this strategy, as well as suitable loss es-
timators, are discussed in [13] and [18]. The minimization will
in fact be performed over a larger family of denoisers, which is
a natural generalization of the one specified in (8). We consider
all bi-directional context sets of the type introduced in Section II
(up to a preset maximal context length), replacing and

in the decision rule of (8) with a left context and a right
context , respectively, which are determined by the context
set and by corresponding left and right directional subsequences

and . The
vector of counts is as defined in (3). The goal is
thus to find the bi-directional context set that minimizes a given
loss estimate, to be presented next, for .
Our estimate of the cumulative loss incurred between (and in-

cluding) locations and by a denoiser (where the de-
noising functions may depend on , as in the denoiser of
(8)), upon observing , is motivated by the prediction-filtering
correspondence stated in [19, Theorem 4].11 Specifically, let

(9)

where denotes the output of the denoiser at time when
the symbol is replaced by the symbol in (therefore, for
a denoising function that depends on , the value of affects
the function itself, and not just its argument). Notice that the in-
nermost summation is the expected loss of the denoiser at time
when , whereas it is easy to see that the expectation of

is . Further intuition on the rationale be-
hind the estimate of (9) is given in [20]. Notice that this estimate

10The denoiser output for and , which is (asymptotically)
inconsequential, can be assumed to be given by, e.g., an arbitrary symbol.
11In the filtering problem, the denoiser (filter) must make its decision at loca-

tion without access to .

ORDENTLICH et al.: ON MULTI-DIRECTIONAL CONTEXT SETS 6835

depends on the observed sequence , but not on the unobserved
sequence .
Now, to minimize the cumulative loss estimate given in (9)

over all possible bi-directional context sets with context length
upper-bounded by , for the denoiser of (8), using the context
pruning algorithm presented in Section III, we need to decom-
pose the estimate into a sum of contributions from each context
pair (namely, the weights). Letting

(9) becomes

where

(10)

While the weights specified in (10) allow the use of the dynamic
programming scheme of Section III to determine a minimizing
set , notice that they may depend on the value of symbols
such that . This dependency is due to the fact

that the function depends on the vector

, whose components may be affected
by appearances of the context pair in the sequence

at locations other than those specified by .
Such a dependency precludes the use of the efficient procedure
for weight computation in the pruning algorithm discussed at
the end of Section III.
To overcome this problem, we will use an approximate

set of weights. Notice that differs from
in two possible ways when . First,

replacing with increases the -th component by 1 and de-
creases the -th component by 1. Second, such a replacement
may induce new appearances (and cancel actual appearances)
of the context pair in the vicinity of location . The
first situation occurs whenever , but it is not problematic
as it depends only on the subsequence . The second
situation is the problematic one, but in practice it will rarely
occur, as it requires that the context pair in question overlap
with itself over significant portions. Thus, it will usually yield a
second order contribution to the weight, and we will disregard
it. This approximation yields a new set of weights

(11)

where the denoising function is defined as
, but with the vector replaced with

denoting a vector with -th com-
ponent equal to 1, -th component equal to , and whose all
other components are 0, in case , or the all-zero vector

otherwise. Clearly, depends on only through
, and can be efficiently employed for bi-direc-

tional context pruning.
The proposed algorithm has been applied to the text de-

noising example in Section VIII-B of [6]. In this example,
an English translation of the novel Don Quixote obtained
from the Project Gutenberg website (http://promo.net/pg/) was
artificially corrupted by a hypothetical “typewriter channel” in
which each character was flipped independently with proba-
bility .05, equiprobably to one of its nearest neighbors in the
QWERTY keyboard. This setting resulted in 89087 errors out
of a total of characters. The application of the DUDE
algorithm of [6] with fixed-length bi-directional contexts of
lengths , 1, 2, and 3 resulted in 87762, 53191, 50250, and
73660 denoising errors, respectively. On the other hand, the
above proposed algorithm, with variable length bi-directional
contexts with maximum context length of , resulted in
39162 denoising errors, a roughly 20% improvement over the
best choice of for the baseline DUDE algorithm of [6]. The
overall loss obtained in this experiment is close to the loss of
the best denoiser of type (8) among all bi-directional context
sets, validating the loss estimation approach. However, this
gradually ceases to be the case as grows (and along with
it, the effective search space of context sets). A version of
this problem is discussed in [18]. A different approach for
denoising with variable length bi-directional contexts, based
on a stochastic modeling of the noisy data, is proposed in [15].
This approach does not use the rule (8).

VI. CONCLUSION

We have formalized the notion of a multi-directional context
set as a natural extension to its uni-directional counterpart, with
applications in decision problems such as compression, predic-
tion, and denoising. We have shown that there exists a funda-
mental difference between the bi-directional case and the -di-
rectional case, , in that bi-directional context sets can
be generated by a recursive sequence of splits and represented
by -ary trees. When paired with the algorithms in [11], this
representation leads to an efficient “pruning” algorithm for ob-
taining the optimal bi-directional context set for a given loss
function, thus extending the well-known dynamic programming
procedure of [9]. While natural, the tree representation is not
straightforward, as highlighted by the fact that, in general, it
does not exist for . Moreover, we have demonstrated
an arbitrarily large family of 3-directional context sets which
cannot be represented with any -ary tree for smaller than
the size of the context set, at least when context splits follow a
prefix-like constraint. The constructed family demonstrates that
no finite set of recursively applied prefix-like context splits suf-
fices to generate all 3-directional context sets, and that, in fact,
the number of exceptional context sets for any such set of con-
text splits grows doubly exponentially in , the bound on the
context length along any direction. This result raises the ques-
tion of the existence of efficient algorithms for context set opti-
mization (not based on [11]) for . Such algorithms could
be used, e.g., to increase the modeling flexibility in the image
processing application described in Section I, by providing an

6836 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 10, OCTOBER 2011

efficient construction of a conditional pixel model according to
more than two directions. Finally, we have demonstrated how to
apply the proposed pruning algorithm for bi-directional context
sets to denoising.

ACKNOWLEDGMENT

We thank Giovanni Motta, Gadiel Seroussi, Sergio Verdú,
and Tsachy Weissman for useful discussions.

REFERENCES

[1] J. Rissanen, “A universal data compression system,” IEEE Trans. Inf.
Theory, vol. IT-29, pp. 656–664, Sep. 1983.

[2] M. J. Weinberger, J. Rissanen, and M. Feder, “A universal finite
memory source,” IEEE Trans. Inf. Theory, vol. IT-41, no. 5, pp.
643–652, May 1995.

[3] F. M. J. Willems, Y. M. Shtarkov, and T. J. Tjalkens, “The context-
tree weighting method: Basic properties,” IEEE Trans. Inf. Theory, vol.
IT-41, no. 5, pp. 653–664, May 1995.

[4] I. Csiszár and Z. Talata, “Context tree estimation for not necessarily
finite memory processes, via BIC and MDL,” IEEE Trans. Inf. Theory,
vol. 52, no. 3, pp. 1007–1016, Mar. 2006.

[5] M. J. Weinberger, J. J. Rissanen, and R. B. Arps, “Applications of uni-
versal context modeling to lossless compression of gray-scale images,”
IEEE Trans. Image Process., vol. 5, pp. 575–586, Apr. 1996.

[6] T. Weissman, E. Ordentlich, G. Seroussi, S. Verdú, and M. J. Wein-
berger, “Universal discrete denoising: Known channel,” IEEE Trans.
Inf. Theory, vol. 51, pp. 5–28, Jan. 2005.

[7] R. E. Krichevskii and V. K. Trofimov, “The performance of universal
encoding,” IEEE Trans. Inf. Theory, vol. IT-27, pp. 199–207, Mar.
1981.

[8] J. F. Hannan, “Approximation to Bayes risk in repeated play,” in Con-
tributions to the Theory of Games. Princeton, NJ: Princeton Univer-
sity Press, 1957, vol. 3, pp. 97–139.

[9] R. Nohre, “Some Topics in Descriptive Complexity,” Ph.D. disserta-
tion, Department of Computer Science, The Technical University of
Linkoping, Linkoping, Sweden, 1994.

[10] A. Martín, G. Seroussi, and M. J. Weinberger, “Linear time universal
coding and time reversal of tree sources via FSM closure,” IEEE Trans.
Inf. Theory, vol. IT-50, no. 7, pp. 1442–1468, Jul. 2004.

[11] F. M. J. Willems, Y. M. Shtarkov, and T. J. Tjalkens, “Context
weighting for general finite-context sources,” IEEE Trans. Inf. Theory,
vol. IT-42, no. 6, pp. 1514–1520, Sep. 1996.

[12] H. Yao and R. W. Yeung, “Zero-error multichannel source coding,” in
Proc. 2010 Information Theory Workshop, Cairo, Egypt, Jan. 2010.

[13] E. Ordentlich, K. Viswanathan, and M. J. Weinberger, “On concentra-
tion for denoiser-loss estimators,” in Proc. 2009 IEEE Int. Symp. In-
formation Theory (ISIT’09), Seoul, Korea, Jun. 2009.

[14] J. Yu and S. Verdú, “Schemes for bidirectional modeling of discrete
stationary sources,” in Proc. 2005 Conf. Information Sciences and
Systems, The Johns Hopkins University, Baltimore, MD, Mar. 16,
2005.

[15] J. Yu and S. Verdú, “Schemes for bidirectional modeling of discrete
stationary sources,” IEEE Trans. Inf. Theory, vol. 52, no. 11, pp.
4789–4807, Nov. 2006.

[16] J. Yu and S. Verdú, “Universal estimation of erasure entropy,” IEEE
Trans. Inf. Theory, vol. 55, no. 1, pp. 350–357, Jan. 2009.

[17] F. Fernández, A. Viola, and M. J. Weinberger, “Efficient algorithms for
constructing optimal bi-directional context sets,” in Proc. 2010 IEEE
Data Compression Conf. (DCC’10), Snowbird, UT, Mar. 2010, pp.
179–188.

[18] E. Ordentlich, K. Viswanathan, andM. J. Weinberger, “Toward proper-
ties of twice-universality in denoising,” in Proc. 2010 IEEE Int. Symp.
Information Theory (ISIT’10), Austin, TX, Jun. 2010.

[19] T. Weissman, E. Ordentlich, M. J. Weinberger, A. Baruch-Somekh,
and N. Merhav, “Universal filtering via prediction,” IEEE Trans. Inf.
Theory, vol. IT-53, no. 4, pp. 1253–1264, Apr. 2007.

[20] T. Moon and T. Weissman, “Discrete denoising with shifts,” IEEE
Trans. Inf. Theory, vol. IT-55, no. 11, pp. 5284–5301, Nov. 2009.

Erik Ordentlich (S’92–M’96–SM’06–F’11) received the S.B. and S.M. de-
grees in electrical engineering from the Massachusetts Institute of Technology,
Cambridge, MA, in 1990, and the Ph.D. degree, also in electrical engineering,
from Stanford University, Stanford, CA, in 1996.
He is a Senior Research Scientist in the Information Theory Research Group

at Hewlett-Packard Laboratories, Palo Alto, CA. He has been with Hewlett-
Packard Laboratories since 1996, with the exception of a period in 1999–2002,
when he was with iCompression, Inc., Santa Clara, CA. His work has addressed
multiple topics in signal processing and information theory. He is a co-inventor
on numerous U.S. Patents and contributed technology to the ISO JPEG 2000
image compression standard.
Dr. Ordentlich was a co-recipient of the 2006 IEEE Communications/Infor-

mation Theory Societies Joint Paper Award and is a member of Phi Beta Kappa
and Tau Beta Pi. He served as Associate Editor for Source Coding for the IEEE
TRANSACTIONS ON INFORMATION THEORY from 2007 to 2010.

Marcelo J. Weinberger (M’90–SM’98–F’07) was born in Buenos Aires, Ar-
gentina. He received the Electrical Engineer degree from the Universidad de
la República, Montevideo, Uruguay, in 1983, and the M.Sc. and D.Sc. degrees
from Technion—Israel Institute of Technology, Haifa, Israel, in 1987 and 1991,
respectively, both in electrical engineering.
From 1985 to 1992 he was with the Department of Electrical Engineering

at Technion, joining the faculty for the 1991–1992 academic year. During
1992–1993 he was a Visiting Scientist at IBM Almaden Research Center,
San Jose, California. Since 1993 he has been with Hewlett-Packard Lab-
oratories, Palo Alto, California, where he is a Distinguished Scientist and
leads the Information Theory Research group. His research interests include
source coding, sequential decision problems, statistical modeling, and image
compression. He is a coauthor of the algorithm at the core of the JPEG-LS
lossless image compression standard, and was an editor of the standard spec-
ification. He also contributed to the coding algorithm of the JPEG2000 image
compression standard.
Dr. Weinberger served as an Associate Editor for Source Coding of the IEEE

TRANSACTIONS ON INFORMATION THEORY from 1999 to 2002. He is a co-re-
cipient of the 2006 IEEE Communications/Information Theory Societies Joint
Paper Award.

Cheng Chang received the B.E. degree from Tsinghua University, Beijing, in
2000, and the Ph.D. degree from University of California at Berkeley in 2007.
He is currently a quantitative analyst with the D. E. Shaw Group in New York.
In 2008, he spent a year in the Information Theory Research group at HP Labs
as a post-doctoral researcher. His research interests include signal processing,
control theory, information theory and machine learning.

