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Abstract— The localization problem is fundamentally
important for sensor networks. We study the Cramér-
Rao lower bound (CRB) for two Kkinds of localization
based on noisy range measurements. The first is Anchored
Localization in which we know true positions of at least
3 nodes. We show some basic invariances of the CRB
in this case and derive lower and upper bounds on the
CRB which can be computed using only local information.
The second is Anchor-free Localization where no absolute
positions are known. Although the Fisher Information
Matrix is singular, we derive a CRB-like bound on the total
estimation variance. Finally, for both cases we discuss how
the bounds scale to large networks under different models
of wireless signal propagation.

I. INTRODUCTION

In wireless sensor networks, the positions of the
sensors play a vital role. Position information can be
exploited within the network stack at all levels from
improved physical layer communication[1] to routing[2]
and on to the application level where positions are
needed to meaningfully interpret any physical measure-
ments the sensors may take. Because it is so important,
this problem of localization has been studied extensively.
Most of these studies assume the existence of a group
of “anchor nodes” that have a-priori known positions.
There are three major category of localization schemes
that differ in what kind of geometric information they use
to estimate the locations. Many[3], [4], [5], [6] and [7],
use only the connectivity information based on whether
node ¢ can directly communicate with node j, or anchor
k. Such approaches are attractive because connectivity
information is easily accessible at the network layer
where it is also essential for multi-hop routing.

The second category uses both Euclidean distances
and angular information for localization. Such schemes
are studied in [8], [9] and [10]. These are useful when
antenna arrays are available at the sensor nodes so that
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beamforming is possible in order to determine what
direction signals are coming from.

The third category is localization based solely on
the Euclidean distances (ranging) between nodes and
between nodes and anchors [11], [12], [13] and [14].
Within these, the first two papers cited estimate the
coordinates of the nodes based on the estimated distances
between the nodes and the anchors directly. The latter
two schemes first estimate positions in an anchor-free
coordinate system and then embed it into the coordinate
system defined by the anchors. In [15] and [16], the
schemes for estimating Euclidean distances are dis-
cussed. In this paper we focus on this kind of localization
problem using ranging information.

The Cramér-Rao lower bound (CRB) [17] is widely
used to evaluate the fundamental hardness of an estima-
tion problem. The CRB for anchored localization using
ranging information has been studied in [18] and [19]
for several specific geometric setups. For anchor-free
localization, as mentioned in [9], the FIM is singular
and so the standard CRB analysis fails.[20]

A. Outline of the paper

After reviewing some basics, in Section II we study
estimation bounds for anchored localization. Assuming
the ranging errors are iid Gaussian, we give an explicit
expression for the FIM solely based on the geometry of
the sensor network and show that the CRB is invariant
under zooming and translation. Rotation does not change
the lower bound on E((z; — £;)?) + (y; — %i)?). Using
matrix theory, we give a lower bound on the CRB which
is determined by only local geometry. This converges to
the CRB if the local area is expanded. We also give
an upper bound on localization performance using only
local information. Finally we study the wireless situation
in which the noise variance on the range measurements
depends on the inter-sensor distance. Simulation results



validate our intuition that the faster the signal decays,
the less the estimation bound benefits from faraway
information. A heuristic argument is given that reveals
the basic scaling laws involved.

In Section III we study the estimation bounds for
anchor-free localization. We show that the rank of the
FIM is at most Dgypsr— 3, where Dgypy is the dimension
of the matrix. We give a bound on the total estimation
variance in the anchor-free estimation and observe that
the per node bound in simulations appears proportional
to the average number of neighbors. We conjecture that
the average estimation variance depends on the received
signal energy per node.

B. Cramér-Rao bound on ranging

Since range is our basic input, we first review the CRB
for wireless ranging. The distance between two nodes is
tqc, where c is the speed of light and ¢, is the time of
arrival (TOA). TOA estimation is extensively studied in
the radar literature. If 7' is the observation duration, A(t)
is the pulse!, and Ny is the noise power spectral density,
then for any unbiased estimate of ¢4 [21]:
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Notice that fo aA t))th is proportional to the energy

in the signal where the proportionality constant depends
on the shape of the pulse. Because of the derivative, we
know that having significant pulse energy at high fre-
quencies (i.e. a signal with wide bandwidth) is beneficial
for localization. Calling that proportionality 72 we have:
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C. Models of Localization

In idealizing the localization problem, we assume all
the sensors are fixed on a 2-D plane. We have a set S of
M sensors with unknown positions, together with a set
F of N sensors (anchors) with known positions. Because
the size of each sensor is assumed to be very small, we
treat each sensor as a point.

Each sensor generates limited-energy wireless signals,
by means of which node i can measure the distance
to some nearby sensors in the set adj(zi). We assume

"Notice that we can get ranging estimates from any pulse whose
shape is known at the receiver. This can include a data carrying packet
that has been successfully decoded as long as we know the time it
was supposed to have been transmitted. In a wireless sensor network,
we are not necessarily restricted to use a radio that is dedicated only
to the function of ranging.

j € adj(i) iff i € adj(j).> Throughout, we also assume
high SNR? and so are free to assume that the distance
measurements are only corrupted by independent zero
mean Gaussian noises.

1) Anchored Localization Problem: If there are at
least three nodes with known positions (|F| > 3), then
it is possible to estimate absolute coordinates for each
node using observations D and position knowledge Pr.

D = {d;;li€ SUF,j € adj(i)} 2)
Pr = {(zi,y)T"li € F} 3)

Our goal is to estimate the set
Ps = {(£i,3:)"|i € S} 4)

~

(zi,y;) is the position of a single sensor i. d;;
is the measured distance between sensor ¢ and j.
di’j = \/(J,‘, —112]')2 + (yi —yj)2 + €, where €i,j S
are modeled as independent additive Gaussian noises
~ N(0, O'Z-Qj).
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Fig. 1. A sensor network, solid dots are anchors, circles are nodes
with unknown positions. The ranging information d; 3,7 1s only known
for sensor pair %, j s.t. d;,; < Ryisible-

’In general, if node ¢ can measure the distance to node j that
does not necessarily mean that node j can measure the distance to
node ¢ as well. However, we will assume that sensor ¢ and j can
communicate with each other and hence the distance between ¢ and
7 is known to both. Also, if ¢ and j get different distance measures,
we assume that they have been appropriately averaged together.

Suppose that we are estimating the propagation time by looking
for a peak in a matched filter. By high SNR we mean that the peak
we find is in the near neighborhood of the true peak. At low SNR,
it is possible to become confused due to false peaks arising entirely
from the noise.



2) Anchor-free Localization Problem: If |F| =
no nodes have known positions. This is an appropriate
model whenever either we do not care about absolute
positions, or if whatever global positions we do have
are far more imprecise than the quality of measure-
ments available within the sensor network. If Pg =
{(#i,9:)T|i € S} is an estimate of node positions, then
PL = {R(a)(x%;,9:)T + (a,b)T|i € S} is equivalent to
Ps where the £ represents reflecting the entire network
about the y axis and R(«) is a rotation matrix:

—sin(a) ) )

cos(a)

sin(a) cos(a)

R(a) = (

As a result, the performance measure of an anchor-free
localization should not be > .(z; — ) + (yi — 4i)%
Instead we will use the distance between equivalence
classes. Since the FIM for anchor-free localization is
singular [9], we will develop a bound using the tools
provided in [20].

II. ESTIMATION BOUNDS FOR ANCHORED
LOCALIZATION

For the Anchored Localization problem, the Cramér-
Rao bound (CRB) can be directly derived from the Fisher
Information Matrix (FIM).

A. The FIM for Anchored Localization

As illustrated in Fig.2, we define «;; €
angle from node i to j, as:

[0,27), the

cos(w;j) = i :
Y V(e — i)+ (y; — yi)?
. Yi — Ui
sin(q;;) = ; (6)
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Let z;,y; be the 2 — 1’th and 2¢’th parameters to
be estimated respectively, 1 = 1,2,..., M. The FIM is
Jorixan -

Theorem 1: FIM for Anchored Localization Vi =
1,....M

0032 (6771
Joic12i-1 = Z # (7)
jcadi) 71
- 2
SN~ Qg4
Joi2i > # ®)

o,
Jj€adj(i) 4

Z cos(a;;) sm(aw) ©)

Joi1,2i = J22i1 =
. y U
Jj€adj(s) gl

For nondiagonal entries j # 4, if j € adj(i):

1
Joj1,2i-1 = ——5 cos*(ay;) (10)
ij

Joi12j-1 =

1 .
—5 sin’ (o) (11)
ij
Joj i1 = J2i251 = J2j-1,2

Joi2; = Jojoi = —

Joi 125 =

1
= ——5 sin(ay;) cos(ay;) (12)
If j ¢ adj(7), the entries are all zero.

Proof: : We have the conditional pdf:

H 2o

i<j,j€adj(7) ij

; 2
—(dij —zdij)
e 207

p(djz, yl) =

The Log-likelihood is In(p(djz},yM)) = C —
(dij—di;)?
Zz’<j,jeadj(i) 20’?].

0% In(p(d]z, y}1))
Joy_19,-1 = F
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and so:
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and similarly for other entries of J. 0

B. Properties of the CRB of Anchored Localization

Given the FIM, we can evaluate the CRB for any
unbiased estimators:
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Corollary 1: The FIM is invariant under zooming and
translation J({(z;,v:)}) = J({(az;i + ¢,ay; + d)}) for
a#0.

Proof: : The angles «;; and noise o;; are unchanged
and so the result follows immediately. O

Corollary 2: The CRB for a single node is invariant
under rotation and reflection: Let A = J({(z,v:)}),
B = J({R(z;,y;)}), where R is a 2 x 2 matrix, with
RRT = Ipxa. Then Ayl 5y + Ajiy; = Baily g1 +
Byl Vi=1,2...,M.

’ Proof: : Going through the derivation of the FIM,
we find that B = QAQT, where Q is a 2M x 2M matrix
with the following form:

(Q2i—1,2i _
Q2i2i ) =R

( Q2i-1,2i—1 (13)
with all other entries of @ being 0. Obviously Q7 Q =

Q2i2i—1

QQT = Dyxom. B = QAQT and so B! =
QA~1QT. Write
A;zl—l 21—1 A;zl—l 24 > ;
=1 12 ) = A(®) (14)
( A2i}2i—1 A2i,12i

Similarly for B(i), then B(i) = RA(i)RT. Notice that
for any two matrices X and Y, Tr(XY) = Tr(Y X),

then we have: B2_z'1—1,2z'—1 + Bi’l% = Tr(B(i)) =
Tr(RAG)RY) = Tr(RTRA(G)) = Tr(AG) =
AGl i1+ AGL V=12, M. O

C. A lower bound on the CRB for anchored localization

In order to evaluate the CRB, we need to take the
geometry of the whole sensor network into account. In
this section, we derive a performance bound for node [
that depends only on the local geometry around it. This
has the potential to be valuable in any “local” algorithms
that try to do localization without performing all the
computations in one center.

First we review a lemma for estimation variance:

Lemma 1: Submatrix  bound  Let 6 =
(61,02,...,0n) € RN, VM,1 < M < N, write
0* = (ON-m+1,---,0N), then for any unbiased
estimator for 6,

Proof: : Write the inverse of J(0) as :

J(0)7 = (l‘;}%’,) (17

J(0) is positive definite, then
c'>ct (18)
The proof of Ehis is in [22] and the CRB theorem then
gives E((6* — 6*)T(0* — 6%)) > C' > C~L. O

Notice that for any subset of M parameters, we can
always change the index of the parameter to make them
have index N — M + 1,..., N. By directly applying
Lemma 1 we get:

Theorem 2: A lower bound on the CRB
Write 6; = (z;,7;)7 and write

1 J(@)a1-12-1  J(O)21-1,2 )
J = — ’ ’ 19
T ( J(0)ar,21-1 J(0)21,20 (19
Then for any unbiased estimator 8. E((6; — 6,)(6, —
gl)T) > Jl_l-

Corollary 3: Let 0 = {z1,y1,-.-,Zrp,Ym}> J; de-
fined in the previous theorem is only dependent on
(x1,y1) and (z4,v:),7 € adj(l). In other words, we can
give a performance bound on the estimation of (z;,y;)
using only the local geometry around sensor /.

Proof: : Only need to notice that J; in Eqn.7 only
depends on («y;,0y5), 7 € adj(l). These only depend on
(1, y1) and (24, 7). O

We now assume that the ranging errors are i.i.d. Gaus-
sian with zero mean and common variance o2 and define
the normalized Fisher information matrix K = ¢2.J. It is
similar to the Geometric Dilution of Precision (GDOP) in
the radar literature[23] in that K is a dimensionless value
only depending on the angles a;;’s. Let W = |adj(!)|
with sensors € adj(l) being I(1),...,l(k),..., [(W).
Using elementary trigonometry and writing ag = oy y(x):

1 w ZZV=1 cos(2ax) ZZV=1 sin(2ax)
J == 7+ 2 2
o2 S sin(2a4) w o SV cos(2ax)
2 2 2

The sum of the estimation variance

. . 5 \2 <12 —1 -1 _
E((6" - 9*)T(9* —6%)) > o1 (15) E((z; — 2:)° + (g1 — 9:)") > Jl Tt Jl 22 T
. | w7 1
Where C is the (N — M) x (N — M) matrix : w2 _ (21?1:1 cos(2az))? — (2311;1/:1 sin(2a))2 = W
AB 21
70 = (5% (16) -
taking equality when kazl sin(2ay) = 0,

ZZ‘;I cos(2ax) = 0. This happens if the centroid
of the unit vectors (cos(2ay),sin(2ay))’s is at the

where J(@) is the non-singular, and hence positive defi-
nite, FIM for 6.



origin (0,0). A special case is when oy, = %Wﬂ + (3 and
the angles 2ay’s are uniformly distributed in [0, 27).

Above, we used one-hop geometric information
around node 7 to get a lower bound on the CRB. This
bound can be interpreted as the CRB given perfect
knowledge of the positions of all other nodes. We can use
more information to get a tighter bound on the CRB. The
lower bound using 2-hop information is the CRB given
the positions of all nodes j, j ¢ adj(i), and similarly
for multiple-hops. The larger the local region we use to
calculate the CRB, the tighter it is.

In our simulation, we have 200 nodes and 10 anchors
all uniformly randomly distributed inside the unit circle,
J € adj(¢), if and only if d; ; < 0.3. In Figure. 3, we
plot the bounds for 20 randomly chosen nodes.
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D. An upper Bound on the CRB of anchored localization

The CRB bound in Theorem 1 gives us the best
performance an unbiased estimator can achieve given
all information from the sensor network, including the
positions of all anchors and all the available ranging
information a?i,j. This bounds the performance of a cen-
tralized localization algorithm where a central computer
first collects all the information and then estimate the
positions of the nodes.

In a sensor network, distributed localization is often
preferred due to the potentially lower communication
and computation costs. In this “local” estimation prob-
lem only a subset of the anchors F; C F and a
neighborhood of the nodes [ € S; C S may be taken
into account. Given the positions of some of the anchors
in Fj and the distances between some of the node pairs
in S;, D; = {d; j|i € S;UF,j € adj(i)N S}, our goal is

to estimate the z;,y;. The CRB V' (z;) and V' (y;) of this
estimation problem computed from the 2|5;| x 2|.5;| FIM
is an upper bound on the CRB directly computed from
the 2M x 2M FIM because strictly less information is
used for estimation. In this section, we compare the two
bounds through simulation.

The wireless sensor network is shown in Fig.4.
Anchors are on the integer lattice points in a 7 X 7
square region. There are 20 nodes with unknown
positions uniformly randomly distributed inside each
grid square. Sensor pair ¢ and j can see each other only
if they are separated by a distance less than 0.5. In the
figure, we plot the nodes S4 inside the central grid in
black, those inside By B2 B3B, in gray, and those nodes
inside C1C2C3C}y in light gray.
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Fig. 4. The setup of the sensor network
Anchors are shown as squares, nodes are shown as dots, nodes inside
the central grid are shown as black dots.

We compute the normalized CRBs (V; = V* +
V;y,i =1,2,...,20) on the estimation of the positions
of the nodes inside the central grid A;AsA3Ay in 4
different cases corresponding to information from within
the squares: A1AsA3A,, B1ByB3By, C1C5C3C,, and
the whole sensor network. As shown in Fig.5, V;(A) >
Vi(B) > Vi(C) > V;(ALL),: = 1,2,...,20. We
observe that V;(C') (squares in Fig.5) is extremely close
to V;(ALL) (the curve in Fig.5). More surprisingly, we
observe that V;(B) is much smaller than V;(A).

To explore further, we gradually increase the size
of the square region which contains A; A3 A3A4 in the
middle, and compute the average CRB. As shown in
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Fig. 5. Cramér-Rao bounds

Circle: estimation bounds using the information inside A; A> Az Aa.
Dot: estimation bounds using the information inside By B2 B3 Ba.
Square: estimation bounds using the information inside C1C2C3Cj.
Curve: estimation bounds using all the information.

Fig.6, the average CRB decreases as the size increases.
Notice that A1A3A3A4, B1ByB3By, C1CyC3C, are
the square regions with size 1, 2, 3 respectively. After
first dropping significantly, the upper bound levels off
significantly once we have included all the nodes directly
adjacent to our neighborhood. This bodes well for doing
localization in a distributed fashion — distant anchors
and ranging information does not significantly improve
the estimation accuracy.

4t B

2F b

Average Normalized Estimation Bound
L

L L L L L L L L L
1 1.2 1.4 1.6 1.8 2.0 22 24 26 28 3.0
Size of the sensor network

Fig. 6. Circle: CRB using information from local network.
Line: CRB using whole network.

E. CRB under Different Propagation Models

In previous discussion, we always assumed that the
ranging information is corrupted by iid Gaussian noises.
However from the CRB on the ranging information,

noise on the distance measurement cozljlld depend on the
distance d; ; between two nodes ¢, j, because the received
wireless signal A(t) decays as a function of d. In this
paper, we assume 01'2,9' = an;-"j, where o2 is the noise
variance when d = 1.* Under the propagation model,
we assume the ranging information between any two
sensors is available, though it may be quite bad if they
are very far apart. Here, we will also ignore the issue
of interference among the wireless measurements. This
assumption is reasonable only in the case where there is
no bandwidth constraint for the system as a whole, or
if the data rates of communication are so low that all
nodes can use signaling orthogonal to each other.

Define K = 02J to be the normalized FIM. Just
as in the case where a = 0, translations of the whole
sensor network do not change the FIM. Rotation does
not change the CRB on any node K;il_l 9i—1 T K{ZIQZ
However, zooming does have an effect on the FIM.

Corollary 4: The normalized FIM K is scaled under
zooming If the propagation model is d*,a > 0,and the
whole sensor network is zoomed by a zooming factor
¢ > 0. K({c(@i,9:)}) = @K {(zi,9:)}). ¢ # 0.

Proof: : Zooming does not change the angles «; ;
between sensors, the only thing that changes is the decay
factor d7 ;. If the zooming factor is ¢, then the decaying
factor changes to (cd; ;)* = c*d;, Substitute the new

0,5
decaying factors into the FIM as in Theorem 1, we get:

K({c(@i,y0)}) = =K ({(zi, 9:)})- 0

The CRB O'QKiTil changes proportional to ¢?, if the
whole sensor network is zoomed up by a factor c.

Next, we have a simulation where we fix the node
density and examine the average CRB for different a’s
as we vary the size of the sensor network. The sensor
network is the same as in Fig.4 and the sizes are taken at
1x1,3x%x3,...,13 x13. We calculate the average CRB
inside the central square and plot the aligned average
estimation bound in 10log;, scale in Fig.7.

The average CRB decreases as the size of the sensor
network increases. This is expected since there is more
information available and no interference by assumption.
Asymptotically, the CRB decreases at a faster rate for
smaller a since the noise variance increases more slowly
with range.

Heuristically we have the following explanation for
the effects of faraway nodes on the estimation of a single

Eqgn.1, we know that the variance o2 i of the additive

“Earlier, we had a hybrid model with a = 0 locally and a = co at
a great distance since the ranging information is only available for
sensor pair ¢, j, if d; ; < Ryisible-
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node ¢. The estimation accuracy of the position of a node
7 i1s mainly determined by the total energy received by it.
Suppose that the distance between nodes is > 7, and
the nodes are uniformly distributed. We approximate the
total received energy Pr coming from sensors within
distance R as:

27 R R
B / / p *pdpdf = 2p / p'%dp
0 Tm T

_ { PR — 1270 ifa 42
2p7(In(R)

—In(ry)) ifa=2.

When a < 2, Pg behaves like R?>~® which grows
unboundedly as the network grows and similarly for a =
2 where Pp behaves like In(R). In such cases, there are
advantages to having a bigger network and it should be
possible to save each node’s transmitter power by going
to a larger network and then turning down the transmit
power in such a way as to keep the position accuracy
fixed. This also suggests that distributed algorithms for
positioning in such cases should have some way of using
the measurements from distant nodes. When a > 2, Pg
converges to %r?n_“. This heuristic explanation is a
qualitative fit with Fig.7, when a = 1, the difference
between Pg and P;o is about 3dB.

Pr =

III. ESTIMATION BOUNDS FOR ANCHOR-FREE
LOCALIZATION

In the anchor-free localization problem, the only in-
formation available is the inter-node distance measure-
ments. The nature of anchor-free localization is very
different from anchored localization, in the sense that the
absolute positions of the nodes cannot be determined. We

first review the singularity of the FIM using the treatment
from [17].

Lemma 2: Rank of the FIM: For a n parameter esti-
mation problem, if d is the observation vector, and @ is
the n dimensional parameter. Write [ (cﬂ&) = ln(p(cﬂﬁ))
as the log likelihood function. Then the rank of the FIM
Jisn—k, k>0, if and only if the expectation of the
square of directional derivative of [ (cﬂﬁ) at 0 is zero for

k independent vectors by, ...,b; € R™.

_ Proof: The  directional derivative  of
[(d|#) at 6, along direction b; is (b)) =
(01/001,01/ 00, . ..,0l] 06, )b;

B(r(b:)?)
= E(b] (01/06,...,01]00,)T (01/06,...,01]060,)b;)
= b] Jb; (22)

If k£ independent vectors by, ..., by make b;fFJbi = 0,
the rank of J is » — k, since j is an m X n symmetric
matrix. O

The FIM for anchor-free localization is the same as
what was calculated in Theorem 1, just with no anchors.
With the above lemma, we can prove that the rank of this
FIM is at most 2M — 3 in a M node sensor network.
This is intuitively obvious since there are 2M parameters
T1,Y1,%2,Y2,---,TM,Yn With 3 degree of freedom in
rotation and translation on x;, y;.

Theorem 3: For the anchor-free localization problem,
with M nodes, the FIM J(6) is of rank 2M — 3

Proof: The parameter vector 6 =

(ml,yl, ..,Zpm,Ym), where The observation vector
d = {dm,l < i,j < M,j € adj(i)}, where d;;
is the measured distance between node ¢ and 7,
and ciiyj’s are independent given the true distance
V(zi — ;)% + (yi —y;)>. Then the log-likelihood
function of this estimation problem is :

l@m
(p({dlja]- <i .7 < M .7 Eadj(')le’yla"'
ln(p({d”,l <i,j < M,j€ adj(i)}

/(@i — )2 + (i -

a"EMayM))

Yj)%, 1 <i,j < M,j € adj(i)})

P(Jz’,ﬂ\/(ivi —z5)? + (y;

The last equality comes from the conditional indepen-
dence. The directional derlvanve of each term 1n the
sum is 0 along the vectors bl,bQ,b?, € RM, b1 =
(15(),1’0,""150) 7b2 = (05170117"'5 ’ ) 7b3 =
(y1, —1,Y2, —T2, ..., YM, —:vM)T where I;l and 52 span
the 2-D space in R?™ corresponding to translations and

- ¥

1<i,j<M,j€adj(i)

- y;)?))



53 is the instantaneous direction when the whole sensor
networks rotates. O

Since the rank of the FIM is 2M — 3, we cannot apply
the standard CRB argument because .J ! does not exist.
However, the CRB is J instead, where J' is the Moore-
Penrose pseudo-inverse of J.[20]

A. What does Jt mean: total estimation bound

In an n parameter estimation problem where the FIM
J is singular, we cannot properly define the parameter
estimation problem in R™. However, we can estimate the
parameters in the subspace spanned by all £ orthonormal
eigenvectors ¥1,..., 0 corresponding non-zero eigen-
values of J. In that subspace, the FIM (@ is full rank.
Write V' = (v1,...,v), V is an n x k matrix and
VIV = I, then Q = VTJV, and Q7' = VT JV,
thus J1 is the intrinsic CRB matrix for the estimation
problem. The total estimation bound for the estimation
problem in the k& dimensional subspace is 7 (Q 1), and
Tr(Q~1) = Tr(J') by elementary matrix theory.

Unlike the anchored case, we cannot claim the esti-
mation accuracy of a single node to be bounded by:

E((&i — 2)?) + E((gi — 93)?) 2 Ji_1 051 + b 0: (23)

since there always exists a translation of the entire net-
work to make the estimation of node 7 perfectly accurate.
However we find the total estimation bound depicts the
estimation performance of anchor-free localization since
the trace is invariant.

Definition 1: Total estimation bound Vi (J) on
anchor-free localization
Viotar(J) = Z£1(J;i—1,21—1 + ng‘,%) = Tr(J")
By the definition we know that Vi, (K) is invariant
under rotation, translation and zooming. The total esti-
mation bound is in fact the sum of the inverse of the
2M — 3 non-zero eigenvalues of K.

Theorem 4: Total estimation bound Vi (J) on an
anchor-free localization problem
Viotar (J) = 232{‘3 )\%, where );’s are non-zero eigen-
values of J

Proof: The correctness follows the fact that the

eigenvalues of J are /\%, i,...,ﬁ_s,o,o,o. And so
2M-3 1
TT(JT) = Zi:1 pVE O

1) Total estimation bound on 3 nodes anchor-free
localization: Using Theorem 4, we can give the total
lower bound on any geometric setup of an anchor-free
localization. The simplest nontrivial case is when there
are only 3 points. We fix two points at (0,0), (0, 1)
and assume the longest edge has length 1. We plot the

contour of the total estimation bound as a function of
the position of the 3rd node € [0,1] x [0, 1].

1F

Fig. 8. The contour shows the total estimation bound in log10 scale
for the 3rd node at (z,y).
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Fig. 9. The total estimation bound, the 3rd node is at (0.5, %) along
the gray line in Fig.8.

The result shows that the total estimation bound is
related to the biggest angle of the triangle. The larger that
angle is, the larger the total estimation bound is. From
Fig.8 (b), we find that the minimum total estimation
bound is achieved when the triangle is equilateral, where
the 3rd node is at (0.5, @) In Fig.9 we show what is
happening around the minimum.

2) Total estimation bound for different network
shapes: The shape of the sensor network effects the
total estimation bound. We illustrate this by a simulation
with M sensors randomly and uniformly distributed in
a region A with all the pairwise distances measured. We



plot the average normalized total estimation bound of 50
independent experiments.

In Fig.10 A is a rectangular region with dimension
L1 x Lo, L1 > Ls. Since the zooming does not change
the total estimation bound, the only thing matters is the
ratio R = f—;, and it turns out that the normalized CRB
increases as R increases, or as the rectangular becomes
less and less square.> However, once the number of
nodes had gotten large enough, the total estimation error
bound did not change with more nodes. The error was
reduced per-node in a way that simply distributed the
same total error over a larger number of nodes.

32
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Fig. 10. The normalized total estimation lower bound V'S number
of nodes. Rectangular region (R = i—;)

B. Why not set a node at (0,0) and another node on the
X axis

It is tempting to eliminate the singularity of the
FIM by just setting some parameters. If we fix node
1 at position (z1,y1), node 2 with y-coordinate 0, it
is equivalent to doing the estimation in the subspace
through point (z1,¥1,...,Zam,yn) perpendicular to
51 = (170a070a"'70)T702 = (07110705"'70)T753 =
(0,0,1,0,...,0)”. In general, the subspace generated by
C1,Ca,C3 is not the same as that generated by 51,52,53
and so the choice of which nodes we choose to fix can
impact the bounds!

C. Comparison of anchored and anchor-free localization

Sometimes bad geometric setup of anchors results in
bad anchored estimation, while the anchor-free estima-

SIn [22], we also studied the total estimation bound for an annular
region. Let R = % be the ratio of the radius of the inner circle
over the radius of the outer circle, we observe that the total estimation
bound decreases as R increases and again the total estimation bound
is roughly constant with respect to the number of nodes. The best
case was having the nodes along the circumference of a circle!

tion is still good! As such, it is not useful to view the
anchor-free case as an information-limited version of
the anchored case. After all, in the anchored case, we
also have a more challenging goal: to get the absolute
positions correct, not just up to equivalency. In Fig.11,
we have a sensor network with 3 anchors very close
to each other, the total estimation bound for anchored
localization is 195.20, meanwhile the total estimation
bound for anchor-free localization is 4.26.

0.8
06
0.4r

0.2

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Fig. 11. A bad setup of anchors. square: anchors, dot: nodes

D. Total Estimation Bound under Different Propagation
Models

It can be easily seen that just as in the anchored local-
ization, K is invariant under translation and Vg (K) is
invariant under rotation as well. Just as in anchored lo-
calization, the total estimation bound Vi, (K) changes
proportional to ¢?, if the whole sensor network is zoomed
up by a factor c.

In simulation, we study the affect of the size of
the sensor network on the average estimation bound in
different propagation models, i.e. for different a’s using
the same setup as Fig.4.

As shown in Fig.12, we observe that the average
estimation bound decreases as the size of the sensor
network increases with fixed node density. Just as in the
anchored case shown in Fig.7, the estimation accuracy
is mainly determined by the received power and so the
heuristic explanation for the anchored case also fits into
the simulation results we have for the anchor-free case.

IV. CONCLUSIONS AND FUTURE WORK

In this paper, we studied the CRB for both anchored
and anchor-free localization and gave a method to com-
pute the CRB in terms of the geometry of the sensor



Average estimation bound
{10log10 scale, after alignment)
o

_7 L L L L L L L L |
3 4 5 kil 7 B 9 10 11 12

Size of the Sensor Network

Fig. 12. The average normalized total estimation lower bound V'S
size of the sensor network for different a.
Circle: a = 1, Dot: a = 2, Cross: a = 3

network. For the anchored localization problem, we
derived both lower and upper bounds on the CRB which
can be determined by only local geometry. These showed
that we can use local geometry to predict the accu-
racy of the position estimation and that bodes well for
distributed algorithms. For the anchor-free localization
problem, due to the singularity of the Fisher Information
matrix, we computed the total estimation bound instead.
Finally, we considered the implications of wireless signal
propagations and found that if the signals propagate
very well, then there are potential gains by using larger
networks and doing estimation in a manner that uses this
information. This deserves to be studied in greater detail.

So far, we have only computed CRB on the local-
ization problem. For the design of algorithms, it would
also be good to know the sensitivities to individual
observations. It might be very helpful to the localization
if one can identify the bottleneck of the problem. i.e.
how to figure out which distance measurement could
help to increase the localization accuracy the most. With
the knowledge of the bottleneck, it may be possible to
allocate the energy or computation in a smart way to
improve localization accuracy.
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