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Abstract

Point pattern matching (PPM) is an important topic in the fields of computer vision and pattern recognition. Ac-

cording to if there exists a one to one mapping between the two point sets to be matched, PPM can be divided into the

case of complete matching and the case of incomplete matching. According to if utilizing information other than 2-D

image coordinates, PPM can be divided into labelled point-matching case and unlabelled point-matching case. Using

partial Hausdorff distance, this paper presents a genetic algorithm (GA) based method to solve the incomplete unla-

belled matching problem under general affine transformation. Since it successfully reduces the solution space of GA by

constructing ‘feature ellipses’ of point sets, the method can achieve high computing efficiency and good matching re-

sults. Theoretical analysis and simulation results show that the new algorithm is very effective.

� 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Point pattern matching (PPM) is an important

problem in the fields of computer vision and pat-

tern recognition. Its main task is to pair up the

points in two images of a same scene. It can be

widely used in many applications, such as image
registration, object recognition, object tracking,

autonomous navigation, pose estimation, etc.

According to if there exists a one to one map-

ping between the two point sets to be matched,

PPM can be divided into the case of complete

matching and the case of incomplete matching. Up

to now, the case of complete matching has been

extensively treated and many effective algorithms

(Atkinston, 1987; Griffin and Alexopoulos, 1989;

Hong and Tan, 1988; Lavine et al., 1983; Scott and

Longuet-Higgins, 1991; Shapiro and Brady, 1992;

Simon et al., 1972; Sprinzak and Werman, 1994;

Wang, 1983; Zahn, 1974; Zhang Lihua and Xu
Wenli, 1999a; Zhang Lihua and Xu Wenli, 1999b)

have been put forward. However, in practical ap-

plications, it is inevitable that there exist spurious

or lost points in the images. So research on the case

of incomplete matching is much more important.

According to if utilizing additional information

(such as color, intensity, etc.) other than 2-D

image coordinates, PPM can be divided into labelled
point-matching case and unlabelled point match-

ing. Clearly the unlabelled point matching is more
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difficult than the former, but it can be used in more

general applications.

This paper will focus on incomplete unlabelled

point pattern-matching problem.

Vindo and Ghose (1993) treat the point-

matching problem under Euclidean transforma-
tion as a 0–1 IPP problem and solve it by an

asymmetric neural network. Morgera and Cheong

(1995) solve the point-matching problem under

rigid transformation by using the theory of Lie

group. However, their algorithm can only be used

for the case in which one point pattern is a sub-

set of the other. Stockman et al. (1992) use a

clustering approach to estimate the similarity trans-
formation parameters and then determine the cor-

responding point pairs. Goshtasby and Stockman

(1985) use the convex hulls of the point sets to

reduce the complexity of the matching problems.

Unfortunately, if there exist spurious or lost points

on the convex hulls, the algorithm fails. The clus-

ter-based approach proposed by Chang et al.

(1997) is very effective. But it cannot insure finding
out the optimal solutions with as many matching

point pairs as possible, since it solves the problem

from bottom to top. Recently, Zhang Lihua and

Xu Wenli (in press) introduce some definitions of

matching clique, support point pair, index set, and

index matrix, etc. Based on these definitions, sev-

eral properties and a theorem are proposed, and a

new algorithm to solve the problem of matching
two point sets with the different cardinality under

rigid transformation is presented. On the contrary

to other methods in the literature, the algorithm

searches for the optimal solutions from top to bot-

tom. Therefore, it can find as many matching point

pairs as possible. However, the algorithm cannot

be directly used under similarity transformation

and affine transformation.
Compared with the incomplete matching prob-

lems under Euclid (rigid) and similarity transfor-

mations, the incomplete matching problem under

general affine transformation is much more dif-

ficult. Therefore, in current literatures, only a small

ratio really discusses the incomplete unlabelled

point-matching problem.

According to the observation that any triple of
points can define a valid plane affine transforma-

tion, Lamdan et al. (1988) use a voting scheme––

geometric hashing, which considers all possible

triples of points. Obviously its computational com-

plexity is very high. In contrast, the method pro-

posed by Huttenlocher (1991) is able to eliminate

most matches by considering just pairs of points.

The remaining matches are then enumerated. The
method is based on a new affine invariant con-

structed by distance ratios defined by quadruples

of points. However, the method will fail if three

pre-selected points used for defining the new affine

invariant do not appear in both point sets.

The current algorithms found in literature try to

solve the difficult problem using very conventional

techniques, e.g. method of exhaustion and geo-
metric hashing. Undoubtedly, these conventional

techniques are ever very useful for solving Euclid

and similarity cases. However, for complex affine

transformation case, their efficiency is not very

high. Oppositely, using partial Hausdorff distance,

this paper presents a method based on an uncon-

ventional technique––genetic algorithm (GA) to

solve the incomplete point-matching problem. The
method can achieve high computing efficiency and

good matching results, because it successfully re-

duces the solution space of GA by constructing

‘feature ellipses’ of point sets. Theoretical analysis

and simulation results show that the new algo-

rithm is very effective.

2. Principle of algorithm

In order to grasp our algorithm as a whole, we

firstly introduce its fundamental idea briefly.

Given two point sets P and P 0 which satisfy a

general affine transformation relation, before con-

structing chromosomes, a triple of points should

be chosen on the feature ellipse of P. Here the
triple of points may not be the real points of P to

be matched and it is named the referenced triplet.

The concept of feature ellipse will be described in

the section of preliminary knowledge. Each chro-

mosome is composed of a triple of points of P 0

using binary coding. Similarly chromosomes are

not requested to be real points of P 0, but points

locating in the image plane of P 0.
Obviously the triple of points represented by

each chromosome and the referenced triplet can
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determine a valid plane affine transformation T.

Under this transformation, point pattern P is

transformed to T ðP Þ. Clearly, we can judge if T is

near the original transformation by comparing

point patterns T ðP Þ and P 0. Considering the par-

tial bidirectional Hausdorff distance (Huttenlocher
et al., 1993) can measure the degree of match be-

tween two point sets without explicitly pairing

points of T ðP Þ and P 0, we construct fitness function

by the partial bidirectional Hausdorff distance.

The output of our GA is the triple of points which

has the highest value of fitness function. Using the

triplet and the referenced triplet, the transforma-

tion parameters can be solved to realize final point
matching.

Intuitively the idea of our algorithm is similar

to method of exhaustion and geometric hashing,

but its computational complexity is far too lower

than the two methods. This is determined by two

main reasons. One reason is that GA features

implicit parallelism. The other one is that the ini-

tial population of our genetic is not generalized
completely randomly, but generalized in the local

area demarcated by the feature ellipse of point

set P 0, which is equivalent to restricting the possi-

ble solution space to be searched by genetic algo-

rithm.

3. Feature ellipse of a point set

According to the principle of our algorithm, a

referenced triplet should be chosen in the image

plane of P and once it is paired with a triple of
points represented by each chromosome, parame-

ters of the corresponding transformation can be

determined. Thus, the physical explanation of the

GA is to find the most matchable triple of points in

the image plane of P 0 to the referenced triplet.

Obviously, if we randomly choose any three

points in the image plane of P as the referenced

triplet, it is possible that no matchable triplet can
be found in the bounded image plane of P 0. This is

because the numerical range of the triplet, which

the referenced triplet is transformed to by the

original affine transformation, is beyond the scope

that chromosomes can express. Such a referenced

triplet is called an unreasonable triplet, or else a

reasonable triplet. To find a reasonable triplet, we

give the following analysis.

Under the case of no outliers (including spuri-

ous points and lost points), suppose the original

affine transformation, which transforms P to P 0,

is T. Then the convex polygon region S1 formed
by the convex hull of P is transformed to region

T ðS1Þ. Clearly T ðS1Þ should have the same position

and shape with the convex polygon region S2
formed by the convex hull of point set P 0. There-

fore, points locating in S1 will be transformed to

points locating in S1. Based on this observation,

the referenced triplet can be chosen from the in-

terior of S1, because its corresponding match-
ing triplet must lie in S2, certainly in the bounded

image plane of P 0. However, if outliers exist, the

conclusion may be not true, because the out-

liers may disturb the convex hulls of the two

point sets. The worst situation is the region S2
does not contain some regions of T ðS1Þ. Obvi-

ously if the referenced triplet chosen in S1 locates

in these regions, it must be unreasonable. To solve
this, we construct so called feature ellipse of a

point set.

Definition 1. (Feature ellipse of a point set) Given

a point set P ¼ fpi ¼ ðxi; yi; 1ÞT i ¼ 1; 2; . . . ;mj g, its
feature ellipse is defined as

ðx� cÞTE�1ðx� cÞ ¼ 1

S
; ð1Þ

where S is a positive integer whose value deter-

mines the size of the feature ellipse, and c ¼ 1=
m
Pm

i¼1pi and E ¼ 1=m
Pm

i¼1ðpi � cÞðpi � cÞT are the

center point and the second-order center moment
of P, respectively.

Clearly the center of the feature ellipse locates

in the canter of the point set, and the shape of the

feature ellipse approximates the shape of P, i.e. the
distribution of points of P. Via adjusting the pa-

rameter S, the feature ellipse can be insured to lie

in the convex hull of P (certainly in the bounded

image plane of P), further in a local region around
the center of P.

Draw three rays from the center c of P, of which
each pair forms an angle of 120�. The rays inter-

sect the feature ellipse at three points, which is the

expected referenced triplet. Clearly the referenced
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triplet locates in the local area around the center of

P. Here, the request that angles formed by each

pair of rays be 120� is to make the referenced

triplet nonlinear and interdistance between any

two points large enough.

It is easily proved that under the case of no
outliers and no image noises, for the same S the

feature ellipse of P must correspond to the one of

P 0. Thus, the matching triplet of the referenced

triplet can be found on the feature ellipse of P 0.

This shows that the chosen referenced triplet is

reasonable because the feature ellipse of P 0 must lie

in the bounded image plane of P 0. Obviously the

usage of the concept of feature ellipse is equivalent
to restricting the search space of the GA, that is

the algorithm can search for the matching triplet

of the referenced triplet just on (notice here not in)

the feature ellipse of P 0.

Considering that there must exist image noises

and outliers in practical applications, the matching

triplet corresponding to the referenced triplet may

not locate on the feature ellipse of P 0. However, it
will lie in a local region around the ellipse. Thus,

the search space of the GA is reduced to this local

area.

4. GA-based algorithm

Professor J. Holland put forward the essential

idea of GA in 1975. GA is a highly efficient sto-

chastic global optimization algorithm for problem

solving. Beginning from any randomized initial

population that consists of a group of chromo-
somes (i.e. potential search nodes), new popula-

tions are arrived at by using various genetic

operators with subsequent iterations. A new

chromosome replaces a previous one if it is judged

to be better than it according to a function called

fitness. Two main advantages of GA are it is not

easy to slump into a local optimized region and

it can be realized by a parallel computational
method.

GA has been applied to computer vision in

many fields. Some of the works related to medical

image registration, image segmentation, model-

based matching, and affine invariant recognition

can be found in (Bhanu et al., 1991; Grefenstette

and Fitzpatrick, 1985; Hill and Taylor, 1992;

Tsang, 1997a,b).

To use GA in finding point correspondences,

three problems are to be solved, constructing fit-

ness function, coding chromosomes, and choosing

suitable genetic operators.

4.1. Coding chromosomes

Given two point sets P and P 0 with m and n
points respectively, each chromosome consists of a

triple of points in the image plane of P 0. Its de-

tailed construction method is seriating coordinates

of the three points and coding them into binary
codes. Here using binary coding is because the

image resolution is always limited, for example,

256	 256 or 512	 512, and then the coordinate of

points can be represented by integers in the scope

of the image resolution. Even if the location pre-

cision of points is less than a pixel, we can still

obtain enough representation precision by chang-

ing the length of binary code.
Given three points p0j0 , p

0
j1
and p0j2 in the image

plane of P 0 (may be not the points of P 0), Table 1

shows the detailed construction method of a

chromosome consisting of the three points. Here,

each x or y is represented by a binary code. Thus

the whole chromosome is a binary sequence. No-

tice, in order for the genetic operators operat-

ing conveniently and obtaining a more precious
matching pair of triplets, the chromosome is not

divided into genes. The vertical lines are simply

used for description. Therefore the operations of

genetic operators are all executed with the unit of

bit.

4.2. Generating initial population

The initial population is generated randomly.

However, the generating range of chromosomes is

not arbitrary but limited to the local area around

the feature ellipse of P 0.

Table 1

Chromosome coding

x0j0 y 0j0 x0j1 y 0j1 x0j2 y 0j2
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4.3. Constructing fitness function

Given a chromosome shown in Table 1, the

coordinates of the triplet that the chromosome

represents are firstly retrieved according to their
binary codes. Then the parameters of the affine

transformation, denoted by T, can be easily solved

from this triplet and the referenced triplet. Obvi-

ously, if the degree of match between P and P 0

under the transformation can be measured, it is

equivalent to evaluating the fitness of the chro-

mosome.

Considering the partial bidirectional Hausdorff
distance between point sets P 0 and T ðP Þ to which P
is transformed by T, smaller the distance is, the

degree of match between P and P 0 is larger. So

the fitness function can be selected as the inverse of

the partial bidirectional Hausdorff distance,

fitness ¼ 1

1þ HLKðT ðP Þ; P 0Þ : ð2Þ

Notice here, the denominator is the partial bidi-

rectional Hausdorff distance plus 1 in order to

avoid zero appearing in the denominator.

4.4. Defining genetic operators

• Selection: Selection operator is used to select

good chromosomes that contribute their gene-

inherited knowledge for the next generation.

Here we use commonly used Roulette-wheel se-

lection process. In Roulette-wheel selection pro-
cess, the selection probability of each individual

is proportional to its fitness value.

• Crossover: Although selection operator can

keeps fitter individuals (i.e. chromosomes) in

evolutionary process, it does not create any

new individual. Crossover operator can produce

new chromosomes through combining partial

structure of two father individuals. Here we
adopt commonly used single point crossover op-

erator.

• Mutation: In order to prevent the loss of diver-

sity in the evolutionary process, an operator

named uniform mutation is designed and car-

ried on in a small probability. It operates on

each binary bit of a chromosome in another pre-

defined probability. We realize the mutation op-

erator by reverse the value of the current binary

bit, i.e. 0–1, 1–0.

4.5. Full genetic algorithm

Algorithm 1. Genetic algorithm for affine point

matching

Given two point patterns to be matched with

each other P and P 0, choose population size N,

crossover probability pc, mutation probability pm,
two fractions fL and fK of the partial bidirectional

Hausdorff distance and the maximum iterative

steps Gmax.

Step 1: Compute the feature ellipses of P and P 0,

and then solve the referenced triplet in the image

plane of P and determine the local search area in

the image plane of P 0 for the GA.

Step 2: Randomly generate N triplets in the
local search area and then convert them into

chromosomes for initial generation.

Step 3: Compute fitness function values of all

chromosomes in current population and then se-

lect fitter chromosomes by selection operator.

Step 4: Apply crossover operator at the prob-

ability pc and mutation operator at the probability

pm to the fitter chromosomes and generate the
population of next generation.

Step 5: If the maximum iterative steps Gmax is

not reached, go to Step 3. Otherwise let Tbest be the
affine transformation determined by the best

chromosome, and match point patterns TbestðPÞ
and P 0 according to the simple nearest neighbor

rule.

5. Experimental results

To verify the effectivity of our algorithm, a lot

of simulated experiments are performed. What

follows is an example of the simulations.

Firstly a point pattern P with 15 points is gen-

erated randomly in a numerical bound of 500	
500, and another point pattern P 0 is obtained after

an affine transformation with
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A ¼ 0 1:5
0:9 0

� �

and t ¼ ½10 10�T is applied to P. After the first

point is deleted from P 0, two randomly generated

spurious points are added to P 0. Finally Gaussian

noises with mean-value zero and variance 1.0 are
added to coordinates of each point in P and P 0.

Here noise range is bounded to less than 3. The

final point patterns P and P 0 are shown in Figs. 1

and 2, respectively. And the coordinates of each

point are listed in Tables 2 and 3.

In the experiment, the parameters of Algorithm

1 are set as, population size N ¼ 400, crossover

probability pc ¼ 0:05, mutation probability pm ¼
0:02, two fractions fL and fK are all 0.7, and the

maximum iterative steps Gmax ¼ 100. The length of

binary code for each coordinate is 16 and the pa-
rameter S in Eq. (1) is 4.

After randomly running Algorithm 1 for 10

times, the best chromosome is obtained and its

corresponding affine transformation parameters

are

A ¼
�0:0031 1:4874

0:8663 0:0073

� �
;

t ¼ 15:5989 16:4039½ �T:

Under this transformation, point pattern P is

transformed to T ðP Þ. To give an intuitive obser-

vation, we plot T ðPÞ together with P 0 in Fig. 3. It is

easily seen that each matchable point approach its

pairing point very near. Using the simple nearest

neighbor rule, the matching result shown in Table 4

is obtained. Clearly the result is completely correct.

To further demonstrate Algorithm 1’s adapt-
ability, here we briefly described another experi-

ment in which a larger point set P with 50 points is

randomly generated. Point pattern P 0 is obtained

after a random affine transformation with P.

A ¼ �0:2967 0:2683
�0:4695 �0:5192

� �
; t ¼ 273 519½ �T

is applied to P. Then we randomly deleted 20

points from P 0. Meanwhile, 20 randomly generated

spurious points are added to P 0. Finally, larger

Gaussian noises with mean-value zero and vari-
ance 5.0 are applied. Clearly, the experiment con-

dition is much more rigorous than the previous

experiment.

The final point patterns P and P 0 are shown in

Figs. 4 and 5, respectively, and the coordinates of

each point are listed in Tables 5 and 6. During

the experiment preparing process, since we could

know which points are deleted and which points
are added, the expected matching result can be

predicted in Table 7.

The experimental parameters of Algorithm 1

are set as, N ¼ 500, pc ¼ 0:03, pm ¼ 0:03, fL and fK
are all 0.6, and Gmax ¼ 100. The length of binary

Fig. 1. Point pattern P.

Fig. 2. Point pattern P 0.
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code for each coordinate is still 16 and the pa-

rameter S is also 4.

After randomly running Algorithm 1 for 10
times, the best chromosome is obtained and its

corresponding affine transformation parameters

are

A ¼
�0:3264 0:2543

�0:4634 �0:5152

� �
;

t ¼ 287:6498 515:1693½ �T:
Clearly this result is very close to the true affine

transformation used to setup the experiment.

Under this transformation, point pattern P is

transformed to T ðP Þ. Similarly, to give an intuitive

observation, T ðPÞ is plotted together with P 0 in

Fig. 6. Using the simple nearest neighbor rule, a

matching result is obtained in Table 8. Compared

with the expected result listed in Table 7, clearly
we correctly matched 25 of 30 matching pairs, the

other two matching pairs are incorrect because the

spurious points are too close to the original points.

So the simple nearest neighbor rule cannot differ-

entiate them from the correct matchings. In fact,

the matching result can be further improved by

utilizing more advanced optimized matching

techniques (Chang et al., 1997; Xu Wenli and
Zhang Lihua, 2001) for point pattern matching

under rigid transformation instead of the simple

nearest neighbor rule. This is because the matching

subsets of point pattern T ðPÞ and P 0 should satisfy

a rigid transformation relation instead of an affine

transformation.

6. Complexity analysis

Supposing the size of the two point sets to be

the same n, determining the complexity of the

algorithm proposed in this paper is very straight-

forward: n2 	 N 	 G, where Oðn2Þ is the com-

plexity of computing the Hausdorff distance

between the two point sets, N is the size of the
population and G is the number of iterative gen-

erations. Here N and G are preset parameters and

they are relatively independent of n. In our ex-

periments, N varies from 100 to 1000, and G is

adjusted from 60 to 100.

Now we turn to discuss the complexity of an

exhausting method. If using the same measure-

ment (Partial Hausdorff distance), for three given
points (i.e. a referenced triplet) in point set P 0,

Fig. 3. Point pattern TbestðP Þ and P 0.

Table 2

Coordinates of point pattern P

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

x 189 104 277 366 201 119 327 265 130 174 385 237 105 326 233

y 82 94 97 112 160 173 179 200 222 265 272 276 294 306 347

Table 3

Coordinates of point pattern P 0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

x0 151 153 182 251 269 277 310 346 408 419 426 449 473 527 100 24

y 0 105 263 339 192 119 311 249 127 165 353 228 108 298 222 200 90
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a randomized algorithm which exhausts all the

possible matching triplets in point set P would have

complexity of n2 	 C3
n . An implicit big assumption

here is that the given referenced triplet in P 0 should

Table 4

Result of point pattern matching

P 2 3 4 5 6 7 8 9 10 11 12 13 14 15

P 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Fig. 4. Point pattern P in experiment 2. Fig. 5. Point pattern P 0 in experiment 2.

Table 5

Coordinates of point pattern P

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

x 357 287 229 154 382 92 47 315 410 242 177 334 107 57 439 252 377 197 317 139 42 249 402 95 454

y 45 52 60 67 67 70 72 87 90 99 105 117 120 130 130 145 150 162 177 185 198 210 215 232 237

26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

x 327 172 26 274 76 392 135 217 464 297 54 365 115 409 187 232 34 97 312 359 435 185 140 71 292

y 240 260 263 267 278 282 287 307 310 320 323 334 339 342 364 375 385 407 407 407 412 429 439 450 474

Table 6

Coordinates of point pattern P 0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

x0 198 222 171 277 196 170 232 254 307 239 259 309 240 210 200 292 346 261 238 294 220 348 333 246 294

y0 348 374 300 464 323 267 352 385 418 317 331 402 298 221 172 298 359 251 191 271 133 331 287 153 159

26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

x0 268 250 356 368 308 218 479 359 423 152 222 160 267 101 182 17 392 50 389 345 285 314 29 99 341

y0 145 98 224 255 142 208 446 146 505 514 �4 366 44 492 61 331 16 454 299 489 405 504 512 469 249
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also appear in the other point set P. Obviously this
assumption might not be true in case of incomplete

point matching. Suppose the probability of a point

appearing in both P 0 and P is r. Easily verified, to

guarantee finding a referenced triplet appearing in

both point sets, the least combination number of

referenced triplets that should be tried is

ðC1
nð1�rÞ 	 C2

nr þ C2
nð1�rÞ 	 C1

nr þ C3
nð1�rÞÞ:

Therefore, the total computation complexity of

an exhausting method would be

n2 	 C3
n 	 ðC1

nð1�rÞ 	 C2
nr þ C2

nð1�rÞ 	 C1
nr þ C3

nð1�rÞÞ;

i.e. Oðn8Þ.
Comparing Oðn8Þ and n2 	 N 	 G, it is easily

concluded that with the increase of n, our GA-

based algorithm’s computation efficiency is much

better than the exhausting method. For instance,

in our second experiment, the parameters we used

are n ¼ 50, N ¼ 500, G ¼ 100 and r ¼ 0:60. Easily
know the complexity of the GA is around 1:2eþ 8,
but the complexity of an exhausted algorithm will

Fig. 6. Point pattern TbestðPÞ and P 0 in experiment 2.

Table 7

Expected result of point pattern matching

P 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

P 2 3 5 7 8 9 10 11 14 16 18 21 22 23 25 27 28 29 31 33 34 36 38 39 44

P 0 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

P 45 46 48 49 50

Table 8

Testel result of point pattern matching

P 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

P 2 3 5 8 9 10 11 14 16 18 23 25 27 29 31 33 34 36 38 39 44

P 0 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

P 45 46 48 50 42 13
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be nearly 1:2eþ 13. So Algorithm 1 reduced the

computational complexity to 1:0e� 5 of the ex-

hausted method with n ¼ 50. This further proves

the effectivity of our algorithm.

7. Conclusions

In this paper, using partial Hausdorff distance, a

GA-based method for the incomplete point pat-

tern-matching problem under general affine trans-

formation is presented. The method can achieve

high computing efficiency and good matching re-

sults, because it successfully reduces the solution
space of GA by constructing feature ellipses of

point sets. Theoretical analysis and simulation re-

sults show that the new algorithm is very effective.

Before the paper is finalized, our future research

direction will be briefly mentioned. That is, al-

though the proposed algorithm is very effective in

normal case, if the referenced triplet of point set P
is wrongly chosen, there will be no corresponding
triplet in the local search area of P 0. To solve this

problem, a simple possible solution is to expand

the search area in P 0. However, this may decrease

the algorithm’s efficiency to some extent. There-

fore, our future research will focus on issuing a

better solution.

Acknowledgements

This work was supported by the ‘‘985’’ project

of Tsinghua University and the Major Research

Project of the tenth-five plan of PR China (no.

2001BA609A).

References

Atkinston, M.D., 1987. An optimal algorithm for geometrical

congruence. J. Algorithms 8, 159–172.

Bhanu, B., Lee, S., Ming, J., 1991. Self-optimizing image

segmentation system using a genetic algorithm. In: Pro-

ceedings of the Fourth International Conference on Genetic

Algorithms, San Diego, CA, pp. 362–369.

Chang, S.H., Cheng, F.H., Hsu, W.H., Wu, G.Z., 1997. Fast

algorithm for point pattern matching: invariant to transla-

tions rotations and scale changes. Pattern Recogn. 30 (2),

311–320.

Goshtasby, A., Stockman, G.C., 1985. Point pattern matching

using convex hull edges. IEEE Trans. Syst. Man Cybernet.

SMC 15 (5), 631–637.

Grefenstette, J.J., Fitzpatrick, J.M., 1985. Genetic search with

approximate function evaluation. In: Proceedings of Inter-

national Conference on Genetic Algorithms and their

Applications, pp. 112–120.

Griffin, P.M., Alexopoulos, C., 1989. Point pattern matching

using centroid bounding. IEEE Trans. Syst. Man Cybernet.

19 (5), 1274–1276.

Hill, A., Taylor, C.J., 1992. Model-based image interpretation

using genetic algorithm. Image Vision Comput. 10, 295–300.

Hong, J.W., Tan, X.N., 1988. A new approach to point pattern

matching. In: Proceedings of Ninth International Confer-

ence on Pattern Recognition, pp. 82–84.

Huttenlocher, D.P., 1991. Fast affine point matching: an

output-sensitive method. In: Proceedings of IEEE Confer-

ence on Computer Vision and Pattern Recognition, pp. 263–

268.

Huttenlocher, D.P., Klanderman, G.A., Rucklidge, W.J., 1993.

Comparing images using the Hausdorff distance. IEEE

Trans. Pattern Anal. Mach. Intell. 15 (9), 850–863.

Lamdan, Y., Schwartz, J.T., Wolfson, H.J., 1988. Object

recognition by affine invariant matching. In: Proceedings

of IEEE Conference on Computer Vision and Pattern

Recognition, pp. 335–344.

Lavine, D., Lambird, B.A., Kanal, L.N., 1983. Recognition of

spatial point patterns. Pattern Recogn. 16 (3), 289–295.

Morgera, S.D., Cheong, P.L.C., 1995. Rigid body constrained

noisy point pattern matching. IEEE Trans. Image Process.

4 (5), 630–641.

Scott, G.L., Longuet-Higgins, H.C., 1991. An algorithm for

associating the features of two images. Phil. Trans. Roy.

Soc. London B 244, 21–26.

Shapiro, L.S., Brady, J.M., 1992. Feature-based correspon-

dence: an eigenvector approach. Image Vision Comput. 10

(5), 283–288.

Simon, J., Checroun, A., Roche, C., 1972. A method of

comparing two patterns independent of possible transfor-

mations and small distortions. Pattern Recogn. 4 (1), 73–81.

Sprinzak, J., Werman, M., 1994. Affine point matching. Pattern

Recogn. Lett. 15 (4), 337–339.

Stockman, G., Kopstein, S., Benett, S., 1992. Matching images

to models for registration and object detection via cluster-

ing. IEEE Trans. Pattern Anal. Mach. Intell. PAMI 4 (3),

229–241.

Tsang, P.W.M., 1997a. A genetic algorithm for affine invariant

object shape recognition. In: Proceedings of First IEE/IEEE

International Symposium on Genetic Algorithm in Engi-

neering Systems, GALESIA, pp. 293–298.

Tsang, P.W.M., 1997b. A genetic algorithm for affine invariant

recognition of object shapes from broken boundaries.

Pattern Recogn. Lett. 18, 631–639.

Vindo, V.V., Ghose, S., 1993. Point matching using asymmetric

neural networks. Pattern Recogn. 26 (8), 1207–1214.

18 L. Zhang et al. / Pattern Recognition Letters 24 (2003) 9–19



Wang, C., 1983. Some experiments in relaxation image match-

ing using corner features. Pattern Recogn. 16 (2), 167–

182.

Xu, Wenli, Zhang, Lihua, 2001. A geometric reasoning based

algorithm for point pattern matching. Science in China,

Series F 44, 445–452.

Zahn, C.T., 1974. An algorithm for noisy template matching.

In: Proceedings of the IFIP Congress, pp. 698–701.

Zhang Lihua, Xu Wenli, in press. New algorithms for point-

pattern matching using index matrix. In: The Third Asian

Control Conference.

Zhang, Lihua, Xu, Wenli, 1999a. Point-pattern matching using

irreducible matrix and relative invariant. Tsinghua Sci.

Technol. 4 (4), 1602–1605.

Zhang, Lihua, Xu, Wenli, 1999b. Point pattern matching.

China J. Comput. 22 (7), 740–745.

L. Zhang et al. / Pattern Recognition Letters 24 (2003) 9–19 19


	Genetic algorithm for affine point pattern matching
	Introduction
	Principle of algorithm
	Feature ellipse of a point set
	GA-based algorithm
	Coding chromosomes
	Generating initial population
	Constructing fitness function
	Defining genetic operators
	Full genetic algorithm

	Experimental results
	Complexity analysis
	Conclusions
	Acknowledgements
	References


