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Geometric information is essential for sensor networks. We study two kinds of

geometric information. One is the positions of the nodes. The estimation of the positions

of the nodes is called the localization problem. The other is the positions of objects in

the sensor network.

For the localization problem, We will study the Cramer Rao lower bound on

it. For the anchor-free localization problem where no nodes have known positions, we

propose a new bound on the variance of the estimation error, because the Fisher In-

formation Matrix is singular. For the anchored localization problem using only local

information, we derive a lower bound to the Cramer Rao bound on the position estima-

tion. We find that the Cramer Rao bounds in both cases are invariant under zooming of

the whole sensor network. We will also propose a novel two-step localization scheme. In

the first step, we estimate an anchor-free coordinate system around every node. In the

second step, we combine all the anchor-free coordinate systems together. Then using

the anchored position information of some nodes, we transfer the anchor-free coordinate

system into an anchored coordinate system.

For the object position estimation problem, we study it in different scenarios

in terms of number of nodes. There are three scenarios: single transmitter and sin-

gle receiver, multiple transmitter (receiver) and single receiver (transmitter), multiple

transmitter and multiple receiver. For each scenario, we give a position estimation

scheme and analyze the performance of our scheme. The Cramer Rao bound for each

scenario is also computed. We are particularly interested in the behavior of the Cramer

Rao bound when the number of sensors in the network grows to infinity. We find that
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the Cramer Rao bound on object tracking is proportional to the reciprocal of the total

received SNR.
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Chapter 1

Introduction

With the recent development in wireless communication devices and low power

electronics systems, it is possible to have a wireless network consisting of nodes equipped

with sensors and antennas, i.e. a sensor network [19]. The nodes of the sensor network

can work both independently and cooperatively. The possible tasks for sensor network

are extremely broad, ranging from communication to sensing physical variables. In

Fig.1.1, we have a sensor network consisted of 7 nodes, each node has a sensing unit

and a communication system. Notice that the connectivity graph is not always complete

due to the power limits or inter-sensor interferences [16].

Figure 1.1: A wireless sensor network

Ultra Wideband (UWB)is a relatively new technology. The basic concept is to
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communicate using very wide bandwidth signals which spread the signal energy over

frequency and time[26]. Since UWB signals have extremely wide bandwidth, the sig-

nals can provide very precise distance measurements as long as the transmitter and

receiver are synchronized. Communication in UWB requires tracking the channels in

coherent communication schemes. From the channel estimates, we can extract distance

measurements. The distance measurements are free since no extra efforts are needed.

There are two kinds of distance measurements. The first kind is direct path distance

measurements, which tells the receiver how far away the transmitter is located. The

second kind is multi-path (transmitter-object-receiver) distance measurements, which

happen if there are objects that reflect the signals.

In a sensor network equipped with UWB devices, we can extract direct path and

multi-path distance information and tell where the nodes are (localization problem) and

where the surrounding objects are (object tracking problem).
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1.1 Localization in a Sensor Network

The localization problem is both fundamental and important. In many sensor

network tasks, the location awareness of the nodes is one of most important system

parameters [19]. No matter if the high level task is routing, parameter estimation or

tracking other objects in the sensor network, to understand the geometrical setup of

the sensor network is very helpful if not crucial. In chapter 2, we are going to study

the localization problem. More precisely, we are going to study the problem of position

estimation of the nodes, given direct-path distance measurements between nodes and

possibly locations of some nodes which are variously called anchors [6] or beacons[23]

in the literature.

1.1.1 Related Work

Localization has been studied extensively. There are three major category of

localization schemes that vary by what kind of geometric information they need. The

first one is based only on the connectivity information [23], [6], [29], [28] and [32],

i.e. based on if node i can directly communicate with node j, or anchor k. All the

algorithms have two steps, the first step is to get geometric information, specifically the

distances between nodes and anchors, from connectivity information. And the second

step is to determine the position of the nodes from the geometric information extracted

from step 1. In order to convert connectivity information into geometric information

on 2D different algorithms are studied in those papers, DV-Distance (first estimate

an average HOP length between anchors, then compute the distance from a node to

anchor by multiplying the hop counts) and similar ideas in [28],[6] [32] and [29]. In [23]

connectivity information is converted into convex constraints on geometric entities. A

thorough comparison of the localization schemes in [28]and [6] can be found in [24].

The second category is localization based on both Euclidean distance information
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and angular information. It is studied in [22],[27] and [33], the singularity of the Fisher

Information matrix is mentioned in [27] for the case where there is not enough global

geometric information. The estimation of angular information needs special antenna

elements which makes this kind of localization schemes less practical.

The third category is localization based solely on the Euclidean distances between

nodes and between nodes and anchors [35], [7], [4] and [39]. The first two schemes esti-

mate the coordinates of the nodes based on the measured or estimated distances between

the nodes and the anchors directly. The latter two schemes first estimate the anchor-free

coordinate system then embed the anchor-free coordinate system into the coordinate

system with anchors. In [20] and [15], the schemes of estimating Euclidean distances are

discussed. In our report we will propose a 2-step anchored localization scheme based

on Euclidean distances. The first step is to estimate an anchor-free coordinate system.

There’s a similar scheme in [4]. The second step is to combine the anchor-free coordinate

systems and eventually combine all anchor-free coordinate systems with an anchored

coordinate system, thus every node gets its own position in the anchored coordinate

system. How to combine two coordinates together is also studied in [4] and [39]. We

are going to focus on this kind of localization problem in our report.

Localization is indeed an estimation problem. In [1] the Cramer-Rao lower bounds

are calculated for several specific geometric setups. And as for anchor-free coordinate

estimation where there is no anchors, as mentioned in [27], the Fisher information matrix

is singular. Thus the standard Cramer-Rao bound analysis fails as mentioned in [30].

1.1.2 Overview

In a wireless sensor network, there are two kinds of nodes. One is nodes with

known position (anchors), the positions are possibly from GPS devices[33]. The second

kind is nodes without known positions. In general, the density of nodes without known

position can be much higher than the density of anchors because GPS equipment can be
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expensive and calibration can be time consuming. The localization problem is to recover

the positions of the nodes without known positions with the help of the positions of the

anchors and some geometric relations among nodes and anchors.

In a UWB sensor network, the sensors are capable of sampling the received signals

at a very high sampling rate. And if the whole sensor network is synchronized, it is

possible to measure the distances between any two nodes. To illustrate, we present a

simple distance measure scheme as following. At a preassigned time ti which is also

known by the whole sensor network, only node i sends out a signal while all other nodes

listen. The signal arrives at node j in the range of node i at time tji . Then the distance

dij between the ith node and the jth node can be calculated at node j, c(tji − ti), where

c is the speed of light. tji − ti is well known as TOA (time of arrival) in the radar

literature [5]. Here we assume that we have a perfect clock at each node. We leave the

synchronization issues to Appendix N and will give a linear estimation scheme which

estimates the offsets of clocks and distances simultaneously.

The power and communication ability in each sensor node is very limited. So a

distributed localization scheme is more preferable than a centralized scheme. However,

it is easier to analyze the localization performance bound in the centralized flavor.

Suppose that there is a central computer collecting all those distances, our goal is to

design a scheme for the central computer to estimate to 2-d positions of each node. Given

observations of distances between nodes, the underlying parameters to be estimated are

the positions of the nodes. Notice that with only distances between the nodes, it is

impossible to determine the anchored 2-d positions of the nodes. It turns out that at

least 3 nodes with known anchored 2-d positions are needed as reviewed in Appendix

A, also shown in [33].

In order to better understand the nature of the localization problem, we study the

Cramer-Rao lower bound on the localization problem in Section 2. The Cramer-Rao [34]

bound is a lower bound on the error variance of any unbiased estimators and is widely
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used to tell how difficult an estimation problem is. We will calculate the Cramer-Rao

lower bound for two different kinds of localization problems. The first is the Anchored

Localization Problem in which we have the the knowledge of the anchored positions

of at least 3 nodes. In this case, the goal is to estimate the anchored positions of all

nodes. The second is the Anchor-free Localization Problem where no universal

positions are known. Thus only relative positions can be estimated. It turns out that

the nature of the Cramer-Rao bound on the two problems are quite different.

For the Anchored Localization problem, we will show that the Cramer-Rao bound

is invariant under zooming. Then we will give a lower bound on the Cramer-Rao bound.

To compute this lower bound, only local (neighbor) information is needed. We observe

that it converges to Cramer-Rao bound if the local area is expanded which means that

we can use local geometry to predict the accuracy of the position estimation. And

we find that this lower bound is inversely proportional to the number of its neighbor

nodes. For the anchor-free localization problem, we will first show that the Fisher

Information Matrix is singular, thus the standard Cramer-Rao bound analysis does

not work. We will explain why the Fisher Information matrix is singular given the

geometry of the localization problem based on the work in [36] and propose a new

estimation framework. This framework tries to explain the singularity of a class of

estimation problems. Based on our framework, we derived a Cramer-Rao-like bound on

anchor-free coordinate estimation. It turns out that this bound is also highly dependent

on the average number of neighbor nodes, which again implies that local information

can well predict the accuracy of the position estimation.

Then in section 3 we will give our 2-step anchored localization algorithm. The

first step is to find an anchor-free coordinate system. This can be done distributedly

at each node. We are using a scheme similar to [4]. The scheme here is based on

ML estimation. The second step is to combine the anchor-free coordinate systems

and eventually combine all anchor-free coordinate systems with an anchored coordinate
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system generated by the anchors. Thus every node gets its own position in the anchored

coordinate system. How to combine two coordinates together is also studied in [4] and

[39]. We propose a different scheme. The key difference from the their schemes is that

our scheme is optimal under the MSE criteria. Finally we will analyze the performance

of our algorithm.
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1.2 Tracking Objects by a UWB Sensor Network

The positions of objects in the wireless sensor environment is useful information

for its own sake. Furthermore, the communication channel is largely determined by the

objects in the sensor network field. Tracking the position of the objects could simplify

the channel estimation problem, which has the potential to benefit the communication

system. In chapter 3 we will study the object tracking problem. More precisely, we will

study how to track the position of objects given the locations of the sensors and the

multi-path (transmitter-object-receiver) distances reflected by the objects.

1.2.1 Overview

In a UWB sensor network where transmitters and receivers have known locations,

it is possible to estimate the location of the objects in the field. Similar to the simple

distance measure model of the localization problem, transmitters can send out impulses

with very high bandwidth. If there are objects presented in the field, the received signal

is a combination of direct-path signal and reflected signal from the object. If the A/D

converters of the receivers have a very high sampling rate, it is possible to estimate the

multi-path distances of the reflection.

A simple example from real experimental data is as shown in Fig.1.2, the receiver

compares the received signal A(t) (the green curve in Fig1.2) with the control signal B(t)

(the blue curve in Fig1.2). The difference is the multi-path reflection from the objects

C(t) (the red curve in Fig1.2). td = Td−Tr is the estimated time difference between the

direct transmission of the impulse and the multi-path reflection of the impulse, where

Td, Tr are the TOA (time of arrival) of direct path and multi-path signals respectively.

The distance difference between the multi-path and the direct path is tdc, where c is

the speed of light. We assume that the locations of the sensors are known, and thus

the distance between the transmitter and the receiver ds. So the multi-path length is
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Figure 1.2: Estimation of the length of Multi-path
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ds + tdc. The estimation of the TOA of the direct path signal is a well known problem

in radar literature. The Cramer-Rao bound of any unbiased estimation of Td is [10]:

δ2
Td ≥

N0∫ T
0 [∂A(t)

∂t ]2dt
(1.1)

Where T is the observation interval, N0 is the noise power spectral density, δ2
Td is the

estimation variance of Td. Similarly the estimation variance of Tr

δ2
Tr ≥

N0∫ T
0 [∂C(t)

∂t ]2dt
(1.2)

Assuming the estimation of Td, Tr are independent, the Cramer-Rao bound on the

estimation variance of td is δ2
Tr + δ2

Td. Thus the CR bound on estimation variance of

the multipath distance is c2(δ2
Tr + δ2

Td). The dominant term tends to be δ2
Tr since it has

a lower energy.

In this report, both the sensors and the objects are assumed to be points on a 2-D

plane, and the positions of the sensors are known. And from the discussion above, the

multi-path distances are observed with some estimation error. The goal is to estimate

the position of the object(s). We will discuss the object tracking (position estimation)

problem in different scenarios. Given different number of transmitters, receivers, objects

and different prior knowledge of the motions of the objects, we are facing different

challenges. For each scenario, we will derive a performance bound assuming the distance

measures are corrupted by iid Gaussian noises. Then we will give an object tracking

algorithm and analyze it. All algorithms are presented in a centralized computing flavor.

First in 3.2 we will study the single transmitter, single receiver case, where a

motion model is a must to track the object because if the object can move with arbitrary

velocity, then two different motions could give the same multipath distance measure all

the time. So we assume the motion is strictly linear with constant velocity. After

showing that the problem is ill-conditioned by showing that the Cramer-Rao lower

bound of the estimation problem is huge, we argue that multi-sensor is needed in order

to make stable estimation of the position of the object(s).
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Then in 3.3 we will study a sensor network with multiple transmitters and mul-

tiple receivers, and also we will give some analysis on a multiple transmitter, single

receiver network. We will argue that with more sensors, the object can be more ac-

curately tracked in the sense of a decreasing Cramer-Rao lower bound. We will also

study the asymptotic properties of the Cramer-Rao bounds when the number of sensors

grows to infinity. We find that with uniformly distributed transmitters and receivers,

the asymptotic Cramer-Rao bound is inversely proportional to the of total received

SNR. And when the object is far away from the sensor field, the Cramer-Rao bound

in Euclidean coordinates increases proportionally to the square of distance between the

object and the sensors, even if the distance measurements maintain the same accuracy.

Meanwhile in polar coordinates, the Cramer-Rao bound remains constant as the object

moves far away. We also give a semi-linear algorithm which is order optimal when the

number of sensors is big. We will also study the object tracking problem in a small

sensor network, especially a two transmitter, two receiver network. We find that the

tracking performance for different sensor placements are very different in a small sensor

network.

Finally in 3.4, we will explore the objects tracking problem when there are more

than 1 objects in a multiple transmitter, multiple receiver sensor network. We will

propose a two step algorithm. The first step is inspired by the Hough Transform,

where we associate the multipath measurements with the objects, then we use the semi-

linear algorithm for single object tracking to estimate the positions of the objects. Our

algorithm gives a satisfactory estimation performance.

1.2.2 Related Work

In multi-static radar literature, the position estimation and object tracking prob-

lem are also studied. In [5], two position estimation schemes are discussed, a one-stage

scheme, and a two-stage scheme. In the one-stage scheme, all the receivers send the
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entire received signal to a fusion center, and the fusion center estimates the position of

the object. In the two-stage scheme, the first stage receivers estimate some geometric

features (TOA, AOA,...) related to the object. Then they send the geometric features

to a fusion center, which estimates the position of the object according to the geometric

features. Position estimation using TOA or TDOA (time difference of Arrival) in a

radar network has been studied in [5] and [2], and the accuracy is discussed in [12]. The

achievable accuracy (Cramer-Rao bound) of the position estimation is also studied in

[5] where it is shown that 2-stage estimation achieves the same estimation variance as

1-stage if the noises are white Gaussian, and the estimation in the first stage is unbiased

and efficient.

Recently, position estimation of objects in a sensor network or in an indoor region

has been studied in [38]. Position estimation in a sensor network is quite similar as the

position estimation problem in multi-static Radar literature. The differences are, for

sensor network, the communication capacity is much more limited [16] than multi-

static radar. Thus the receivers cannot send the entire received signal to a fusion

center. The receivers have to estimate some geometric feature related to the position

of the object, then send the features to the fusion center to do the final estimation. In

this report, the geometric features are transmitter-object-receiver multi-path distance

measures. Furthermore, it is very difficult to equip a sensor network with Doppler

radars or antenna arrays which can collect AOA (angle of arrival) information, so we

mainly consider position estimation based on the TOA (time of arrival) information

alone. The position estimation in a sensor network can be thought as a 2-stage position

estimation problem using TOA information only. Multistatic radar systems are also

usually sparsely deployed. So one thing that is not extensively studied in multi-static

radar literature is the asymptotic behavior, i.e. the Cramer-Rao bound on the position

estimation where a dense radar network exists. By contrary sensors can be densely

deployed in the field, and thus the asymptotic behavior is interesting.



Chapter 2

Localization

2.1 Problem Formulation

In this section we give the mathematical model of the localization problem in

both anchored localization and anchor-free localization scenarios.

On a 2-D plane, M wireless sensors with unknown positions are present,

forming a set S. Also, N wireless sensors with known positions are present, forming a

set namely F. Because the size of each sensor is assumed to be very small, we treat each

sensor as a point. An illustration is in Fig.2.1.

Figure 2.1: A sensor network. F = {p1, p2, p3, p4, p5}, M = 5, black points form S.

Each wireless sensor can generate limited-power signals, through which, a sensor
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i can measure the distance to some nearby sensors , the set is called adj(i). In general,

node i can measure the distance between node j and i does not necessarily mean that

node j can measure the distance between node j and i as well. However if sensor i and

j can communicate with each other , then we can always assume the distance between i

and j is known to both. Also, if i and j get different distance measures, we can always

properly average the two measurements since we assume the noises are independent zero

mean Gaussian. So we assume that j ∈ adj(i) iff i ∈ adj(j). Part of the sensor network

in Fig.2.1 is shown in Fig.2.2.

Figure 2.2: The rectangular region in Fig.2.1. Sensor i is linked to j,iff j ∈ adj(i) with
a blue line.

2.1.1 Anchored Localization Problem

If |F | ≥ 3, i. e. there are three or more nodes with known position, then it’s

possible to estimate the anchored coordinate for each node. Thus we have observation

D and position knowledge PF .

D = {di,j |i ∈ S ∪ F, j ∈ adj(i)} (2.1)

PF = {(xi, yi)T |i ∈ F} (2.2)
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Our goal is to reconstruct the set

PS = {(xi, yi)T |i ∈ S} (2.3)

(xi, yi) is the position of a single sensor i. di,j is the measured distance between

sensor i and j. di,j =
√

(xi − xj)2 + (yi − yj)2+εi,j , where εi,j ’s are modelled as indepen-

dent additive Gaussian noises ∼ N(0, σ2
i,j). For simplicity, we often assume σ2

i,j = σ2,

i. e. εi,j ’s are iid ∼ N(0, σ2).

2.1.2 Anchor-free Localization Problem

If |F | = 0, no nodes have known position. Thus we only have

D = {di,j |i ∈ S, j > i, j ∈ adj(i)} (2.4)

(2.5)

Then it is impossible to estimate the anchored coordinate for any nodes. Our goal is to

reconstruct the set

PS = {(xi, yi)T |i ∈ S} (2.6)

With only distance information, it is only possible to estimate an anchor-free co-

ordinate system as illustrated in Appendix A. If PS = {(xi, yi)T |i ∈ S} is an estimation

of the positions of the nodes, then P ′
S = {R(α)(xi, yi)T + (a, b)T |i ∈ S} is equivalent to

PS . Because they have the same distances between any two nodes. Where

R(α) =




cos(α) −sin(α)

sin(α) cos(α)


 or




cos(α) −sin(α)

−sin(α) −cos(α)


 (2.7)

Thus the performance measure of an anchor-free localization estimation should not be
∑

(x− x̂)2 +(y− ŷ)2. Instead we will define the distance between equivalence classes in

Section 2.2.2 and it best depicts the performance of an anchor-free coordinate estimation.

Same as the anchored localization problem the distance measures are assumed to

be corrupted by iid additive Gaussian noises ∼ N(0, σ2).
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2.2 Cramer-Rao Lower Bound on Localization

In this section, we give the Cramer-Rao bound [8]on the localization problem.

There are 2 difference scenarios here, Anchored localization and Anchor-free lo-

calization. The first scenario is that if there are three or more sensors with known

positions, then the localization problem can be defined as a traditional parameter esti-

mation problem. Anchor-free localization is if there are no sensors have known positions,

i.e. all we know is the distance measures between sensors. Then the problem can not be

defined as a traditional parameter estimation problem. We define an equivalence class

estimation problem, and the anchor-free localization falls right in that category. In this

section we are interested in defining the Cramer-Rao bound problem for anchor-free

localization than will calculate the Cramer-Rao bound in section 2.2.2.

2.2.1 The Cramer-Rao bound on Anchored Localizaion

First we give some general results on Cramer-Rao lower bound. We first review

the geometric treatment of Cramer-Rao bound introduced by Steve Smith in [36].

Theorem 2.1. Cramer-Rao Let f(x|θ) be a family of pdfs parameterized by θ ∈ ψ,

where ψ is an n dimensional manifold. Let l = log(f) be the log-likelihood function, and

Fisher information matrix J , Jij = E[(∂l/∂θi)(∂l/∂θj)]. Given arbitrary coordinates

θ = (θ1, ..., θn)T ∈ Rn on ψ, then for any unbiased estimator θ̂ of θ,

C ≥ J−1 (2.8)

Where C = E[(θ − θ̂)(θ − θ̂)T ] is the covariance matrix of θ̂ − θ and J is the Fisher

information matrix with respect to these coordinates.

Here matrix n × n dimensional matrix A ≥ B means : A − B is positive semi-

definite.
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2.2.1.1 CR bound on Anchored localization

In this section we derive the Fisher Information matrix for the anchored local-

ization problem and numerically compute the CR bound for some particular setups of

sensors.

As illustrated in 2.1.1. The position of M sensor are unknown , as S = {(xi, yi), i =

1, ...M}. The position of N sensors are known, as F = {(xi, yi), i = M + 1, ...N + M =

L}. The distances between sensor i, i = 1, ...N and each sensor in adj(i) ⊆ S ∪ F are

measured , but corrupted by Gaussian noises. We assume the Gaussian noises are i.i.d

with zero mean and variance σ2. So we have the observations

di,j =
√

(xi − xj)2 + (yi − yj)2 + δi,j (2.9)

Where j ∈ adj(i),and δi,j is assumed to be equal to δj,i, thus di,j = dj,i. So

without loss of generality, we assume i < j. We define the αij the angle from node i to

j as following. αij ∈ [0, 2π) and

cos(αij) =
xj − xi√

(xj − xi)2 + (yj − yi)2
; sin(αij) =

yj − yi√
(xj − xi)2 + (yj − yi)2

; (2.10)

Figure 2.3: αij

The geometric interpretation of αij is illustrated in Fig.2.3. Now let the observa-

tion vector ~d = {di,j , i < j, i ≤ M, j ∈ adj(i)}. And the parameters we want to estimate
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are (xi, yi), i = 1, ..M . Let xi, yi be the 2i− 1’th and 2i’th parameters to be estimated

respectively ,i = 1, 2, ...M . The Fisher information matrix is J2M×2M . Then we have

the following theorem.

Theorem 2.2. Fisher Information Matrix for Anchored Localization ∀i = 1, ...M

J2i−1,2i−1 =
1
σ2

∑

j∈adj(i)

cos(αij)2 (2.11)

J2i,2i =
1
σ2

∑

j∈adj(i)

sin(αij)2 (2.12)

J2i−1,2i = J2i,2i−1 =
1
σ2

∑

j∈adj(i)

cos(αij)sin(αij) (2.13)

Above are the “diagonal” entries of the Fisher Information matrix J . For j 6= i, if

j ∈ adj(i)

J2i−1,2j−1 = J2j−1,2i−1 = − 1
σ2

cos(αij)2 (2.14)

J2i,2j = J2j,2i = − 1
σ2

sin(αij)2 (2.15)

J2i−1,2j = J2j,2i−1 = J2i,2j−1 = J2j−1,2i = − 1
σ2

sin(αij)cos(αij) (2.16)

If j /∈ adj(i): J2i−1,2j−1 = J2j−1,2i−1 = J2i,2j = J2j,2i = J2i−1,2j = J2j,2i−1 = J2i,2j−1 =

J2j−1,2i = 0.

Proof. : Following the standard Fisher Information matrix calculation. We have the

conditional pdf function:

p(~d|xi, yi, i = 1, ...M) =
∏

i≤M,i<j,j∈adj(i)

1√
2πσ2

exp(
−(dij −

√
(xj − xi)2 + (yj − yi)2

2σ2
)

(2.17)

Log-likelihood function

ln(p(D|xi, yi, i = 1, ...M)) = C − 1
2σ2

∑

i≤M,i<j,j∈adj(i)

(di,j −
√

(xj − xi)2 + (yj − yi)2)2

(2.18)
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Then the 2i− 1, 2i− 1’th entry of J is

J2i−1,2i−1 = E(
∂2ln(p(D|xi, yi, i = 1, ...M))

∂x2
i

)

=
1
σ2

∑

j∈adj(i)

(
xj − xi√

(xj − xi)2 + (yj − yi)2
)2

=
1
σ2

∑

j∈adj(i)

cos(αij)2 (2.19)

Similarly for other entries of J . ¤

We define K = σ2J , where K is independent of σ2, we will call K the normalized

Fisher information matrix. It is comparable to the GDOP (Geometric Dilution of

Precision) in the radar literature [5]. As the GDOP in the radar literature, K is a

dimensionless value and it only depends on the angles αij ’s.

Given the expression of the Fisher Information matrix, we can evaluate the

Cramer-Rao bound on the position estimation. Suppose the unbiased estimate of

(xi, yi), i = 1, ...N is (x̂i, ŷi). From Theorem 2.1.

E((x̂i − xi)2) ≥ J−1
2i−1,2i−1 (2.20)

E((ŷi − yi)2) ≥ J−1
2i,2i (2.21)

Obviously , the normalized Fisher Information matrix is a function of (xi, yi), i =

1, ...N + M , written as K((xi, yi), i = 1, ...N + M).

Corollary 2.1. The normalized Fisher Information Matrix K is invariant under zoom-

ing and translation K((xi, yi), i = 1, ...N + M) = K((axi, ayi) + (c, d), i = 1, ...N +

M),a 6= 0, c, d ∈ R.

Proof. : Notice that the normalized Fisher Information matrix K((xi, yi), i = 1, ...N +

M) is determined by αij , and the following two point sets (xi, yi), i = 1, ...N + M) =

K((axi, ayi) + (c, d), i = 1, ...N + M),a 6= 0, c, d ∈ R yield the same αij , ∀i, j. So

K((xi, yi), i = 1, ...N + M) = K((axi, ayi) + (c, d), i = 1, ...N + M). ¤
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2.2.1.2 A lower bound on the Cramer-Rao lower bound of anchored

localization

From the previous section, we know how to compute the Cramer-Rao bound on

the anchored localization problem. However, as can be seen, in order to evaluate the

Cramer-Rao lower bound, we need to take the whole sensor network into account. In

this section, we are going to derive a performance bound on the estimation of node l at

(xl, yl) only based on the local geometry around it.

First we have some general results for estimation variance. Suppose θ ∈ Rn is the

parameter to be estimated, and if the Fisher information matrix J(θ) is non-singular,

thus it’s positive definite. We have the following theorem.

Theorem 2.3. A lower bound on the Cramer-Rao lower bound

Let θ = (θ1, θ2, ...θN ) ∈ RN , ∀M, 1 ≤ M < N , write θ∗ = (θN−M+1, ...θN ), then for any

unbiased estimator for θ,

E((θ∗ − θ̂∗)T (θ∗ − θ̂∗)) ≥ C−1 (2.22)

Where C is an (N −M)× (N −M) matrix :

J(θ) =




A B

BT C


 (2.23)

J(θ) is the Fisher Information matrix for θ.

Proof. : Write the inverse of J(θ) as :

J(θ)−1 =




A′ B′

B′T C ′


 (2.24)

J(θ) is positive definite, then

C ′ ≥ C−1 (2.25)
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The proof is in Appendix B.

And from Theorem 2.1, E((θ∗ − θ̂∗)T (θ∗ − θ̂∗)) ≥ C ′ ≥ C−1. ¤.

Notice that for any subset of M parameters, we can always change the index of

the parameter to make them have index N −M + 1, ...N .

Corollary 2.2. A lower bound on the Cramer-Rao bound

Write θl = (xl, yl)T and

Jl =
1
σ2




J(θ)2l−1,2l−1 J(θ)2l−1,2l

J(θ)2l,2l−1 J(θ)2l,2l


 (2.26)

Then for any unbiased estimator θ̂. E((θ̂l − θl)(θ̂l − θl)T ) ≥ J−1
l .

Proof. : This is directly from Theorem 2.3. ¤

Corollary 2.3. Jl is only dependent on (xl, yl) and (xi, yi), i ∈ adj(l). In other words,

we can give a performance bound on the estimation of (xl, yl) using only the geometries

of sensor l’s neighbors (sensor j’s, s.t. j ∈ adj(l)).

Proof. : Only need to notice that the expressions on the entries of Jl in Eqn.3.104 is :

Jl1,1 =
1
σ2

∑

j∈adj(l)

cos(αlj)2 (2.27)

Jl2,2 =
1
σ2

∑

j∈adj(l)

sin(αlj)2 (2.28)

Jl2,1 = Jl1,2 =
1
σ2

∑

j∈adj(l)

cos(αlj)sin(αlj) (2.29)

So Jl only depends on αlj , j ∈ adj(l). And αlj only depends on (xl, yl) and (xi, yi). ¤

Notice that the result holds if the estimation variance on di,l, i ∈ adj(l) are dif-

ferent. Let the variance be σ2
i,l. Then

Jl1,1 =
∑

j∈adj(l)

1
σ2

k,l

cos(αlj)2 (2.30)

Following the similar arguments as in the proof of Corollary 2.3, we know that Jl1,1

only depends on (xl, yl) and (xi, yi), i ∈ adj(l), similarly for Jl2,1 Jl1,2 and Jl2,2.
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Let σ2
lj = σ2 again and let adj(l) = W , and sensors ∈ adj(l) are l(1), ..., l(k), ..l(W ).

With elementary trigonometry and write αk = αl,l(k), we have :

Jl =
1
σ2




W
2 +

∑W
k=1 cos(2αk)

2

∑W
k=1 sin(2αk)

2
∑W

k=1 sin(2αk)
2

W
2 −

∑W
k=1 cos(2αk)

2


 (2.31)

The sum of the estimation variance

E((xl − x̂i)2 + (yl − ŷi)2) ≥ J−1
l 11

+ J−1
l 22

=
4Wσ2

W 2 − (
∑W

k=1 cos(2αk))2 − (
∑W

k=1 sin(2αk))2
≥ 4σ2

W
(2.32)

It takes equality when
∑W

k=1 sin(2αk) = 0,
∑W

k=1 cos(2αk) = 0. This happens if the

mass center of the unit vectors (cos(2αk), sin(2αk))’s is at the origin (0, 0). A special

case is when αk = 2kπ
W + β. In fact if the angles 2αk’s are iid uniformly distributed in

[0, 2π), E(cos(αi)cos(αj)) = E(sin(αi)sin(αj)) = δ(i− j), where δ(0) = 1 and δ(k) = 0

if k 6= 0. By the law of large numbers,

limW→∞W (J−1
l 11

+ J−1
l 22

) = limW→∞
4W 2σ2

W 2 − (
∑W

k=1 cos(2αk))2 − (
∑W

k=1 sin(2αk))2
=

limW→∞
4σ2

1− ( 1
W

∑W
k=1 cos(2αk))2 − ( 1

W

∑W
k=1 sin(2αk))2

−→ 4σ2 a.s. (2.33)

Eqn.2.33 shows that J−1
l 11

+ J−1
l 22

converges to 0 with the rate of lower bound in

Eqn.2.32. Also notice that when W = 1, the denominator is 0, thus the CR bound is

infinity.

In the above analysis, we used one-hop information around node i to compute a

bound on the Cramer-Rao bound on the estimation of (xi, yi). In fact we can use multi-

hop information to get a tighter bound on the Cramer-Rao bound. This can be easily

proved by Corollary B.1 in Appendix B. For the Cramer-Rao bound of the anchored

localization problem. The larger the local region we use to calculate the Cramer-Rao

bound , the tighter it is.
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2.2.1.3 Bound on the variance of estimation error with connectivity

information

On the other hand, we can take the connectivity information into account as

was done in [23],[6],[29],[28] and [32]. The connectivity information can be trans-

ferred into geometric constraints in the following way. Let R be the threshold, s.t.
√

(xi − xl)2 + (yi − yl)2 ≤ R iff i ∈ adj(l),
√

(xi − xl)2 + (yi − yl)2 > R iff i /∈ adj(l).

R is called the visible radius.

We can treat the connectivity information as constraints. Write C((x, y), R) =

{(u, v)|
√

(u− x)2 + (v − y)2 ≤ R}. If ∞ > L ≥ |adj(l)| ≥ 1, then write Tl =

(∩j∈adj(l)C((xj , yj), R)) ∩ (∩j /∈adj(l),j 6=lC((xj , yj), R)c). The Borel set TL is the region

where (xl, yl) could be. It is bounded and the Tl can be covered by disc of radius R.

Let ∂O be the boundary of a Borel set O, then let Nl = {j 6= l|∂C((xj , yj), R) ∩

∂Tl 6= ∅}. It is illustrated in Fig.2.4. Notice that by the definition of Nl, ∀j ∈

Nl,
√

(xj − xl)2 + (yj − yl)2 ≤ 3R. We know that the estimation variance of (xl, yl)is

lower bounded by the estimation problem of (xl, yl) given {(xi, yi), i =∈ Nl ∪ adj(l)} ∪

{bi, i ∈ Nl ∪ adj(l)}. i.e, we just found a new estimation problem for (xl, yl) with lower

estimation variance. And the new estimation problem only involves with the information

of nearby sensors with distances no larger than 3R.

The standard Cramer-Rao bound analysis does not apply to the estimation prob-

lem with connectivity information being taken into account because we impose the

constraint (xl, yl) ∈ Tl to the estimation problem. Thus the Cramer-Rao bound anal-

ysis no longer holds because the support set of the conditional pdf is not the whole

space[8].

With large variance of distance measurement, the Cramer-Rao bound computed

solely from the distance information is no longer a valid lower performance bound.

Because given Tl, the estimation variance is upper bounded by R(Tl)2, where R(Tl) is
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Figure 2.4: Illustration of TL and NL

The yellow region is Tl ,adj(l) = {1, 2, 3}, 4, 5, 6 /∈ adj(l), while Nl = {2, 3, 5, 6}
If node l is inside C((x2, y2), R)∩C((x3, y3), R)∩C((x5, y5), R)c ∩C((x6, y6), R)c, then
node l is destined to ∈ C((x1, y1), R) ∩ C((x4, y4), R)c
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the minimum radius of a disc which covers Tl. Notice that R(Tl) is solely dependent on

the topology of the sensor network, it’s independent with the distance measure variance

σ2. Meanwhile the Cramer-Rao bound computed solely using the distance information

≥ σ2

W . It can easily exceed R(Tl)2 with a large σ2.

When the variance of distance measurements is small comparing to R(Tl), how-

ever, we have the following observation.

Theorem 2.4. Tl can most likely be determined by distance measurements: Assuming

(xl, yl) /∈ ∂Tl, then ∀ non-collinear setups of (xi, yi), i ∈ adj(l), ∀ε > 0, ∃Ω > 0, s. t.

if σ2 < Ω, then we can find a region Sl solely based on {(xi, yi), dl,i, i ∈ adj(l)}, s.t.

(xl, yl) ∈ Sl ⊆ Tl with probability 1− ε.

In other words, if the distance measures dl,i’s are accurate enough, then ∀i, we

can tell if i ∈ adj(l) with high confidence.

Proof. : Define Sl as following:

Sl = ∩j∈adj(l){(x, y)|
√

(x− xj)2 + (y − yj)2 ∈ (dl,j −D, dl,j + D)} (2.34)

Where D is big enough to make

Pr(
√

(xl − xj)2 + (yl − yj)2 ∈ (dl,j −D, dl,j + D)) =

Pr(dl,j ∈ (
√

(xl − xj)2 + (yl − yj)2 −D,
√

(xl − xj)2 + (yl − yj)2 + D)) =

∫ D

D

e−
z2

2σ2

√
2πσ2

dz ≥ 1− ε

|adj(l)| (2.35)

With Ω goes to 0, and σ2 < Ω, D can be arbitrarily small, then Sl can be arbitrarily

small. Notice that (xl, yl) /∈ ∂Tl thus if (xl, yl) ∈ Sl and R(Sl) < inf
√

(xl − x)2 + (yl − y)2, (x, y) ∈

∂Tl, then Sl ⊆ Tl. R(Sl) is the radius of the minimum disc which can cover Sl. And

Pr((xl, yl) ∈ Sl) = Pr((xl, yl) ∈ ∩j∈adj(l){(x, y)|
√

(x− xj)2 + (y − yj)2 ∈ (dl,j −D, dl,j + D)}

≥ 1− |adj(l)|Pr(
√

(xl − xj)2 + (yl − yj)2 /∈ (dl,j −D, dl,j + D)) ≥ 1− ε (2.36)
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¤

Thus the estimation variance behaves asymptotically like the estimation variance

where connectivity is considered independent with distance. In that case, the lower

estimation bound still have the same form as the Cramer-Rao lower bound.

2.2.1.4 Simulation results

In this section, we calculate the Cramer-Rao bound for anchored localization

problem as in [1]. We will focus on the lower bounds on the Cramer-Rao lower bound

discussed in the previous section and show some simulation results.

In our simulations, we randomly generate M points on the plane presumably

with unknown position, and N points with known position. The position of the points

are uniformly distributed inside region A. We calculate the normalized Cramer-Rao

lower bound on the estimation variance Vx(i), Vy(i) and the lower bound derived in the

previous section Lx(i), Ly(i) for sensor i = 1, 2, ..., M . The visible radius is R. In our

simulation, we fix A and vary N ,M and R.

(i)In the first simulation,A is the region inside unit circle x2 +y2 = 1, we suppose

for all sensor pair i, j, the distance between i, j is measured, i.e. |adj(i)| = M + N − 1.

In the following figure, we show the the normalized Cramer-Rao bound Vx(i) + Vy(i),

the lower bound of CRLB Lx(i) + Ly(i) and 4
|adj(i)| . In Fig2.5, N=10, M=100.

(ii) In the following simulations, we show the effect of the visible radius. In Fig2.6,

there are 3 setups Fix the number of sensors N=10,M=100,(a) R=0.5 (b) R=0.7 and

(c) R=0.9. As can be seen, the bounds decreases as the visible radius increases.

From the simulations, we can see that 4
|adj(i)| is a tight lower bound on Lx(i) +

Ly(i), and Lx(i) + Ly(i) is a reasonable lower bound on Vx(i) + Vy(i) when the average

number of sensors inside the circle of radius R is reasonably big.

From corollary 2.3 and above simulation results, we can tell that the position esti-

mation variance of (xl, yl) is lower bounded by the nature of local geometry {(xj , yj), j ∈
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Figure 2.5: Bounds on anchored localization 1 N=10,M=100;
(a) Blue dots: unknown position, Red dots: known position (b)blue dots: Vx(i)+Vy(i),
red dots: Lx(i) + Ly(i), black dots: 4

|adj(i)|
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Figure 2.6: blue dots: Vx(i) + Vy(i), red dots: Lx(i) + Ly(i), black curve: 4
|adj(i)|

(a) N=10,M=100, R=0.5 (b) N=10,M=100, R=0.7 (c) N=10,M=100, R=0.9
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adj(l)}and the estimation variance σ2
j,lof the distance measures dj,l. i. e. increasing the

distance measurement accuracy in a faraway part of the sensor network, does not help

to increase the accuracy of a position estimation.
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2.2.2 The Cramer-Rao bound on Anchor-free Localization

2.2.2.1 Singularity of the Fisher Information Matrix

The standard Cramer-Rao lower bound does not exist for an estimation problems

with singular Fisher Information matrix[30]. We are going to tackle a class of estima-

tion problem with singular Fisher Information matrices. First we have the following

observations on the Fisher Information matrix.

Lemma 2.1. Rank of the Fisher information matrix: One sufficient and necessary

condition for J to be nonsingular at θ is that the expectation of the square of directional

derivative of l at θ is non zero for any direction b ∈ Rn.

proof : the directional derivative of l(x|θ) at θ, along direction b is : τ(b) =

(∂l/∂θ1, ∂l/∂θ2, ..., ∂l/∂θn)b.

E(τ(b)2) = E(bT (∂l/∂θ1, ∂l/∂θ2, ..., ∂l/∂θn)T (∂l/∂θ1, ∂l/∂θ2, ..., ∂l/∂θn)b)

= bT Jb (2.37)

A symmetric matrix J is non-singular iff for any non-zero vector b ∈ Rn, bT Jb > 0. By

Eqn.2.37, we know that J is non-singular iff E(τ(b)2) is non-zero for any b ∈ Rn. ¤

If there are no sensors have known positions, this could happen if we only care

about the anchor-free coordinate system of a sensor network. The problem is now: there

are M sensors Ti, i = 1, ...M have unknown 2-D position (ui, vi), distance measures

between sensors are dTi,Tj , 1 ≤ i < j ≤ M . Then the localization problem can not be

treated as a parameter estimation problem for θ = (u1, u2, ...uM , v1, v2, ..., vM ). Because

the Fisher information matrix J is singular, thus the parameter estimation problem is

not well defined. Here we give a brief proof of the singularity of the Fisher information

matrix J(θ), let h = (dTi,Tj ), 1 ≤ i < j ≤ M be the observation vector:

Theorem 2.5. For the anchor-free localization problem, the Fisher Information Matrix

J(θ) is singular
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Proof. : The parameter vector θ = (u1, u2, ...uM , v1, v2, ..., vM ), where (ui, vi) is the

position for sensor Ti. The observation vector h = (dTi,Tj ), 1 ≤ i < j ≤ M .Then the

log-likelihood function of this estimation problem is :

l(h|θ) = constant +
−1
2σ2

∑
(
√

(ui − uj)2 + (vi − vj)2 − dTi,Tj )
2

= constant +
−1
2σ2

∑
(
√

((ui + ac)− (uj + bc))2 + ((vi + ac)− (vj + bc))2 − dTi,Tj )
2

(2.38)

∀a, b, c ∈ R. Now given any parameter θ, fix a, b, the value of the log-likelihood function

l along the direction ~x = (a, a, ...a, b, b, ..b) is constant, thus the directional derivative

of l along vector θ + c~x, c ∈ R is zero. From Lemma 2.1, we know that the Fisher

information matrix J is singular. ¤

2.2.2.2 equivalence class Estimation

Now we give the definition of equivalence class estimation in Rn. First we give

the definition of equivalence class of parameters for a class of pdf functions.

Definition 2.1. Equivalent ∼: Let y ∈ RN , N = 1, 2, ... denote the available data vec-

tor. Assume that the data has been generated by some stochastic system with parameter

vector θ ∈ RM and that the density function of y given θ is f(y|θ). Two parame-

ter vectors α, β ∈ RM are called equivalent parameters iff ∀y ∈ RN , N = 1, 2, ...,

f(y|α) = f(y|β), denote as α ∼ β. Obviously ∼ is an equivalent relation in RM .

Definition 2.2. Equivalent parameter class: The equivalent parameter class for a

parameter vector α ∈ RN is defined as α̃ = {β ∈ RM : α ∼ β}. Obviously the equivalent

parameter class is an equivalence class. From the property of equivalence classes, RM

is the union of some disjointed equivalent parameter classes.

Definition 2.3. Parallel classes: Two equivalence classes α̃ and β̃ are called parallel,

iff ∀α1, α2 ∈ α̃, d(α1, β̃) = d(α2, β̃).
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Where d(α, T ) = minx∈T d(α, x), α ∈ RM , T ⊆ RM , is the conventional definition

of the distance from a point to a set, d is the usual Euclidean metric.

We define d(α̃, β̃) = d(α1, β̃), α1 ∈ α̃ to be the distances between 2 equivalence

classes α̃, β̃ if they are parallel. If all the equivalence classes are parallel, then the

underlining relation ∼ is called well-paralleled relation. And the distances is indeed a

metric.

Lemma 2.2. d(α̃, β̃) is a metric in the equivalence classes space.

proof : i) d(α̃, β̃) = d(α, β̃) ≥ 0, α ∈ α̃. ii) d(α̃, β̃) along direction b is : τ(b) =

(∂l/∂θ1, ∂l/∂θ2, ..., ∂l/∂θn)b. ¤

And we have the following definition for equivalence class estimation and the

metric for equivalence classes in an equivalence class estimation problem.

Definition 2.4. Equivalence class estimation: Let y ∈ RN , N = 1, 2, ... denote

the available data vector. Assume that the data has been generated by some stochastic

system with equivalent parameter vector classes, θ̃ ⊆ RM and that the density function

of y given ∀α ∈ θ̃ is f(y|θ). The underline relation ∼ is defined in Def.2.2. If all pairs of

equivalence classes α̃, β̃ are parallel as defined in Def.2.3. Then the estimation problem

of θ̃ based on the available data vectors y is an equivalence class estimation problem.

Definition 2.5. M/K Equivalence class estimation: In an equivalence class es-

timation problem, if all but finite many equivalence classes θ̃1, ..., θ̃L, L < ∞, are M

dimensional manifolds in RM . And without loss of generality, we assume for all but

finitely many equivalence classes θ̃, ∀θ ∈ θ̃, ∀ equivalence class β̃, there exists a unique

β ∈ β̃, s.t. d(θ, β) = d(θ̃, β̃).

A simple M/K equivalence class estimation problem is given in Appendix C in

which M = 2, K = 1.
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In an equivalence class estimation problem, we define the estimation variance as

: E[d(θ̃, ˜̂θ)2], where ˜̂
θ is the estimate of the equivalence class. By the definition of the dis-

tance d on the equivalence classes, we know that ∀θ ∈ θ̃,∀ equivalence class β̃ , d(θ, β̃) =

d(θ̃, β̃). I.E. ∀θ ∈ θ̃, ∀ equivalence class β̃ , ∃β ∈ β̃ ⊆ RMd(θ, β) = d(θ̃, β̃).

In an M/K estimation problem, for all but finite equivalence class θ̃ behaves like

a K dimensional manifold embedded into RM . So we can define the tangent space at

θ ∈ θ̃, and the normal space at θ. Denote T (θ) to be the K dimensional tangent space

at θ of the manifold, generated by orthonormal vectors ~v1, ... ~vK , where each ~vi is a unit

vector in RM . Denote S(θ) to be the M −K dimensional normal space at θ which is

orthogonal to T (θ). S(θ) is generated by M −K ortohnormal vectors ~w1, ... ~wM−K .

Lemma 2.3. singular directions

(1)∀x ∈ RN ,the directional derivative of l(x|θ) along any direction ~v ∈ T (θ) is 0. Where

l(x|θ) = log(p(x|θ)).

(
∂l(x|θ)

∂θ1
,
∂l(x|θ)

∂θ2
, ...,

∂l(x|θ)
∂θM

)~v = 0 (2.39)

(2) ∀~w ∈ S(θ), ∃x ∈ RN , the directional derivative of l(x|θ) along ~w is nonzero.

(
∂l(x|θ)

∂θ1
,
∂l(x|θ)

∂θ2
, ...,

∂l(x|θ)
∂θM

)~w 6= 0 (2.40)

proof: the correctness follows directly from the definition of T (θ). ¤

Lemma 2.4. Solution Space For an M/K equivalence class estimation problem, if

θ̃ is an equivalence class, then ∀θ ∈ θ̃, we denote U(θ) = {β ∈ RM |d(θ, β̃) = d(θ, β)},

where β̃ is the equivalence class β belongs to.

U(θ) ⊆ S(θ).

proof: For any β ∈ β̃, if d(β, θ) = d(β̃, θ̃), then θ = argmin
θ∈θ̃

d(θ, β). At the

local region around θ, a point ρ on the K dimensional manifold can be described as

ρ = θ +
∑K

i=1 aivi, where ai ∈ R. Meanwhile β = θ +
∑K

i=1 bivi +
∑M−K

j=1 cjwj . Now
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d(β, ρ) =
∑K

i=1(ai − bi)2 +
∑M−K

i=1 c2
j . It takes the minimum value at ai = 0, i = 1, ..K,

it is true only if bi = 0, i = 1, ..K. ¤.

Now at a point θ ∈ θ̃, we can do the parameter estimation around that point

on the normal subspace S(θ). In order to calculate the lower bound of the estimation

variance for the equivalence class estimation problem. We need to find the connections

between the equivalence class estimation and parameter estimation on the normal bundle

S(θ).

Definition 2.6. Unbiased equivalence class estimation In an M/K equivalence

class estimation problem. An estimator is called unbiased equivalence class estimator,

if and only if the following conditions hold. For all but finitely many θ̃, if the estimate

is ˆ̃
θ, ∀β ∈ θ̃, let θ̂β be the point ∈ ˆ̃

θ and d(θ, θ̂β) = d(θ̃, ˆ̃θ). If E(θ̂β) = θ, then we call

the estimator an unbiased equivalence class estimator.

If we look at the parameter estimation problem around point θ on the normal

subspace S(θ), S(θ) is orthogonal to the tangent subspace on θ of the K dimensional

equivalence class θ̃, thus has dimension M − K,for any point y on S(θ), there is a

unique M −K dimensional vector β = (β1, ...βM−K),s.t. y − θ = β1w1 + β2w2 + ... +

βM−KwM−K ,. Then we let f(x|β) be a family of pdfs parameterized by β on S(θ), an

M −K dimensional subspace. Let l = log(f) be the log-likelihood function, and Fisher

information matrix J(θ), J(θ)ij = E[(∂l/∂βi)(∂l/∂βj)].

Lemma 2.5. Recitation of Cramer-Rao bound on S(θ)

For the estimation problem on S(θ), ∀ unbiased estimator θ̂ of θ,

C(θ) ≥ J(θ)−1 (2.41)

Where C(θ) = E[(β − β̂)(β − β̂)T ] is the covariance matrix of β̂ − β and J(θ) is the

Fisher information matrix with respect to these coordinates w1, ..wM−K .

proof: This is a recitation of Theorem 2.1 on subspace S(θ). ¤
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Theorem 2.6. Estimation variance of the M/K equivalence class estimation:

For an equivalence class estimation problem, with data x, parameter θ̃, for any non-

biased equivalence class estimator ˆ̃
θ. ∀θ ∈ θ̃,let J(θ) to be the Fisher information matrix

defined in Lemma 2.5. Then E(d(θ̃, ˆ̃θ)2) ≥ Tr(J(θ)−1)). Where Tr(A) is the sum of

all diagonal entries of matrix A.

proof: Proof by contradiction. Suppose ∃ unbiased estimator T (x) = ˆ̃
θ, for some

θ̃ ⊆ RM , θ ∈ θ̃, such that the estimation variance E(d(θ̃, ˆ̃θ)2) ≤ Tr(J(θ)−1)). Now look

at the parameter estimation problem of θ on S(θ) given data x. We can always lift the

estimation problem to the equivalence class estimation problem without introducing any

new data, noticing the structure of the equivalence classes is well defined. Then we can

estimate the equivalence class θ̃, the estimation is ˆ̃
θ, then project ˆ̃

θ back to S(θ), and

let the intersection of ˆ̃
θ and S(θ), θ̂to be the parameter estimation of θ on S(θ). Then

the estimation variance is still lower bounded by the Cramer-Rao bound in Lemma 2.5.

So E((θ − θ̂)T (θ − θ̂)) ≥ Tr(J(θ)−1). Meanwhile, (θ − θ̂)T (θ − θ̂) = d(θ̃, ˆ̃θ), so we have

E(d(θ̃, ˆ̃θ)2) ≥ Tr(J(θ)−1). Thus we have the contradiction. ¤

To compute J(θ), we need to find the subspace S(θ) first. However it turns

out that we can compute Tr(J(θ)−1) without directly computing J(θ). Now we give

the computation tool for the lower estimation bound for equivalence class estimation

problem.

Corollary 2.4. Computation of the lower bound of E(d(θ̃, ˆ̃θ)2), Tr(J(θ)−1)

Let H(θ) = E[(
∂l

∂θ1
,

∂l

∂θ2
, ...,

∂l

∂θM
)T (

∂l

∂θ1
,

∂l

∂θ2
, ...,

∂l

∂θM
)] (2.42)

Rank(H(θ)) = M −K, let λ1, λ2, ..., λM−K be the nonzero eigenvalues of H(θ), then

Tr(J(θ)−1) =
M−K∑

i=1

1
λi

(2.43)
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proof: J is defined in Lemma2.5.

J(θ)ij = E[
∂l

∂βi

∂l

∂βj
] (2.44)

Where l = log(x|β) be a family of pdfs parameterized by β on S(θ). And ∂l/∂βi

is indeed the directional derivative in the original RM along the direction ~wi, where

~wi ∈ RM , i = 1, 2, ..M −K forms an orthonormal bases for S(θ). Suppose the original

RM is parameterized by orthonormal vectors ~e1, ~e2, ... ~eM , where ~ei = (δ1i, δ2i, ..., δMi)T ,

δji = 1, j = i, δji = 0, j 6= i.And θ ∈ RM can be written as θ = (θ1, θ2, ...θM )T . Let

W =
(

~w1 ~w2 . . . ~wM−K

)
=

(
~e1 ~e2 . . . ~eM

)
W (2.45)

then W T W = IM−K . And we have

∂l

∂βi
= (

∂l

∂θ1
,

∂l

∂θ2
, ...,

∂l

∂θM
) ~wi

Substitute the above equation into Eqn.2.44, we have:

J(θ)ij = E[
∂l

∂βi

∂l

∂βj
] = E[ ~wi

T (
∂l

∂θ1
,

∂l

∂θ2
, ...,

∂l

∂θM
)T (

∂l

∂θ1
,

∂l

∂θ2
, ...,

∂l

∂θM
) ~wj ]

= ~wi
T E[(

∂l

∂θ1
,

∂l

∂θ2
, ...,

∂l

∂θM
)T (

∂l

∂θ1
,

∂l

∂θ2
, ...,

∂l

∂θM
)] ~wj (2.46)

From the definition of H(θ) we have:

J(θ) = W T H(θ)W (2.47)

From Lemma.2.3, we know that for any direction lying in the tangent space T (θ) of the

K dimensional equivalence class manifold,∀x ∈ RN the directional derivative of l(x|θ)is

0, i.e. ∀~v ∈ T (θ)

(
∂l(x|θ)

∂θ1
,
∂l(x|θ)

∂θ2
, ...,

∂l(x|θ)
∂θM

)~v = 0 (2.48)

So, for the orthonormal vectors ~v1, ..., ~vK which generated T (θ), we have

~vi
T H(θ)~vi = ~vi

T E[(
∂l

∂θ1
,

∂l

∂θ2
, ...,

∂l

∂θM
)T (

∂l

∂θ1
,

∂l

∂θ2
, ...,

∂l

∂θM
)]~vi

= E[~vi
T (

∂l

∂θ1
,

∂l

∂θ2
, ...,

∂l

∂θM
)T (

∂l

∂θ1
,

∂l

∂θ2
, ...,

∂l

∂θM
)~vi] = 0 (2.49)
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Meanwhile, with the assumption that p(x|θ) is non-zero, following Lemma 2.3,for the

orthonormal vectors ~w1, ..., ~wM−K which generate S(θ),we have

~wi
T H(θ) ~wi = ~wi

T E[(
∂l

∂θ1
,

∂l

∂θ2
, ...,

∂l

∂θM
)T (

∂l

∂θ1
,

∂l

∂θ2
, ...,

∂l

∂θM
)] ~wi

= E[ ~wi
T (

∂l

∂θ1
,

∂l

∂θ2
, ...,

∂l

∂θM
)T (

∂l

∂θ1
,

∂l

∂θ2
, ...,

∂l

∂θM
) ~wi] > 0 (2.50)

The above shows that Rank(H(θ)) = M−K. Notice that v1, ..vK , w1, ...wM−K form an

orthonormal space for RM , we know that vis are eigenvectors of H(θ) with 0 eigen-

values, meanwhile those eigenvectors of H(θ) corresponding to non-zero eigenvalue

span the same subspace as w1, ..., wM−K , i.e., denote the non-zero eigenvectors to be

~γ1, ~γ2, ..., ~γM−K corresponding to eigenvalues λ1, ..., λM−K respectively, then ∃A, an

(M −K)× (M −K) unitary matrix, s.t. AT A = IM−K , and

W = ( ~w1, ..., ~wM−K) = (~γ1, ~γ2, ..., ~γM−K)A = ΓA (2.51)

So

J(θ) = W T H(θ)W = AT ΓT H(θ)ΓA = AT diag(λ1, λ2, ..., λM−K)A

J(θ)−1 = AT diag(λ−1
1 , λ−1

2 , ..., λ−1
M−K)A (2.52)

Noticing that Tr(AB) = Tr(BA), we finally have:

Tr(J(θ)−1) = Tr(AT diag(λ−1
1 , λ−1

2 , ..., λ−1
M−K)A)

= Tr(AAT diag(λ−1
1 , λ−1

2 , ..., λ−1
M−K)) =

M−K∑

i=1

1
λi

(2.53)

¤

2.2.2.3 Equivalence Class Estimation of the Anchor-free Localization

Problem

In the first section, we showed that if no sensors have known position, the local-

ization problem cannot be described as a parameter estimation problem. However, it

can be well defined in the framework of the equivalence class estimation problem.
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(1) Equivalence classes

For an M points localization problem, the data z ∈ RN are modelled as the inter-sensor

distances corrupted by iid Gaussian noises∼ N(0, σ2). i.e. zi =
√

(xi1 − xi2)2 + (yi1 − yi2)2+

δi. The equivalence class for θ = (x1, y1, x2, y2, ...xN , yN ) ∈ R2N is θ̃ = {(u1, v1, u2, v2, ...uN , vN ) ∈

R2N |(ui, vi)T = R(α)(xi, yi)T + (tx, ty)T } ⊆ R2N , where

R(α) =




cos(α) −sin(α)

sin(α) cos(α)


 (2.54)

is the rotation matrix, and (tx, ty)T ∈ R2 is the translation vector. Here we ignore the

fact that the reflection of any of the points in the following way falls into the same equiva-

lence class, β = (u1, v1, u2, v2, ...uN , vN ) ∈ θ̃ let β∗ = (u1,−v1, u2,−v2, ...uN ,−vN ), then

∀z ∈ RN , p(z|β) = p(z|β∗). In general θ̃
⋂

θ̃∗ = ∅, unless all the points are collinear.

We notice that there is no subspace in which we can do parameter estimation.

This claim is proved by a simple counter-example in Appendix D. i.e. the equivalence

class estimation model is the only proper way to describe the problem.

(2) Calculation of H(θ).

Now at ∀θ ∈ R2M , we calculate H(θ), and a lower bound on the variance of the

equivalence class estimation is
∑2M−3

i=1
1
λi

, where λi, i = 1, 2, ..., 2M − 3 are the non-zero

eigenvalues of H(θ).

For point i, denote c(i) = {j|dij =
√

(xi − xj)2 + (yi − yj)2 + δij is measured }.

Then, ∀j ∈ c(i)

H(θ)2i−1,2j−1 = E[
∂l

∂xi

∂l

∂xj
] = − 1

σ2
cos(αij)2 (2.55)

H(θ)2i,2j = E[
∂l

∂yi

∂l

∂yj
] = − 1

σ2
sin(αij)2 (2.56)

H(θ)2i−1,2j = E[
∂l

∂xi

∂l

∂yj
] = − 1

σ2
cos(αij)sin(αij) (2.57)

H(θ)2i,2j−1 = E[
∂l

∂yi

∂l

∂xj
] = − 1

σ2
cos(αij)sin(αij) (2.58)

Where αij ∈ [0, 2π), and cos(αij) = xi−xj√
(xi−xj)2+(yi−yj)2

, sin(αij) = yi−yj√
(xi−xj)2+(yi−yj)2

.
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And ∀i = 1, 2, ...M

H(θ)2i−1,2i−1 = E[(
∂l

∂xi
)2] =

1
σ2

∑

j∈c(i)

cos(αij)2 (2.59)

H(θ)2i,2i = E[(
∂l

∂yi
)2] =

1
σ2

∑

j∈c(i)

sin(αij)2 (2.60)

H(θ)2i,2i−1 = H(θ)2i−1,2i = E[
∂l

∂xi

∂l

∂yi
] =

∑

j∈c(i)

cos(αij)sin(αij) (2.61)

Theorem 2.7. CR bound is invariant under zooming

Proof. : H(θ) = H(aθ),∀a ∈ R. This follows the expression of the matrix H(θ), thus

the Cramer-Rao lower bound for the localization problem V (θ) =
∑2M−3

i=1
1
λi

, where λi’s

are non-zero eigenvalues of H(θ) is invariant under zooming V (θ) = V (aθ). ¤

2.2.2.4 Simulation Results

In our simulation, we randomly generate M points on the plane in a region

A and we calculate the normalized lower bound on the estimation variance V (θ) =

σ2
∑2M−3

i=1
1
λi

, where λi’s are non-zero eigenvalues of H(θ), it is worth to point out that

V (θ) is invariant ∀θ ∈ θ̃ by the definition of equivalence class estimation.

(i)In the first simulation, A is the region inside the unit circle x2 + y2 = 1, we

suppose for all sensor pair i, j, the distance between i, j is measured. In the following

figure, we show the average V (θ) over 50 independent experiments for different M . As

can be seen, V (θ) remains constant as M increases. V (θ) indicates the total estimation

variance of the positions of the sensors, thus the average estimation variance decreases

as 1
M .

(ii) In the following simulation, we show the effect of the shape of the region of

the sensor networks on the normalized estimation variance σ2V (θ). We have M sensors

uniformly distributed in a region A. Here we assume all the pairwise distances are

measured. Our simulations are average of 50 independent experiments.
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Figure 2.7: The normalized Cramer-Rao lower bound for localization V S number of
nodes.
Nodes are uniformly distributed inside the unit circle.
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In Fig.2.8 (a), A is a rectangular region with dimension L1 × ÃL2, L1 ≥ L2, as we

pointed above, the only thing matters is the ration R = L1
L2

, and it turns out that the

normalized CR bound increases as R increases. In Fig.2.8 (b), A is an annulus region

with outer radius R1 = 1, inner radius R2 = r and it turns out that the normalized CR

bound increases as r decreases.

Figure 2.8: The normalized Cramer-Rao lower bound for localization V S number of
nodes.
(a) Rectangular region (R = L1

L2
)

(b)Annulus region (R1 = 1, R2 = r)

Before giving the results of some more simulations, we revisit the definition of

visible radius, and revisit Corollary 2.4.

Definition 2.7. Visible Radius R:

In a sensor network, if for each sensor i, ∀ sensor j, dij is measured iff dij < R ,R is

the visible radius.

From Corollary 2.4, we know that, the total Cramer-Rao bound on estimation

variance is the same for a sensor network with positions θ with visible radius R and a

sensor network with positions aθ with visible radius aR. The critical parameter is

more likely to be the average number of visible sensors.
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(iii)In the next simulation, A is the region inside the unit circle x2 + y2 = 1. We

have the number of sensors M = 200, 150, 100 respectively. In the following figure, we

show an average V (θ) of 10 independent experiments for different visible radius R. As

can be seen, the CR lower bound for equivalence class estimation only depends on R,

i.e. the average fraction F of the sensors visible to each sensor, F is defined as the ratio

of average visible sensors over the total number of sensors.

Figure 2.9: The normalized Cramer-Rao lower bound for localization V S visible radius
R

Based on the observation in Fig.2.10, we conjecture that σ2V (θ)
M ∼ 1

FM . i.e. the

normalized estimation variance per sensor is inversely proportional to the average visible

sensors for each sensor. Fig.2.10 illustrates the above conjecture.

(iv) The following simulation shows the relation between the equivalence class

estimation variance and the size of the sensor network given constant sensor density

and constant visible radius. For each sensor i, only those dij are measured iff dij < R,

R is the visible radius. We fix R = 2, and the density of the sensor network is fixed as 20
π

sensors per unit area, and increase the region of the sensor network. In our simulation,

the region A is a circular region with radius D = 1, 2, ..., 10. In Fig.2.11, we show
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Figure 2.10: The normalized Cramer-Rao lower bound for localization × fraction F
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an average estimation variance of 50 independent experiments for different radius D.

Fig.2.11(a) is the total estimation variance bound, (b) is the average estimation variance

bound.

As can be seen, the average estimation variance decreases as the size of network

increases, but it converges to a constant. This supposes that it is good enough to

estimate the position of the sensors in a nearby sensor network with radius R∗ ∼ 3R,

when the average visible sensors are around 80.

Figure 2.11: Average estimation variance V S size of sensor network, with fixed visible
region and sensor density
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2.3 2-Step Anchored Localization Scheme

In this section we propose a 2-step anchored localization scheme. We are

dealing with anchored localization as stated in the previous section. F is the set of

anchors. S is the set of nodes without known positions. The goal is to reconstruct the

set

PS = {(xi, yi)T |i ∈ S} (2.62)

Given

D = {di,j |i ∈ S ∪ F, j ∈ adj(i)} (2.63)

PF = {(xi, yi)T |i ∈ F} (2.64)

Where di,j = d′i,j + δi,j , δi,j ’s are assumed to be iid Gaussian ∼ N(0, σ2) and d′i,j =
√

(x′i − x′j)2 + (y′i − y′j)2 is the true distance between sensor i and j. It is easy to give

an optimization problem restatement of the problem based on the ML rule given the

measurements of the distances di,j with variance additive Gaussian noises. As following:

argmin{(xi,yi)|i∈S}
∑

i∈S∪F

∑

j∈adj(i)

(d̂i,j − di,j)2 (2.65)

Where d̂i,j =
√

(xi − xj)2 + (yi − yj)2 (2.66)

Here we also assume that all those additive Gaussian noises added to the mea-

surement of distances have the same variance. However, it is not easy to solve the above

optimization problem in real time. Because the optimization problem here is not convex

as shown in Appendix E, there could be many local optimal solutions to the problem.

So we come up with an approximate solution to the problem without directly solving

the optimization problem.

The first step of the scheme is to estimate an anchor-free coordinate system

based solely on DS = {di,j |i, j ∈ S, j ∈ adj(i)}. We do not distinguish any 2 coordinate

systems such that one is a rigid transformed of another. In 2D, a rigid transformation

is a combination of any rotations, translations and reflections.
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Definition 2.8 (Anchor-free coordinate system). An anchor-free coordinate sys-

tem of a point set S is an equivalent class in R2|S|: P = {(xi, yi)|i ∈ S}, we say P, Q

are equivalent if and only if (xi, yi)T
p = A(xi, yi)T

q + B, ∀i, where AAT = I2, B ∈ R2.

The reason why they are equivalent is that the distances between any 2 points

Pi, Pj are the same in P, Q. Thus based on the ML rule they have the same likelihood

given the assumption that noises are gaussian random variable with same variances.

In the first stage, any position information of set F is not used. We estimate the

anchor-free coordinate system solely based on the distances. In the second stage, we

combine F with the anchor-free coordinate system and estimate the anchored coordi-

nates of S. The solution is unique in general. And as can be seen later in Section 2.3.1

and Section 2.3.2, there is no iterations in the algorithm. We expect the algorithm to

give an answer in real time. Our algorithm does not guarantee any optimality as the

size of the space is huge and the problem is not convex.

2.3.1 Step 1 : Anchor-free Coordinates Estimation

Problem restatement :

Given a point set T, and the distances of some of the adjacent point pairs DT =

{di,j |i, j ∈ T, j ∈ adj(i)}, we want to assign a 2D coordinate (xi, yi)to each point i

such that this coordinate system best matches the distance information we have in DT .

Again, a least square based estimation problem can be stated,

argmin{(xi,yi)|i∈T}
∑

i∈T

∑

j∈adj(i)

(d̂i,j − di,j)2 (2.67)

Where d̂i,j =
√

(xi − xj)2 + (yi − yj)2 (2.68)

The solution to this optimization problem is obviously non-unique, because the

solution is an anchor-free coordinate systems which is an equivalent class in R2|T |. Due
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to the nature of the optimization problem (no-convexity as shown in Appendix E, and

multiple local optimal ), we will set up a more geometrical-oriented description of the

problem. And a solution will be given.

We will propose a 2 step scheme. In the first stage, we will define a cell, and focus

on the coordinates estimation in a single cell. In the second stage, we will glue all those

small cells together to a complete anchor-free coordinate system.

2.3.1.1 Coordinates Estimation within a Cell

In this stage, we will first estimate the anchor-free coordinate system for a

subset of S ∪ F , with some properties called cell. The scheme here is based on ML

estimation. In [4], they used a very similar scheme.

Definition 2.9 (cell). A cell C is a subset of point set T , such that ∀i, j ∈ C, i ∈ adj(j),

or a clique in the graph if we treat the point as vertex, and vertex i, j are linked by an

edge if di,j ∈ DT . That is, we have DT , such that di,j ∈ DT , ∀i, j ∈ C. Now within a

cell C, we want to minimize E.

As can be seen, a cell is indeed a clique in the graph if two points (vertices) are

linked by an edge if the distance is known.

E = argmin{(xi,yi)|i∈C}
∑

i,j∈C

(d̂(i, j)− di,j)2 (2.69)

Where d̂i,j =
√

(xi − xj)2 + (yi − yj)2 (2.70)

First, let us make some obvious geometrical observations.

1) |C|=1, then all (x1, y1) ∈ R2 are equivalent. Without loss of generality pT
1 =

(x1, y1) = (0, 0).

2) |C| = 2,then DT = {d12}, any 2 points in R2 with distance d12 minimize E, without

loss of generality, pT
1 = (x1, y1) = (0, 0), pT

2 = (x2, y2) = (d12, 0).
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Now if we have |C| > 2, we can treat C as the union of 2 base points with

|C| − 2 associate points. Let us fix the base and add other points one by one. Thus

the accuracy of the distance between the 2 base points is crucial to get the accurate

anchor-free coordinate system. Due to the additive noise to the distance measurement,

we have to come back to get a more accurate distance estimate later.

Given another point P3 with distance d32, d31 to those 2 base points.

Case 1: the general case with triangule inequality satisfied, E achieves 0. And

there are 2 solutions which are symmetrical around the x axis. The solutions are the 2

intersections of the 2 circles with origin at p1, p2, radius d31, d32 respectively :

(d31cos(α),±d31sin(α)) (2.71)

Where α = cos−1(
d2

12 + d2
31 − d2

32

2d12d31
) (2.72)

Without loss of generality, p3 = (d31cos(α), d31sin(α)). It is illustrated in Fig. 2.12(a).

Case 2: when triangule inequality is not satisfied. This only happens when some

distance measurement is deviated from the true value very badly. Then we either have

d31 + d32 < d12 or |d31 − d32| > d12. In either case, E cannot achieve 0, unlike the first

case, the solution is unique and is on the x-axis.

If d31 + d32 < d12, to minimize E we have p3 = ((d12 + d31 − d32)/2, 0). It is

illustrated in Fig. 2.12(b).

If d31 − d32 > d12, to minimize E we have p3 = ((d12 + d31 + d32)/2, 0). It is

illustrated in Fig. 2.12(c). Similarly, if d32 − d31 > d12,p3 = (−(d12 + d31 + d32)/2, 0).

Now given another point p4, with distance d41, d42, d43, to each of the previous

coordinate determined points. Let us give an estimation of the position of p4. First

let us assume p1, p2, p3 are of general setup which means the triangule inequality is

satisfied. Then the position of p4 can be estimated in the following way. At first, let us

do the estimation for p4 using the method stated for p3. In degenerated case, where p4
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Figure 2.12: Estimation of anchor-free coordinates
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falls on the x axis, the best estimation is exactly the same as what we did for p3. In

general, there are still 2 solutions for (x4, y4) just as that for (x3, y3). But it turns out

that the whole picture is no longer symmetric around x-axis because p3 is on one side

of the x-axis. (x4, y4) is determined by the following method :

(x, y) = (d41cos(α), d41sin(α))

(x, y′) = (d41cos(α),−d41sin(α))

Where α = cos−1(
d2

12 + d2
41 − d2

42

2d12d41
)

The sign of y coordinate is determined by the following criteria which is also based

on the additive Gaussian noise assumption.

(x4, y4) = (x, y), (2.73)

if (‖(x, y)− (x3, y3)‖2 − d43)2 < (‖(x, y′)− (x3, y3)‖2 − d43)2

(x4, y4) = (x, y′), otherwise.

(2.74)

Following the above scheme, we can estimate the positions of points one by one

and finally form the set SC = {(xi, yi)|∀i ∈ C, }. At the beginning we mentioned that

the distance between the 2 base points d12 is crucial for the accuracy. What we can

do is to revisit the optimization problem in Eqn.2.69 with d12 as the only independent

variable. This is an 1 dimensional problem which can be approximately solved despite

that the problem has multiple optimums. In Appendix F we will give an example of the

multiple local minimums.
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2.3.1.2 Refinement of the Coordinates Estimation within a Cell

In the previous section, we get an anchor-free coordinate system for a cell, by

the simple triangulation idea. As pointed out, the distance measure between the 2

base points d12 is crucial for the accuracy. So we have the simple refinement idea. We

randomly pick the sensor-triples K times and get K anchor-free coordinate systems

SC1, ...SCK . And we also calculate the average of all those anchor-free coordinate sys-

tems to get a new anchor-free coordinate system SC∗. Then pick the best one from

SC1, ...SCK , SC∗ by means of minimizing the evaluation in Eqn.2.67. In general, the ML

estimation is biased as showed in Appendix G.

For the same set of points, given 2 anchor-free coordinate systems A,B with

weight wA, wB respectively. An anchor-free coordinate system has weight w if it is

an average of w SCi’s. Suppose we have P1, ...PW , W points in the cell. And in A,

the coordinates are (x1, y1), ...(xW , yW ), in B the coordinates are (u1, v1), ...(uW , vW ).

Then we first find the rigid transform based on MSE method. The rigid transform

(u, v)T = R(α)Iγ
r (x, y)T + T . WHere R(α)Iγ

r , T are defined as following.

Ir =




1 0

0 −1


 , R(α) =




cos(α) −sin(α)

sin(α) cos(α)


 , T =




tx

ty


 (2.75)

And γ takes value in {0,1}, where 1 indicates a reflection of the coordinate system, 0

indicates no reflection. To minimize the MSE we have the following:

argminγ,α,T

∑

i∈SC

‖R(α)Iγ
r pL1i + T − pL2i‖2

2 (2.76)

Due the binary property of γ, the above optimization problem can be stated as

following :

(α1, T1) = argminα,T

∑

i∈SC

‖R(α)(xi, yi)T + T − (ui, vi)T ‖2
2 (2.77)

(α2, T2) = argminα,T

∑

i∈SC

‖R(α)Ir(xi, yi)T + T − (ui, vi)T ‖2
2 (2.78)
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We pick the better (α, T ) of the 2. The solution of Eqn. 2.76 is :

(γ, α, T ) = (0, α1, T1), (2.79)

if
∑

i∈SC

‖R(α1)(xi, yi)T + T1 − (ui, vi)T ‖2
2 ≤

∑

i∈SC

‖R(α2)Ir(xi, yi)T + T2 − (ui, vi)T ‖2
2

(γ, α, T ) = (1, α2, T2), otherwise. (2.80)

The solution of optimization problems in Eqn. 2.77 and Eqn. 2.78 are uncon-

strained optimization problems. We include the solution in Appendix H.

Now we have the optimal (in the MSE sense) rigid transform R(α), Iγ
r , T . The

new combined anchor-free coordinate system of A,B with weights wA, wB respectively

is:

(fi, gi)T =
wA

wA + wB
(R(α)Iγ

r (xi, yi)T + T ) +
wB

wA + wB
(ui, vi)T (2.81)

Using the average scheme above, we can average all K anchor-free coordinate

systems SC1, ..SCK to form SC∗. ¤

2.3.1.3 Gluing of Cells

In this stage, all the cells on the 2D space will be glued together. Every

single cell will be glued into the whole anchor-free coordinate system through one of its

adjacent cells. Gluing anchor-free coordinate systems is also studied in [4] and [39]. But

their scheme is by no means optimal [4] or even resulting to non-Euclidean transform

[39]. We will give a scheme based on the MSE of 2D positions.

Definition 2.10 (super cells). A subset SC of S ∪ F is said to be a super cell, if an

anchor-free coordinate system is defined for every point in it.

Definition 2.11 (adjacent super cells). A pair of super cells SC1, SC2 is said to be

adjacent if and only if there are at least 3 non-collinear points in SC1 ∪ SC2.
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We will now describe how to glue 2 adjacent super cells based on the the minimum

squared error method. In the noiseless case, if 2 super cells SC1, SC2 are adjacent with

anchor-free coordinate system LC1, LC2 respectively, we can uniquely determine the

coordinates of the points in SC1 in the coordinate system LC2 and vice versa. This

is because 3 non-collinear points with coordinates in 2 different coordinate system can

uniquely determine the rigid transformation (any combination of translation, rotation

and reflection) between the 2 coordinate systems.

Now we have 2 adjacent super cells SC1, SC2 with anchor-free coordinate system

LC1, LC2 respectively. Let SC = SC1∪SC2, PL1 = {pL2
i = (xi, yi),the coordinate of point

i ∈ LC1|i ∈ SC}, and PL2 = pL2
i = (xi, yi), the coordinate of point i ∈ LC1|i ∈ SC}.

The 2 super cells can be glued together through a rigid transform R(α)Iγ
r , T which

transforms LC1 to LC2. Where R(α), Iγ
r , T are defined in Eqn.2.75/

And γ takes value in {0,1}, where 1 indicates a reflection of the coordinate system,

0 indicates no reflection.

Due to the inaccuracy of the estimation of the anchor-free coordinates in each

super cells, we expect the positions of the points in F to be deviated from the true value

by a 2D random variable. To minimize the total square error, we have the following

optimization problems:

argminγ,α,T

∑

i∈SC

‖R(α)Iγ
r pL1i + T − pL2i‖2

2 (2.82)

Due the binary property of γ, the above optimization problem can be stated as

following :

(α1, T1) = argminα,T

∑

i∈SC

‖R(α)pL1
i + T − pL2

i ‖2
2 (2.83)

(α2, T2) = argminα,T

∑

i∈SC

‖R(α)Irp
L1
i + T − pL2

i ‖2
2 (2.84)
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We pick the better (α, T ) of the 2. The solution of Eqn. 2.82 is :

(γ, α, T ) = (0, α1, T1), if
∑

i∈SC

‖R(α1)pL1
i + T1 − pL2

i ‖2
2 ≤

∑

i∈SC

‖R(α2)Irp
L1
i + T2 − pL2

i ‖2
2

(γ, α, T ) = (1, α2, T2), otherwise. (2.85)

The optimization problems in Eqn. 2.83 and Eqn. 2.84 are unconstrained opti-

mization problems which are well investigated in computer vision context where it is

called registration. We include the solution in Appendix H.

2.3.2 Step 2 : Anchored Coordinates Estimation

From the 1st step of the algorithm, we obtained a rigid anchor-free coordinate

system PL of the point set S ∪ F , PL = {pL
i |pL

i = (xi, yi)T , i ∈ S ∪ F}. The 2nd step is

about how to embed this coordinate system into the point set F in which every point has

known position. Since any rigid transformation is a combination of rotation, translation

and reflection. This is very much the same as what we did for gluing 2 adjacent super

cells. Again,we can parameterize the problem as:

The positions of F PF can be embedded through the solid transform Iγ
r R(α), T .

They are defined in Eqn.( H.2).

Using the same argument as gluing the super cells, we have the following opti-

mization problems:

argminγ,α,T

∑

i∈F

‖R(α)Iγ
r pL

i + T − pi‖2
2 (2.86)

Due the binary property of γ, the above optimization problem can be stated as

following :



55

(α1, T1) = argminα,T

∑

i∈F

‖R(α)pL
i + T − pi‖2

2 (2.87)

(α2, T2) = argminα,T

∑

i∈F

‖R(α)Irp
L
i + T − pi‖2

2 (2.88)

The solution of Eqn. 2.86 is :

(γ, α, T ) = (0, α1, T1), if
∑

i∈F

‖R(α1)pL
i + T1 − pi‖2

2 ≤
∑

i∈F

‖R(α2)Irp
L
i + T2 − pi‖2

2

(γ, α, T ) = (1, α2, T2), otherwise. (2.89)

The optimization problem here is exactly the same as what we have in gluing

super cells. We will include the solution in the Appendix H.

2.3.3 Summary and further discussion

Given the 2 step method above, we summarize our algorithm as following:

a point set F of cardinality larger than 3 with known 2D positions and a point set S

with unknown positions. In the first step we can determine the anchor-free coordinate

system for S ∪ F based on the measured distances between some of the point pairs.

In step two, we can embed the 2D positions of set F into the anchor-free coordinate

system and reconstruct all the 2D positions of points in S. The first step can be done

in a distributed way described. The whole scheme is described as following:

Step 1.1: sensor i estimates the distance between i and j, j ∈ adj(i), di,j .

Step 1.2: sensor i sends all those di,j , j ∈ adj(j) to all those sensors k, k ∈ adj(i).

Step 1.3: sensor i estimate the anchor-free coordinate system using all the dis-

tances measures di,j , j ∈ adj(i) and dj,k, j ∈ adj(i), k ∈ adj(i)
⋂

adj(j) based on the first

step of the localization scheme.
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Step 2.1: sensor i sends the anchor-free coordinate system to the fusion center,

total |adj(i)|+ 1 2D positions.

Step 2.2: the fusion center gives an anchored coordinate system estimation by

gluing all the anchor-free coordinate systems and the points with known position.

In fact, we do not need to estimate the positions of all those points in S together.

Instead we can partition the set S and F into K subsets:

S = ∪K
i=1Si, F = ∪K

i=1Fi, (2.90)

Such that for each i, we can still do the 2 step estimation solely on Si and Fi,

|Fi| ≥ 3. And it is not necessary for S′is or F ′
is to be disjointed, they could be overlapped.

If a point P is in the intersection of KP sets SPi , i = 1, ..., KP , there are multiple position

estimations for P , (xPi , yPi), i = 1, ..., KP . The final position estimation for P is the

average of all those estimations. The accuracy can be benefit from this kind of partitions,

if the size of the sensor network tends to be too big. That is because when gluing a big

network together, the error expands through the whole network, thus the accuracy gets

worse.

We summarize the 2 step localization algorithm in the following flowchart in

Fig.2.13.
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Randomly pick 3
sensors in the cell C i

t=t+1

Find the optimal local coordinate
system among

Local coordinate system
T

t
=, t=1,2,..K and T, let it be S

i

Multiple access all sensors, i=1,2,..L

Estimating a Local
coordinate system
containing sensor i

Local coordinate system
Si={(uk,vk) k=1,..|C i |}

Assign (0,0), (d 12,0) and (X 3,Y3)
to the 3 sensors according to

the scheme in Fig.2.15
Find the position of other

sensors, form a local
coordinate system T t

Combine S i, Sj,  if Si, Si,  is the
maximal among all pairs,

i<j,let Si,  be the new combined
local coordinate system, remove

Sj,

Sensor i
measures d ij ,

j in adj(i)

Sensor i sends d ij , j
in adj(i)   to all the
sensors in adj(i)

Sensor i finds a cell
Ci which is a subset

of adj(i), t=1

t=K (K is
predefined)

Fusion center
now has L=N+M
local coordinate

systems S i,
i=1,2...N

 S1 is a  local coordinate
system for all L=M+N sensors

Combine the local
coordinate system with all

those M sensors with
known positions

Global coordinate system
(xk,yk) k=1,..N

Only S1 is left YES

NO

Global coordinate
estimation

Yes

NO

If t=1, let T =T t
else combine T t with
T, form a new local

coordinate system T

Figure 2.13: 2-step anchored localization scheme



58

2.3.4 Simulation Results

In this section, we are going to run our anchored localization algorithm for differ-

ent setups of sensor networks. Like the simulation we did for the Cramer-Rao bound,

there are several intrinsic parameters. The variance of the additive Gaussian Noises σ2,

the shape of the sensor network A, the visible radius R, the number of sensors with

unknown position M , number of anchors N etc.

In our simulations, we randomly generate M nodes on the plane presumably with

unknown position, and N anchors with known position. The position of the points are

uniformly distributed inside the region A. We calculate the Cramer-Rao lower bound on

the estimation variance Vx(i), Vy(i) and the squared estimation error (Dx(i), Dy(i)) =

((xi − x̂i)2, (yi − ŷi)2) for nodes i = 1, 2, ..., M . In all simulations, the number of tries

for each anchor-free coordinate system estimation is L = 30.

(i) In the first simulation, we suppose that the distance between i, j is measured

for all sensor pairs i, j. A is the region inside the unit circle. In the following figure, we

show the Cramer- Rao bound Vx(i)+Vy(i) and squared estimation error (Dx(i), Dy(i)) =

((xi − x̂i)2, (yi − ŷi)2). In Fig2.14, N=3, M=10. In Fig.2.15, N=4, M=20. In both

simulations, σ2 = 2.5× 10−3.

(ii) In the second simulation,we show the effect of the visible radius. A is

the region inside the unit circle. In Fig2.16(a), N=10,M=100, R=0.5. In Fig.2.15,

N=10,M=400, R=0.25. In both simulations, σ2 = 2.5× 10−3.

As can be seen, when the network gets big comparing with the visible radius

R, the performance of the algorithm tends to be worse due to the propagation of the

errors. Thus first partitioning the entire network and then estimating the positions in

each partition is preferable.
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Figure 2.14: N=3,M=10;(a) Black dots: known position, Blue dots: unknown position,
red dots: estimation of the position.(b) red: Cramer-Rao bound: Vx(i) + Vy(i), blue:
squared error Dx(i) + Dy(i))
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Figure 2.15: N=4,M=20;(a) Black dots: known position, Blue dots: unknown position,
red dots: estimation of the position. (b) red: Cramer-Rao bound: Vx(i) + Vy(i), blue:
squared error Dx(i) + Dy(i))
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Figure 2.16: Black dots: known position, Blue dots: unknown position, red dots: esti-
mation of the position. (a)N=10,M=100 (b)N=10,M=400
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2.4 Conclusions and Future Work

In this chapter, we studied the localization problem and gave a method to compute

the Cramer-Rao bound in terms of the geometry of the sensor network. For the anchored

localization problem, we showed that the Cramer-Rao bound is invariant under zooming

and translation. Also we derived a lower bound on the CR bound that can be computed

using only local geometry. We observe that it converges to Cramer-Rao bound if the

local area is expanded. This result shows that we can use local geometry to predict

the accuracy of the position estimation. For the anchor-free localization problem, due

to the singularity of the Fisher Information matrix, we defined the equivalence class

estimation problem. Inside this framework we gave a Cramer- Rao-like performance

bound. We observed that the per sensor Cramer- Rao-like bound is only dependent on

the average number of neighbors. This result again implies that local information can

well predict the accuracy of the position estimation.

We also presented a 2-step anchored localization scheme. In this scheme, we first

distributedly determine anchor-free coordinate systems in the sensor network Then we

combine anchor-free coordinate systems through the optimal (MSE sense) rigid trans-

form.

In our report, we computed the Cramer-Rao bound on the localization problem.

But the localization sensitivities to individual observations is still unclear. It might

be very helpful to the localization if one can identify the bottleneck of the problem.

i.e. how to figure out which distance measure could help to increase the localization

accuracy the most. With the knowledge of the bottleneck, we can allocate the power in

a smart way through which we can achieve the best localization accuracy.

For the anchor-free coordinate estimation, we showed that the optimization prob-

lem is non-convex. We believe that randomized optimization algorithms (genetic algo-

rithm, stimulate annealing etc. ) might achieve better performance. When combining
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multiple anchor-free coordinate systems together, the estimation error in an anchor-free

coordinate system can propagate. How the error propagates is important but still open.

Our anchored localization scheme is realized in a semi-distributed way. A distributed lo-

calization algorithm requires less communication thus is more preferable. How to reduce

the communication requirement of the localization scheme is an interesting problem.



Chapter 3

Tracking Objects by a Sensor Network

In this chapter we will study the object tracking by a sensor network problem.

We assume that the positions of the sensors are known, and the multipath distance

measurements are collected to estimate the position of the object(s). We will analyze

the problem in different scenarios based on the number of the transmitters, the number

of the receivers and the number of objects. We will derive the Cramer-Rao lower bound

for each scenario and propose estimation schemes for object tracking.

3.1 Tracking Single Object in a Single Transmitter, Single Receiver

Sensor Network (STSR)

In a single transmitter, single receiver sensor (STSR) network, if only the multi-

path length d (the distance from the transmitter Tx to the object plus the distance from

the object to the receiver Rx) is available, it is impossible to estimate the position of the

object. This is illustrated in Fig.3.1. The only thing we can say about the position of the

object is that it is on the ellipse which is formed by points p, s.t. d2(p, pTx)+d2(p, pRx) =

d, where d2 is the Euclidean distance, pTx, pRx are the positions of transmitter and

receiver respectively. This kind of problem can be thought as a bi-static radar system

in multi-static literature [5]. And the Doppler effect or angular information is often

used together with the TOA (time of arrival) in the position estimation.

However, it is possible to estimate the position of the object with some presumed
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Figure 3.1: a = d2(p, pTx), b = d2(p, pRx)

motion model of the object. The motion model could be constant velocity or constant

acceleration (Appendix I). In our report, we assume that the object moves with a

constant velocity. To determine the position of an object with a constant velocity in

a time interval [a, b], only the starting position at time 0 and velocity are needed, or

equivalently the starting position and the ending position of the object. We will use

the latter in our report, i.e. we want to estimate the starting position and the ending

position of the object from the multi-path length measurements, given the constant

velocity assumption. The setup is illustrated in Fig. 3.2.

We will first prove that a linear algorithm can estimate the exact motion of the

object when the multi-path distance measurements are noiseless. Then we will discuss

the stability of the algorithm.

3.1.1 A Simple Estimation Scheme

If the multi-path length measurements are noise free and the object moves strictly

at a constant velocity, we can determine the starting position and ending position of

the object perfectly from only 6 measurements with equal time interval in between

consecutive measurements. We state as the following theorem.
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Figure 3.2: The object is moves with a constant velocity

Theorem 3.1. STSR object tracking In a single receiver, single transmitter network,

the positions of the sensors are known. Suppose that the object moves with a constant

velocity, then the motion of the object can in general be tracked by N , N ≥ 6 multipath

distance measures.

Proof. : Choose coordinate so that the transmitter is at (−1, 0) and receiver is at (1, 0).

At time t, the multi-path distance is d. Then we have the following equation for the

position of the object (x, y):

√
(x + 1)2 + y2 +

√
(x− 1)2 + y2 = d (3.1)

As shown in Fig.1.2, (x, y) is on the ellipse with the following ellipse equation:

x2

a2
+

y2

b2
= 1 (3.2)

Where a = d
2 , b =

√
(d
2)2 − 1. With the constant velocity assumption, we assume

that multi-path length measurements are at time 0, T, 2T, ..NT , where T is the time

difference between 2 consecutive measures. Then we have the following linear map:

(xk, yk) =
N − k

N
(x0, y0) +

k

N
(xN , yN ) (3.3)

Where (xk, yk) is the position of the object at time kT , in particular (x0, y0) and (xN , yN )

are the starting and ending position respectively (given N + 1 measurements). With

multi-path length dk, the object with coordinate at time kT is on the ellipse:
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(N−k
N x0 + k

N xN )2

a2
k

+
(N−k

N y0 + k
N yN )2

b2
k

= 1 (3.4)

k = 0, 1, ...N We have the following linear equation system:

bk
2((1− k

N
)2x0

2 + 2(1− k

N
)

k

N
x0xN + (

k

N
)2xN

2)

+ ak
2((1− k

N
)2y0

2 + 2(1− k

N
)

k

N
y0yN + (

k

N
)2yN

2) = ak
2bk

2 (3.5)

k = 0, 1, 2, .., N

Let v = (x0
2, x0xN , xN

2, y0
2, y0yN , yN

2)T (3.6)

g = (a2
0b

2
0, ...a

2
Nb2

N )T (3.7)

and an (N + 1)× 6 matrix AN , s.t. the k − th row (k=0,1,2,..,N) of AN is

(bk
2(1− k

N
)2, 2bk

2(1− k

N
)

k

N
, bk

2(
k

N
)2, ak

2(1− k

N
)2, 2ak

2(1− k

N
)

k

N
, ak

2(
k

N
)2) (3.8)

Then we have:

ANv = g (3.9)

Then if AN is of rank 6, we have

v = (AT
NAN )−1AT

Ng (3.10)

¤

We note that there are three cases when the matrix AN is not of full rank (6)

even if N ≥ 5. These degenerate cases happen when the target moves along one of

the x or y axes. The degenerate cases are shown in Appendix J. In general as long as

N + 1 ≥ 6, we can solve the above linear equation. And from Eqn.3.6, we can solve the
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unknowns x0, y0xN , yN . Notice that there are 4 solutions of x0, y0xN , yN for a given 6-

tuple (x0
2, x0xN , xN

2, y0
2, y0yN , yN

2). And this is the nature of the single transmitter,

single receiver tracking problem by noticing that (x0, y0, xN , yN ), (−x0, y0,−xN , yN ),

(x0,−y0, xN ,−yN ) and (−x0,−y0,−xN ,−yN ) all give the same multipath distance mea-

sure at any time.

3.1.1.1 Stability Analysis

Suppose that the multi-path length measurements dk’s are corrupted by an ad-

ditive noise δk, assumed to be iid noise ∼ N(0, σ2). dk = d
′
k + δk, where d

′
k is the true

multi-path length. Notice that in Eqn.3.9, dk appears in both AN and g which makes

the matrix AT A not noise free. In practice the sensitivity to noise of the matrix AN

must be taken into account. A measure of the sensitivity to the noise is given by the

following quantity that is also known as condition number for matrices.

χ(AN ) = ‖AN‖2‖(AT
NAN )−1AT

N‖2 (3.11)

This roughly tells how close the matrix AN is to a singular matrix. The larger the

χ(AN ), the closer the matrix A is to a singular matrix. We have numerically computed

χ(AN ) for different AN ’s corresponding to different 5-tuples (x0, xN , y0, yN , N + 1). It

turns out that χ(AN ) converges to a finite real value when N goes to infinity as shown

in Appendix K, write that limit χ(A). Unfortunately, the limit is generally very large

which means that the linear equation system is very sensitive to the noises. The fact

that the limit χ(A) is also very big shows that no matter how many measurements

are taken, the simple linear scheme can not give a robust estimation of the motion.

We also found that χ(AN ) does not change significantly with N when N À 1. And

χ(AN ) is very sensitive to the 4-tuple (x0, xN , y0, yN ). Fig. 3.3 shows contour plots of

log(χ(A)) as a function of the position of the object, for N À 1, i.e. the limit (which

occurs at around N = 20), and when the target moves 1 towards the origin (0, 0), and 2
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Figure 3.3: The value on (x, y) ∈ [−3, 3] × [−3, 3] indicates log10(χ(A)), (a) is of the
4-tuple (x, y, x(1 − 1√

x2+y2
), y(1 − 1√

x2+y2
)). i.e. the object moves 1 towards the ori-

gin (0, 0). (b) is of the 4-tuple (x, y, x(1 − 2√
x2+y2

), y(1 − 2√
x2+y2

)). i.e. the object

moves 2 towards the origin (0, 0). The 2 white points are transmitter and receiver at
(−1, 0), (1, 0).. they are 2 away from each other. The black part indicates that A is
absolutely singular.
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respectively, as before the transmitter and the receiver are at (−1, 0), (1, 0) respectively.

χ(A) is very large in both cases, a little noise in the multi-path measurements

will result a huge error in the solution in Eqn.3.9. Thus the simple algorithm does not

work well in practice.

3.1.2 Cramer-Rao bound analysis

In this section, we derive the theoretical estimation variance bound on the single

transmitter single receiver, single object tracking. Again we have the multi-path length

measurements corrupted by iid zero mean gaussian noises. Suppose that the measuring

starts at time 0 when the object is at (x, y), ends at time 1 when the object is at (u, v).

Then at time t the object is at (sx + tu, sy + tv), where s = 1 − t. Then we have the

following observations :

dt =
√

(sx + tu− 1)2 + (sy + tv)2 +
√

(sx + tu + 1)2 + (sy + tv)2 + δt (3.12)

Where δt’s are iid gaussian noise ∼ N(0, σ2). If we have N measurements with equal

time interval between consecutive measurements, then t = 0, 1
N−1 , 2

N , ..., N−2
N−1 , 1.

Theorem 3.2. Fisher Information Matrix of STSR object tracking For a specific motion

which starts from (x, y), ends at (u, v). If there are N multipath distance measurements

as in Eqn.3.12. Let x, y, u, v be the 1st, 2nd, 3rd and 4th parameter to be estimated

respectively. Let J4×4 be the Fisher Information Matrix for x, y, u, v.

limN→∞
σ2J

N
= K(x, y, u, v) (3.13)

Where K(x, y, u, v) is a function of (x, y, u, v).

Proof. : Let the observation vector
−→
d = (dt1 , ....dtN ). Then the probability density
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function is :

p(
−→
d |x, y, u, v) =

∏
t

1√
2πσ2

exp(
−(dt −

√
(sx + tu− 1)2 + (sy + tv)2 −

√
(sx + tu + 1)2 + (sy + tv)2)2

2σ2
)

(3.14)

Log likelihood function:

ln(p(
−→
d |x, y, u, v)) =

N

2
ln(2πσ2)− 1

2σ2

∑
t

(dt −
√

(sx + tu− 1)2 + (sy + tv)2

−
√

(sx + tu + 1)2 + (sy + tv)2)2 (3.15)

The Fisher information matrix J4×4 is as following.

j11 = E(
∂2ln(p(

−→
d |x, y, u, v))
∂x2

)

=
1
σ2

∑
t

(
s(sx + tu− 1)√

(sx + tu− 1)2 + (sy + tv)2
+

s(sx + tu + 1)√
(sx + tu + 1)2 + (sy + tv)2

)2

=
1
σ2

∑
t

(cos(αt) + cos(βt))2s2 (3.16)

Similarly we have the expression for Jii:

J22 =
1
σ2

∑
t

(sin(αt) + sin(βt))2s2 (3.17)

J33 =
1
σ2

∑
t

(cos(αt) + cos(βt))2t2 (3.18)

J44 =
1
σ2

∑
t

(sin(αt) + sin(βt))2t2 (3.19)
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and Jij ’s:

J12 = J21 =
1
σ2

∑
t

(sin(αt) + sin(βt))(cos(αt) + cos(βt))s2 (3.20)

J13 = J31 =
1
σ2

∑
t

(cos(αt) + cos(βt))2st (3.21)

J14 = J41 =
1
σ2

∑
t

(sin(αt) + sin(βt))(cos(αt) + cos(βt))st (3.22)

J23 = J32 =
1
σ2

∑
t

(sin(αt) + sin(βt))(cos(αt) + cos(βt))st (3.23)

J24 = J42 =
1
σ2

∑
t

(sin(αt) + sin(βt))2st (3.24)

J34 = J43 =
1
σ2

∑
t

(sin(αt) + sin(βt))(cos(αt) + cos(βt))t2 (3.25)

Where αt, βt ∈ [0, 2π) and

cos(αt) =
sx + tu− 1√

(sx + tu− 1)2 + (sy + tv)2
; sin(αt) =

sy + tv√
(sx + tu− 1)2 + (sy + tv)2

;

cos(βt) =
sx + tu + 1√

(sx + tu + 1)2 + (sy + tv)2
; sin(βt) =

sy + tv√
(sx + tu + 1)2 + (sy + tv)2

;(3.26)

The geometric interpretation of αt and βt is illustrated in Fig.3.9.

Figure 3.4: αt and βt

If N is sufficiently large, notice that s2(cos(αt)+cos(βt))2 is a bounded continuous
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function of t, then we have the following result:

J11 =
1
σ2

∑
t

(cos(αt) + cos(βt))2s2

=
N

σ2

∑
t

1
N

(cos(αt) + cos(βt))2s2

' N

σ2

∫ 1

0
(cos(αt) + cos(βt))2s2dt (3.27)

Similarly for Jij ’s. Thus the Fisher information matrix J have the following form when

N is sufficiently large (when the sum converges to the integral).

limN→∞
σ2J

N
= K(x, y, u, v) (3.28)

¤

Where K is a constant matrix. We call it normalized Fisher Information matrix.

It is independent of σ2 and N .It is solely determined by the 4-tuple (x, y, u, v). The

normalized Fisher Information matrix depicts the intrinsic estimation bound for the

4-tuple (x, y, u, v).

K11 =
∫ 1

0
(cos(αt) + cos(βt))2s2dt

K12 = K21 =
∫ 1

0
(sin(αt) + sin(βt))(cos(αt) + cos(βt))s2dt (3.29)

And so on for K13, ... Now we can calculate the Cramer-Rao bound on the estimation.

V (x) =
σ2

N
K−1

11; V (y) =
σ2

N
K−1

22;

V (u) =
σ2

N
K−1

33;V (v) =
σ2

N
K−1

44; (3.30)

We can numerically compute K(x, y, u, v) and have an idea of how many multi-

path length measurements are needed to achieve a certain estimation variance ξ2 for all

of x, y, u, v.

N ≥ σ2

ξ2 maxiK
−1
ii (3.31)

In Fig.3.1.2 we show some numerical results for maxiK
−1
ii .
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Figure 3.5: The value on (x, y) indicates log10(maxiK
−1

ii)
(a) is of the 4-tuple (x, y, x(1− 2√

x2+y2
), y(1− 2√

x2+y2
)). i.e. the object moves 2 towards

the origin (0, 0).
(b) is of the 4-tuple (x, y, x(1− 1√

x2+y2
), y(1− 1√

x2+y2
)). i.e. the object moves 1 towards

the origin (0, 0). Transmitter and receiver at (−1, 0), (1, 0).
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Figure 3.6: The value on (x, y) indicates log10(maxiK
−1

ii), (a) is of the 4-tuple
(x, y, x − 1, y). i.e. the object moves 1 leftward along the x-axis. (b) is of the 4-
tuple (x, y, 0.5,−0.5). i.e. the motion of the object ends at (0.5,−0.5). Transmitter and
receiver at (−1, 0), (1, 0).
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3.1.3 A Consistent Estimation Scheme

Suppose that the additive gaussian noises added to the multi-path measurements

have fixed variance δ2. Unlike the naive linear algorithm which cannot accurately es-

timate the motion even with infinite many distance measurements, we propose an es-

timation algorithm, s.t. the estimation converges to the true value as the number of

multi-path length measurements goes to infinity. Notice that although we fixed the

noise variance on each measure, the overall SNR increases to infinity since we have

more measurements. We define SNR as the ratio of the total signal power over noise

variance. SNR = NP
σ2 , where N is the number of measurements, P is the power used

per measurement, σ2 is the noise variance.

The algorithm has two steps. In the first step, we average the multi-path length

measurements, which will give an estimation of a single multi-path length with very

low estimation variance by the law of large numbers. More specifically, without loss

of generality, we assume the starting time is 0, ending time is 1. We divide the time

interval [0, 1] into n3 sub intervals with the same size 1/n3. In the beginning of each

time interval, we have a multipath distance measure dj , j = 1, ..n3. For convenience, let

n = 7m,m ∈ N . Then we will average multipath distances around Ti = i/7, i = 1, 2, ...6,

let

li =
1

n + 1

j=n3i
7
−n

2∑

j=n3i
7
−n

2

dj (3.32)

We will prove that li converges to the true multipath distance at time i/7 with proba-

bility 1 when n goes to infinity.

In the second step we use these very accurate multipath distances to form the

matrix A and vector g by the same way as in the previous section. Then we argue

that the matrix A and the vector g will be arbitrarily close to the true value given

enough measurements. Then we use Eqn.3.10 to solve for the unknowns xs, ys, xe, ye,
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where (xs, ys) is the starting location, and (xe, ye) is the ending location of the object.

Following flowchart shows how the scheme works.

Averaging multi-path
distance measurements

around time T k  : dk
k=1,2,....6

Linear equation system
for

(xs
2,xsxe,xe

2,ys
2,ysye,ye

2 )
dk

dk can be arbitrarily
close to the true

multi-path distance
Same equation as
the simple scheme

xs xe ys ye

multi-path
distance

measurements

A huge number of
measurements are
needed in order to

get the desired
SNR

Figure 3.7: Flowchart of a consistent scheme

Step 1: distance averaging

In the first step, we average a bunch of multi-path distance measurements around 6

different times to get good approximations of the multi-path distances around 6 times.

For the convenience, we write M = n2, N = n. Then there are L = MN multi-

path distance measurements:

l11, l
2
1, ..., l

M
1 , l12, l

2
2, ..., l

M
2 , ..., l1N , l2N ...lMN (3.33)

Where ljk =
√

(xj
k − 1)2 + yj

k

2
+

√
(xj

k + 1)2 + yj
k

2
+ δj

k = hj
k + δj

k (3.34)

And let LT =
√

(x1
1 − xM

N )2 + (y1
1 − yM

N )2. (3.35)

δj
k

′
s are iid Gaussian random noises with variance δ2. LT is the total travelling

path length of the object. And hj
k is the true multi-path lengths. Our goal is to estimate

hj
k from a group of ljk’s.

Now let dk = 1
M

∑M
j=1 ljk be the average of M noisy multipath distance measures.
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Theorem 3.3. limN→∞,M→∞dk = hc
k, where c = M+1

2 , hc
k is the true kN + c’th

multipath distance.

Proof. : We have:

dk =

∑M
j=1 hj

k

M
+

∑M
j=1δ

j
k

M
= lk + σk (3.36)

Where σk
′s are iid Gaussian random noises with variance δ2

M .

For convenience, we assume that M is an odd number. Let c = (M + 1)/2, then

lk is an approximation of hc
k. Using Taylor expansion, we have :

hc+q
k = hc

k + q4x
∂hc

k

∂x
+ q4y

∂hc
k

∂y
+ (q4x)2

∂2hc
k

2∂x2
+ (q4y)2

∂2hc
k

2∂y2

+ (q4x)(q4y)
∂2hc

k

∂x∂y
+ o((

LT

N
)2) (3.37)

Where x = xc
k, y = yc

k, q = −M−1
2 ,−M−1

2 + 1, ..., M−1
2 − 1,−M−1

2 , and 4x = LT cos(α)
MN ,

4y = LT sin(α)
MN , α is the angle between the x−axis and the travelling path of the object.

Obviously 4x,4y are upper-bounded by LT
NM and q4x, q4y are upper-bounded by LT

N .

From Eqn.(3.37), we have :

lk =
1
M

M∑

j=1

hj
k =

1
M

M−1
2∑

q=−M−1
2

hc+q
k (3.38)

= hc
k +

1
M

M−1
2∑

q=−M−1
2

((q4x)2
∂2hc

k

2∂x2
+ (q4y)2

∂2hc
k

2∂y2

+(q4x)(q4y)
∂2hc

k

∂x∂y
)

= hc
k +4k (3.39)

Again let xc
k = x; yc

k = y; then we have hc
k =

√
(x− 1)2 + y2 +

√
(x + 1)2 + y2

∂2hc
k

∂y∂y
=

1√
(x− 1)2 + y2

+
y2

√
(x− 1)2 + y23 +

1√
(x + 1)2 + y2

+
y2

√
(x + 1)2 + y23

| ∂
2hc

k

∂y∂y
| ≤ 2

ε
+ 2 = Pε (3.40)

Where ε = min(
√

(x− 1)2 + y2,
√

(x + 1)2 + y2) (3.41)



79

Similarly we have | ∂2hc
k

∂x∂y | ≤ 1
ε + 1, |∂2hc

k
∂x2 | ≤ 2

ε + 2.

Suppose that the travelling path does not pass through the transmitter or receiver,

more strictly speaking, the minimum distance from the travelling path to the transmitter

and receiver is lower bounded by some positive real value e, then from Eqn.(3.40), we

know that | ∂2hc
k

∂x∂y |, |
∂2hc

k
∂y2 |, and |∂2hc

k
∂x2 | are upper-bounded by Pe. Thus we have :

|4k| ≤ Pe

M

M−1
2∑

q=−M−1
2

(
(q4x)2

2
+

(q4y)2

2
+ |(q4x)(q4y)|)

=
Pe

M
(
(4x)2

2
+

(4y)2

2
+ |4x4y|)

M−1
2∑

q=−M−1
2

q2

=
Pe

M
(
(4x)2

2
+

(4y)2

2
+ |4x4y|)(M

2
− 1)(

M

2
+ 1)

M

3

≤ Pe

24M
((4x)2 + (4y)2 + 2|4x4y|)M3

≤ Pe

24M
((

LT

MN
)2 + (

LT

MN
)2 + 2(

LT

MN
)2)M3

=
PeL

2
T

6N2

=
Q

N2
(3.42)

Where Q = PeL2
T

6 , now we have dk = hc
k + σk +4k, where |4k| ≤ Q

N2 , σk ∼ N(0, δ2

M ). In

the above analysis dk and hj
k are all functions of M and N . We write them as dk(M,N)

and hj
k(M, N). We let n = N,n2 = M because we can arbitrarily pick N, M . Using the

standard Chebychev inequality, it is easy to verify that the sequence dk) converges to

hc
k with probability 1, and c = n2−1

2 . ¤

Step 2: Solving the unknowns

Now we pick 6 target points,p1, ...p6, where pi is at (ui, wi).

(ui, wi) =
i

7
(xe, ye) +

7− i

7
(xs, ys) (3.43)

Let ri be the multi-path length of the i’th measurement,then ri =
√

(ui − 1)2 + w2
i +

√
(ui + 1)2 + w2

i . Now Eqn.3.9 has the following form.

Av = g (3.44)
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Where v = (xs
2, xsxe, xe

2, ys
2, ysye, ye

2)T , g = (a2
1b

2
1, ...a

2
6b

2
6)

T and a 6× 6 matrix A, s.t

the k − th row (k=1,2,..,6) of it is

(bk
2(1− k

7 )2, 2bk
2(1− k

7 )k
7 , bk

2(k
7 )2, ak

2(1− k
7 )2, 2ak

2(1− k
7 )k

7 , ak
2(k

7 )2), and ak = rk
2 , bk =

√
( rk

2 )2 − 1.

As we know from step 1, we can estimate (with error converges to 0) those rk’s

by averaging a bunch of multi-path length measurements.

Now Eqn.3.9 have the following form :

ALv = gL (3.45)

Where v = (xs
2, xsxe, xe

2, ys
2, ysye, ye

2)T , gL = (a2
n1b

2
n1, ...a

2
n6b

2
n6)

T and a 6 × 6 matrix

AL, s.t the k − th row (k=1,2,..,6) of it is

(bnk
2(1 − nk

L )2, 2bnk
2(1 − nk

L )nk
L , bnk

2(nk
L )2, ank

2(1 − nk
L )2, 2ank

2(1 − nk
L )nk

L , ank
2(nk

L )2),

where nk = ρ(kL
7 ) and ank

= dnk
(n2,n)

2 bnk
=

√
(dnk

(n2,n)

2 )2 − 1, where ρ(x) is the closest

integer to x and L = n3.

From step 1, we know that dnk
(n2, n) converges to rk with probability 1. So we

have a sequence of linear equations ALv = gL, where AL, gL are defined by dnk(n2, n), k =

1, 2, ..., 6, thus AL, gL converges to A, g with probability 1. A is nonsingular, so A−1
L gL

converges to A−1g with probability 1. We only use 6n2 measurements out of n3 total

measurements. ¤

We just proved that no matter how large the variance of a single multi-path

length measurements is, we still can accurately estimate the motion of the object given

very large amount of measurements. This is only of theoretical interest. Practically

the number of multi-path distance measurements needs to be huge in order to have an

accurate estimation of the position, because the matrix A is near singular. Furthermore,

the motion model fails if the object moves randomly or it is at rest. In Appendix L,

we will show that if the object is allowed to move with non-constant velocity, it is

possible that 2 different motions give the same multi-path distance all the time in a
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single transmitter, single receiver network. That’s why it is impossible for a single

transmitter, single receiver network to track the object when the object does not move

with a constant velocity.

3.2 Single Object Tracking in a Multiple-sensor Sensor Network

(MSSO)

From the previous section, we know that even the object moves strictly with a

constant velocity, it is still not practical to estimate the position of the object if only

1 transmitter and 1 receiver are presented in the sensor network. So we move on to

a sensor network with multiple transmitter, multiple receivers and no motion model is

presumed for the objects. We will first derive the Cramer-Rao bound and then give a

2-step estimation scheme on the estimation of the object position in the multiple-sensor

scenario.

Figure 3.8: Multiple-Sensors, Single Object

As shown in Fig.3.8 we have N sensors with known positions and 1 object with
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unknown position in the filed, where each sensor can both send and receive signals.

There are N(N − 1) multi-path distance measurements if the sensors can not receive

their own signal (in fact, this assumption is a minor one which does not affect the

algorithm or the Cramer-Rao bound analysis). From the Cramer-Rao bound analysis, it

can be shown that the variance of the estimation converges to 0 with order O(1/N2) and

that is also the convergence rate of the estimation variance that our algorithm achieves.

Here we assume all the multi-path distance measurements are taken simultaneously,

i.e. there is not motion of the object. It is reasonable since the motion of the objects

is typically slow comparing to the time differences supi,j infn,m|Ti(n) − Tj(m)|, where

Ti(n) is the n th signal sent out by sensor i.

3.2.1 Cramer-Rao Bound

In this section we derive the lower bound on the position estimation variance of

the multiple-sensor, single object system. Here we are going to derive the Cramer-Rao

Bound for a general system with N trasmitters and M receivers.

Suppose that there is a sensor network with N transmitters with known po-

sitions (xi, yi), i = 1, ...N , M receivers with known positions (x
′
j , y

′
j), j = 1, ...M .

And the position of the object is (x, y) which is unknown. The observation vector
−→
l = (l11, l12, ...lij , ..., lNM ), vector of all the multi-path distances. Assume the observa-

tions are corrupted by iid Gaussian noises ε ∼ N(0, σ2) , then

lij =
√

(x− xi)2 + (y − yi)2 +
√

(x− x
′
j)2 + (y − y

′
j)2 + εij (3.46)

The estimation of (x, y) is based on the knowledge of the positions of the sensors and

the observation vector
−→
l . Then we have the probability density function as following:

p(
−→
l |x, y) =

∏

16i6N,16j6M

1√
2πσ2

exp(
−(lij −

√
(x− xi)2 + (y − yi)2 −

√
(x− x′j)2 + (y − y′j)2)

2

(2σ2)
)

(3.47)
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The Fisher information matrix J2×2 is as following.

ln(p(
−→
l |x, y)) =

MN

2
ln(2πσ2)− 1

2σ2

∑

i,j

(lij −

√
(x− xi)2 + (y − yi)2 −

√
(x− x

′
j)2 + (y − y

′
j)2)

2 (3.48)

J11 = E(
∂2ln(p(

−→
l |x, y))

∂x2
)

=
1
σ2

∑

i,j

(
x− xi√

(x− xi)2 + (y − yi)2
+

x− x
′
j√

(x− x
′
j)2 + (y − y

′
j)2

)2

=
1
σ2

∑

i,j

(cos(αi) + cos(α
′
j))

2 (3.49)

Similarly :

J22 =
1
σ2

∑

i,j

(sin(αi) + sin(α
′
j))

2 (3.50)

J21 = J12 =
1
σ2

∑

i,j

(cos(αi) + cos(α
′
j))(sin(αi) + sin(α

′
j)) (3.51)

We define normalized Fisher Information Matrix K = σ2J , where K is indepen-

dent of σ2, K is the intrinsic measure of how hard it is to estimate the position of an

object at point (x, y).

Where α, α
′ ∈ [0, 2π) and

cos(α) =
x− xi√

(x− xi)2 + (y − yi)2
; sin(α) =

y − yi√
(x− xi)2 + (y − yi)2

;

cos(α
′
) =

x− x
′
i√

(x− x
′
i)2 + (y − y

′
i)2

; sin(α
′
) =

y − y
′
i√

(x− x
′
i)2 + (y − y

′
i)2

;

The geometric interpretation of α is illustrated in Fig.3.9.

Now we can calculate the Cramer-Rao bound on the position estimation. For a

2×2 Fisher information matrix J2×2, we have the Cramer-Rao bound on the estimation

of x, y as following.

V (x) =
J22

J11J22 − J2
12

; V (y) =
J11

J11J22 − J2
12

(3.52)

The Fisher information matrix J is now a random matrix. The randomness comes from

the position of the sensors. i.e. for different set up of the sensor network and the
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Figure 3.9: α

position of the object, the Cramer-Rao bound could be different. We assume αi and α
′
j

are iid uniformly distributed in [0, 2π). This is reasonable when there are a large amount

of sensors uniformly distributed in the sensor field. Notice that with that assumption,

V (x) and V (y) have the same statistical properties by the nature of symmetry. α’s are

iid uniformly distributed, then we have the following results:

Theorem 3.4. Asymptotic Cramer-Rao bound for MSSO If the transmitters and re-

ceivers are iid angularly uniformly distributed around the object at (x, y). Then

limN→∞,M→∞(V (x) + V (y))NM = 2σ2 in probability (3.53)

Proof. :

E(cos(αi)cos(αj)) = E(sin(αi)sin(αj)) =
δ(i− j)

2
(3.54)

E(cos(αi)sin(αj)) = 0 (3.55)

E(cos(αi)4) = E(sin(αi)4) =
3
8

(3.56)

E(cos(αi)2cos(αj)2) = E(cos(αi)2sin(αj)2) =
1
4
, i 6= j (3.57)

E(cos(αi)2sin(αi)2) =
1
8

(3.58)

Where δ(k) = 1, if k = 0,δ(k) = 0, if k 6= 0. Now we have the following results for the

entries of the Fisher information matrix:
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E(J11) = E(J22) = E(
1
σ2

∑

i,j

(cos(αi) + cos(α
′
j))

2)

=
1
σ2

(
∑

i,j

E(cos(αi)2) +
∑

i,j

E(cos(α
′
j)

2) +
∑

i,j

E(cos(αi)cos(α
′
j)))

=
1
σ2

(
NM

2
+

NM

2
+ 0) =

NM

σ2
(3.59)

E(J12) = E(J21) =
1
σ2

E(
∑

i,j

(cos(αi) + cos(α
′
j))(sin(αi) + sin(α

′
j))) = 0 (3.60)

E(J11J22) =
1
σ4

E(
∑

i,j

(cos(αi) + cos(α
′
j))

2
∑

i,j

(sin(αi) + sin(α
′
j))

2)

=
1
σ4

(N2M2 − NM2 + N2M

8
) (3.61)

E(J2
12) =

1
σ4

E((
∑

i,j

(cos(αi) + cos(α
′
j))(sin(αi) + sin(α

′
j)))

2)

=
1
σ4

(
3N2M + 3NM2

8
+

NM

4
) (3.62)

E(J11J22 − J2
12) =

1
σ4

(N2M2 − NM2 + N2M

2
− NM

4
) (3.63)

Now substitute the above results into Eqn.3.52, noticing that N, M is large so the

variance goes to zero and apply the law of large numbers. We have the following result

:

limN→∞,M→∞
J11

NM
=

1
σ2

in probability

limN→∞,M→∞
J11J22 − J12

2

N2M2
=

1
σ4

in probability

(3.64)

So we have

limN→∞,M→∞NMV (x) = limN→∞,M→∞NM
J22

J11J22 − J12
2 = σ2 in probability(3.65)

¤

We claim that the Cramer-Rao bound on the position estimation (x, y) is V (x) =

V (y) ∼ σ2

NM . The variance of the position estimation is

V (x) + V (y) =
2σ2

NM
(3.66)
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In Fig.3.10, we show the theoretical Cramer-Rao bounds vs. simulation results

(Monte-Carlo method) in logarithm terms. In our simulation we simulate the Cramer-

Rao bound based on realized sensor positions. We fix the object at [0, 0], N transmitters

and N receivers are uniformly distributed in [−1, 1] × [1, 1], for each N we compute

V (x) + V (y) for 100 times and get the average.

Figure 3.10: Blue curve is the theoretical CR bound in logarithm term :log10( 2
N2 ), red

triangles are simulation results

3.2.2 A Position Estimation Scheme

In this section, we assume that all the sensors can both transmit and receive

signals. We propose a least square based algorithm as following which achieves the

optimal convergence rate O(1/N2). The algorithm has 2 steps. In the first step, we

extract the distances di, 1 ≤ i ≤ N , between the object and the i − th sensor from

the multi-path lengths ljk, where 1 ≤ j 6= k ≤ N . In the second step, we estimate

the position (x, y) of the object from the distance estimations d′is. The first step is

a linear estimator, but as a whole the estimation is not a linear estimation from the

observations.
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extract direct path
distances (d i,...dN)

dk : distance from  sensor k
to the object

Quadratic equations :
 (x-xk)

2 +(y-yk)
2=dk

2dk

LSE of (d i,...dN)

 x  y

multi-path
distance

measurements

N(N-1)
measurements

lij

Positions of
the sensors

(xk yk)

pair  the quadratic
equations to cancel the

x2   y2   term

Form a linear equation
system for x and y

N/2  linear
equations

Figure 3.11: Flowchart of MSSO position estimation
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3.2.2.1 Extraction of di’s

In the first stage of the estimation scheme, we estimate the distances from each

sensor to the object from the multi-path distances measurements. Notice that lij =

di + dj + εij , where lij ’s are the observed multi-path length and εij ’s are iid Gaussian

random variables ∼ N(0, σ2), for all 1 ≤ j 6= k ≤ N . Thus we have the following

equation system:

A~d + ~ε =




1 1 0 0 . . . 0 0

1 1 0 0 . . . 0 0

1 0 1 0 . . . 0 0

1 0 1 0 . . . 0 0
...

. . .
...

0 0 0 0 . . . 1 1

0 0 0 0 . . . 1 1







d1

d2

...

dN




+




ε12

ε21

ε13

ε31

...

εN−1N

εNN−1




=




l12

l21

l13

l31

...

lN−1N

lNN−1




= ~l (3.67)

Where A is an N(N − 1)/2 × N matrix consisted of 0s and 1s. Now the least square

estimation of ~d is

~̂d = (AT A)−1AT~l = (AT A)−1AT (A~d + ~ε) = ~d + (AT A)−1AT~ε = ~d + ~v (3.68)

Where ~v is a Gaussian random vector with zero mean, autocorrelation matrix σ2(AT A)−1.

AT A = 2




N − 1 1 . . . 1

1 N − 1 . . . 1
...

. . .
...

1 . . . N − 1




(3.69)

(AT A)−1 = 0.5




a b . . . b

b a . . . b

...
. . .

...

b . . . a




(3.70)
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Where a = 2N−3
(N−2)(2N−2) ∼ 1

N , b = 1
(N−2)(2N−2) ∼ 1

2N2 . That is: E(v2
k) ∼ σ2

2N , E(vkvj) ∼
σ2

4N2 , j 6= k.

3.2.2.2 Estimation of (x, y)

With the linear least square estimation of the distances from each sensor to the

object, we have the following estimation of (x, y). For convenience, we assume that N

is even. Then we have N/2 following equation pairs:

(x− x2k−1)2 + (y − y2k−1)2 = d̂2
2k−1

(x− x2k)2 + (y − y2k)2 = d̂2
2k (3.71)

k = 1, 2, ..., N/2

By subtracting the 2k-1’th equation from the 2k’th equation we get the following linear

equation for x, y.

2(x2k−1 − x2k)x + 2(y2k−1 − y2k)y = d̂2
2k − d̂2

2k−1 + y2
2k−1 − y2

2k + x2
2k−1 − y2

2k

k = 1, 2, ..., N/2 (3.72)

So now we have a linear equation system for x, y:

B




x

y


 = ~c + ~w (3.73)

Where B is an (N/2) × 2 matrix, the kth row of B is (x2k−1 − x2k, y2k−1 − y2k). The

kth element of ~c is d2
2k − d2

2k−1 + y2
2k−1 − y2

2k + x2
2k−1 − y2

2k. And the kth element of the

noise vector ~w is v2
2k − v2

2k−1 + 2d2kv2k − 2d2k−1v2k−1. The least square estimation of

x, y is

(x̂, ŷ)T = (BT B)−1BT (~c + ~v) = (x, y)T + (BT B)−1BT ~w = (x, y)T + (u1, u2)T (3.74)
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3.2.2.3 Estimation Mean and Variance

First, ~w is zero mean, so ~u = (u1, u2)T is zero mean as well, so the estimator is

unbiased.

Secondly, we are interested in the estimation variance of the estimator.

Theorem 3.5. Autocorrelation of ~u If there are N sensors uniformly distributed inside

a circle centered at the object. then

E(~u~uT ) =
28σ2

2N2
I2×2 (3.75)

Proof. : First we will look at the the autocorrelation matrix of ~u. The autocorrelation

matrix of ~u is

(BT B)−1BT E(~w~wT )B(BT B)−1 =
(BT B

N )−1BT E(~w~wT )B(BT B
N )−1

N2
(3.76)

Without loss of generality we assume that the positions of the sensors are iid random

vectors with finite variance on the 2-D plan. Then BT B
N converges to




E((xi−xj)
2)

2 0

0 E((yi−yj)
2)

2


 =

E((xi − xj)2)
2

I2×2 (3.77)

E(~w~wT ) is an N/2 by N/2 matrix. Notice that the expectation of the prod-

uct of odd many zero mean Gaussian random variables is zero no matter if they are

independent or not. The k, k th element is

E(4d2
2k−1v

2
2k−1 + 4d2

2kv
2
2k − 8d2k−1d2kv2k−1v2k + v4

2k−1 + v4
2k − 2v2

2k−1v
2
2k)

≈ E(4d2
2k−1v

2
2k−1 + 4d2

2kv
2
2k − 8d2k−1d2kv2k−1v2k)

≈ 2σ2(
d2

2k−1

N
+

d2
2k

N
− d2k−1d2k

N2
) (3.78)

Meanwhile the i, j th (i 6= j) element of that autocorrelation matrix is

E(4d2i−1d2j−1v2i−1v2j−1 + 4d2id2jv2iv2j − 4d2i−1d2jv2i−1v2j − 4d2id2j−1v2iv2j−1)

≈ σ2(d2i − d2i−1)(d2j − d2j−1)
N2

(3.79)
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BT E(~w~wT )B

≈ 2σ2

N




∑N/2
k=1(x2k − x2k−1)2(d2

2k−1 + d2
2k) 0

0
∑N/2

k=1(y2k − y2k−1)2(d2
2k−1 + d2

2k)




≈ σ2E((xi − xj)2(d2
i + d2

j ))I2×2 (3.80)

Combining with Eqn.3.77.The autocorrelation matrix of ~u is

4σ2E((xi − xj)2(d2
i + d2

j ))
N2E((xi − xj)2)2

I2× 2 (3.81)

Suppose transmitters all have some power limit, then all of the transmitters which

contributes to a multi-path distance measurement are within a circle,radius R, center

at the object. If we assume that the sensors are uniformly distributed, then we can

calculate
E((xi−xj)

2(d2
i +d2

j ))

E((xi−xj)2)2
. Without loss of generality, we assume the object is at (0, 0),

then (xi, yi) is uniformly distributed in the region {(x, y) : x2 + y2 ≤ R2}. Then

E((xi − yi)2) = E(x2
i + y2

i ) =

∫ 2π
0

∫ R
0 r2rdrdθ

πR2
=

R2

2
(3.82)

E((xi − xj)2(d2
i + d2

j )) = E((xi − xj)2(x2
i + y2

i + x2
j + y2

j )) = E((x2
i + y2

i )
2)

+E(x2
i + y2

i )
2 =

∫ 2π
0

∫ R
0 r4rdrdθ

πR2
+ (

∫ 2π
0

∫ R
0 r2rdrdθ

πR2
)2 =

R4

3
+

R4

4
=

7R4

12
(3.83)

Now we have the autocorrelation matrix of ~u as following.

28σ2

3N2
I2×2 (3.84)

¤

3.2.2.4 Simulation Results for MSSO

In our simulation, each sensor can both send and receive signals. Thus we have

N(N − 1) multi-path length measurements given N sensors in the sensor network.

The result is shown in Fig.3.12. In our simulation, the position of the sensors and the

objects are uniformly distributed in a 1×1 region. The multi-path length measurements
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are corrupted with iid Gaussian noise with distribution ∼ N(0, 10−4) so the standard

deviation is 0.01. The bar plot in Fig.3.12 is
√∑W

i=1(xi−xe
i )

2+(yi−ye
i )2

2W , an average of the

variance of estimation errors over W = 100 random simulations. Where (xi, yi) is the

position of the object in the i’th simulation, (xe
i , y

e
i ) is the estimation of the position

using our algorithm. As can be seen, the square root of the estimation variances decays

to 0 at rate 1
N which is what we predicated. The solid curve is

√
28σ2

3N2 .

As shown in Fig.3.13, the mean error of the estimations is rather small comparing

to the square root of the variance of the multi-path distance errors.

3.2.2.5 Discussions on Multiple-Sensor, Single Object Tracking

The proposed scheme achieve the estimation variance ∼ O(N−2) given that every

pair of sensor can communicate with each other, where N is the number of sensors.

Comparing to the more general Cramer-Rao bound we derived V (x) = V (y) ∼ O( 1
NM ),

where N is the number of transmitters, M is the number of receivers. If each sensor

can both transmit and receive signals as assumed in our scheme. Then M = N , thus

the Cramer-Rao bound is V (x) = V (y) ∼ O( 1
N2 ). So our algorithm is order optimal.

I.e the estimation variance and the Cramer-Rao bound approach to 0 at the same rate

asymptotically as the number of sensors goes to infinity.

The above analysis are based on the assumption that every sensor transmits at

the constant power level no matter how many sensors are in the field. A natural question

to ask is what if the total transmission power remains constant instead of increasing

proportionally with the number of sensors? What if the total received power remains

constant? With the assumption that the variance of the AWGN added to the estimation

of multiple-path lengths is proportional to the inverse of the power of the transmitter,

we can answer those questions.

When the total transmission power is constant, the power of each single transmis-

sion is scaled down by N . Then the variance of the AWGN added to the measurement
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Figure 3.12: (a) is the setup of the simulations, the position of the sensors and the
objects are uniformly distributed in a 1× 1 region. The red square is the estimation of
the object. Here we have 10 sensors.
(b) is the square root of the mean error square VS. the number of sensors N . The bar

plot is the error, while the solid line is the
√

28σ2

3N2 curve.
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Figure 3.13: (a) is the mean error of the estimation
(b) is estimation results of 100 independent simulations. The red dot is the position of
the object, the blue dots are the estimations
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of each single multiple-path distance is σ2N . Using the same algorithm, the position

estimation is still unbiased with variance, scaled up with factor N , ∼ O(N−1).

If the total received power is constant, then each single transmission power is

scaled down by factor N−2. It is easy to figure out that the estimation variance is

∼ O(1) using the same algorithm. Increasing the number of sensors does not help the

estimation in this scenario. This suggests that we cannot achieve a better estimation

accuracy by only adding more sensors. The total received power must be increased to

achieve a better estimation accuracy.

3.2.3 MSSO in a sensor network with a single receiver

In this section we are going to study the tracking problem for a multiple trans-

mitter, single receiver sensor network. Suppose that there are N transmitters, and only

one receiver in a sensor network. If N is large, then we can track the object without

motion model, if N is small, we need the motion model again to be able to track the

object. Object tracking in a single receiver network is interesting because it allows the

receivers to distributedly estimate the object position.

3.2.3.1 Cramer-Rao bound analysis

We derive the Cramer-Rao bound on the estimation problem for 2 different sce-

narios. First, if there are a large amount of transmitters, we can accurately estimate

the position of the object (x, y) without any motion model, the analysis is based on the

law of large numbers. Second, if there are only several transmitters. In this case we

analyze the Cramer-Rao bound for both tracking without motion model and tracking

with constant velocity model.

Case 1: N is large, where no motion model is needed.

The analysis for multiple transmitter multiple receiver network still holds. In

stead the total receiver number M is 1 now. J2×2 is the Fisher information matrix. Then
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Figure 3.14: Multi-transmitter, single receiver, N is large

the Cramer- Rao bound for the estimation of x and y are V (x) and V (y) respectively.

Theorem 3.6. Asymptotic CR bound for single receiver case: In an N transmitter,

single receiver sensor network, assume that the transmitters are angularly uniformly

distributed around (x, y). Then

limN→∞N(V (x) + V (y)) =
8σ2

3
in probability (3.85)

Proof. : The proof is basically the same as the shown in Theorem where the number of

receivers is also big. As show in Fig.3.14.

J11 =
1
σ2

N∑

k=1

(cos(β) + cos(αk))2

J22 =
1
σ2

N∑

k=1

(sin(β) + sin(αk))2

J12 =
1
σ2

N∑

k=1

(cos(β) + cos(αk))(sin(β) + sin(αk))

(3.86)

V (x)+V (y) = J11+J22

J11J22−J2
12

. We assume the angle of (Tx−(x, y)) is uniformly distributed in

[0, 2π). Then we have the estimation variance of the position : V (x)+V (y) = J11+J22

J11J22−J2
12

.
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Notice that the variance goes to zero by the law of large numbers.

limN→∞
J11

N
= cos2(β) +

1
2

in probability

limN→∞
J22

N
= sin2(β) +

1
2

in probability

limN→∞
J12

N
= cos(β)sin(β) in probability

so we have :

limN→∞N
J11 + J22

J11J22 − J2
12

=
cos2(β) + 1

2 + sin2(β) + 1
2

(cos2(β) + 1
2)(sin2(β) + 1

2)− sin2(β)cos2(β)

=
8
3

in probability (3.87)

¤

So we can claim that

V (x) + V (y) ≈ 8σ2

3N
(3.88)

The order of the estimation variance is 1
N which is consistent with the order of the total

received power. In Fig.3.15, we show the theoretical Cramer-Rao bounds vs. simulation

results (Monte-Carlo method)in logarithm terms. In our simulation, we fix the object at

[0, 0], N transmitters are uniformly distributed in [−1, 1]× [1, 1], for each N we compute

V (x)+V (y)
σ2 for 100 times and get the average.

Case 2: N is small (especially 2), to directly calculate the position of the object

based on the intersection of ellipses is not stable as shown in Fig. 3.21. Thus we

assume the object is moving with a constant velocity. Then the argument we used in

the previous analysis is no longer right, since the angles αi ’s cannot be assumed to

be uniformly distributed in [0, 2π]. Thus the estimation problem here is similar to the

problem in section 3.1 . And the Cramer-Rao bound analysis is similar to that in section

3.1.2.
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Figure 3.15: Blue curve is the theoretical CR bound 8
3N , red triangles are simulation

results

Figure 3.16: Multi-transmitter, single receiver, N is small
(sx + tu, sy + tv) is the position of the object at time t, s = 1− t.
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Similar to section 3.1.2, we suppose that the measuring starts at time 0 when the

object is at (x, y), ends at time 1 when the object is at (u, v). Then at time t the object

is at (sx + tu, sy + tv), where s = 1− t. Then we have the following W measurements:

dt(i) =
√

(sx + tu− ai)2 + (sy + tv − bi)2 +
√

(sx + tu− a)2 + (sy + tv − b)2 + δt(i)

i = 1, 2, ..N, t = 0, 1/(W − 1), 2/(W − 1), ...(W − 2)/(W − 1), 1 (3.89)

Where dt(i) is the multi-path length measurement from transmitter i with posi-

tion (ai, bi) to the receiver with position (a, b) at time t. Similarly to the theorem in

the Section 3.1.2, we have the following theorem.

Theorem 3.7. Fisher Information Matrix of MTSR object tracking with motion model

For a specific motion which starts from (x, y), ends at (u, v). If there are W multipath

distance measurements for each transmitter. Let x, y, u, v be the 1st, 2nd, 3rd and 4th

parameter to be estimated respectively. Let J4×4 be the Fisher Information Matrix for

x, y, u, v.

limW→∞
σ2J

W
= K(x, y, u, v) (3.90)

Where K(x, y, u, v) is a function of (x, y, u, v).

Proof. : Following the same procedure in the Section 3.1.2. We have

J11 =
1
σ2

N∑

i=1

∑
t

(
s(sx + tu− ai)√

(sx + tu− ai)2 + (sy + tv − bi)2
+

s(sx + tu− a)√
(sx + tu− a)2 + (sy + tv − b)2

)2

=
1
σ2

N∑

i=1

∑
t

(cos(βt(i)) + cos(αt))2s2 (3.91)

Similarly we have the expression of Jii:

J22 =
N∑

i=1

1
σ2

∑
t

(sin(αt) + sin(βt(i)))2s2 (3.92)

J33 =
N∑

i=1

1
σ2

∑
t

(cos(αt) + cos(βt(i)))2t2 (3.93)

J44 =
N∑

i=1

1
σ2

∑
t

(sin(αt) + sin(βt(i)))2t2 (3.94)
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Jij ’s:

J12 = J21 =
N∑

i=1

1
σ2

∑
t

(sin(αt) + sin(βt(i)))(cos(αt) + cos(βt(i)))s2 (3.95)

J13 = J31 =
N∑

i=1

1
σ2

∑
t

(cos(αt) + cos(βt(i)))2st (3.96)

J14 = J41 =
N∑

i=1

1
σ2

∑
t

(sin(αt) + sin(βt(i)))(cos(αt) + cos(βt(i)))st (3.97)

J23 = J32 =
N∑

i=1

1
σ2

∑
t

(sin(αt) + sin(βt(i)))(cos(αt) + cos(βt(i)))st (3.98)

J24 = J42 =
N∑

i=1

1
σ2

∑
t

(sin(αt) + sin(βt(i)))2st (3.99)

J34 = J43 =
N∑

i=1

1
σ2

∑
t

(sin(αt) + sin(βt(i)))(cos(αt) + cos(βt(i)))t2 (3.100)

Where αt, βt(i) ∈ [0, 2π), t = 0, 1/(W − 1), 2/(W − 1), ...(W − 2)/(W − 1), 1 and

cos(αt) =
sx + tu− a√

(sx + tu− a)2 + (sy + tv − b)2
;

sin(αt) =
sy + tv − a√

(sx + tu− a)2 + (sy + tv − b)2
;

cos(βt(i)) =
sx + tu− ai√

(sx + tu− ai)2 + (sy + tv − bi)2
;

sin(βt(i)) =
sy + tv − bi√

(sx + tu− ai)2 + (sy + tv − bi)2
; (3.101)

The geometric interpretation of αt, βt(i) is illustrated in Fig.3.16.

Notice that (cos(αt) + cos(βt(i)))2(1 − t)2 is a bounded continuous function on

t ∈ [0, 1], for all i’s. If W is sufficiently large, we have the following result:

J11 '
N∑

i=1

W

σ2

∫ 1

0
(cos(αt) + cos(βt(i)))2s2dt (3.102)

Similar for Jij ’s. The Fisher information matrix J have the following form when W is

sufficiently large (when the sum converges to the integral).

J =
W

σ2
K(x, y, u, v) (3.103)



101

K11 =
N∑

i=1

∫ 1

0
(cos(αt) + cos(βt(i)))2s2dt

K12 = J21 =
N∑

i=1

∫ 1

0
(sin(αt) + sin(βt(i)))(cos(αt) + cos(βt(i)))s2dt (3.104)

Similarly for other entries of K. ¤

Now we can calculate the Cramer-Rao bound on the motion estimation.

V (x) =
σ2

N
K−1

11; V (y) =
σ2

N
K−1

22;

V (u) =
σ2

N
K−1

33;V (v) =
σ2

N
K−1

44; (3.105)

We can numerically compute K(x, y, u, v) and have an idea of how many multi-

path length measurements at least we need to achieve a certain estimation variance ξ2

for any of x, y, u, v.

W ≥ σ2

ξ2
maxiK

−1
ii (3.106)

In all the following numerical calculations of Cramer-Rao bounds, we normalize

the received power of the receiver. Or, equivalently, all the Cramer-Rao bound are

multiplied by a N , where N is the number of transmitters.

Some numerical results

Now we give some plots of the Cramer-Rao bounds given different transmitter

number N . In our experiments, we normalize the received power, i.e. for an N trans-

mitter sensor network, we assume the multi-path distance estimation variance is Nσ2.

In simulation (1), the setup of the sensors is illustrated in Fig.3.17. Instead of 1

multi-path length measurement at a time, the receiver gets 2 multi-path length mea-

surements from 2 transmitters of different positions. Without motion model, K−1
11 +

K−1
22 = 1

σ2 (J−1
11+J−1

22) is shown in Fig.3.21, where J is defined in Eqn.3.50.K = Jσ2

is intrinsic to the estimation problem without motion model. With motion model,

maxiJ
−1

ii are shown in Fig.3.22, where J is defined in Eqn.3.104. As can be seen,

the additional transmitter dramatically increases the ability of the network to track
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the motion of the object. However, the Cramer-Rao bound is still big with or without

motion model (notice the Cramer-Rao bound plot is in logarithm scale) which means

the estimation accuracy is still bad. Thus 2 transmitter, single receiver network is not

capable of accruately tracking object.

In simulation (2), setup as in Fig.3.18, we have 3 transmitters uniformly placed

on the circle with radius 2 around the receiver. As can be seen in Fig.3.23 and Fig.3.24,

the Cramer-Rao bounds are smaller for both motion model and no motion model cases.

In simulation (3), setup as in Fig.3.19, we have N = 4, 6, 10, 30 transmitters

uniformly placed on the circle with radius 2 around the receiver.

Figure 3.17: A 2 transmitter 1 receiver network, receiver is at (−1, 0), transmitters are
at (

√
3− 1, 1), (

√
3− 1,−1)

And finally we plot the Cramer-Rao bound for some points in a sensor network

of different number N of transmitters. The setup of the transmitters, receiver is still

as in Fig.3.19. The points are as shown in Fig.3.20. There are two sets of points,

set 1 is {(xk, yk) : xk = 0.2kcos(0.6458), yk = 0.2ksin(0.6458)}, k = 0, 1, ...30, set 2 is

{(xk, yk) : xk = 0.2k, yk = 0}, k = 0, 1, ...30. The distances from the points to the origin
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Figure 3.18: A 3 transmitter 1 receiver network, receiver is at (0, 0), transmitters are
uniformly on the circle with radius 2

Figure 3.19: An N transmitter 1 receiver network, receiver is at (0, 0), transmitters are
uniformly on the circle with radius 2
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Figure 3.20: Set 2 are those blue points on the x-axis, 0.2 apart from 0 to 6. Set 1 are
red points on the y = 0.7536x line, 0.2 apart from origin to 6 away from origin.

Figure 3.21: 2 Tx, The value on (x, y) indicates log10( 2
σ2 (J−1

11 + J−1
22)), no motion

model
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Figure 3.22: 2 Tx,The value on (x, y) indicates log10(2maxiJ
−1

ii), (a) is of the 4-tuple
(x, y, x − 1, y). i.e. the object moves 1 leftward along the x-axis. (b) is of the 4-tuple
(x, y, 0.5,−0.5). i.e. the motion of the object ends at (0.5,−0.5).
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Figure 3.23: 3 Tx, The value on (x, y) indicates 3( 1
σ2 (J−1

11 +J−1
22)), no motion model
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Figure 3.24: 3 Tx, The value on (x, y) indicates 3(maxiJ
−1

ii), (a) is of the 4-tuple
(x, y, x − 1, y). i.e. the object moves 1 leftward along the x-axis. (b) is of the 4-tuple
(x, y, 0.5,−0.5). i.e. the motion of the object ends at (0.5,−0.5).
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Figure 3.25: The value on (x, y) indicates N( 1
σ2 (J−1

11 + J−1
22)), where N = 4 in (a),

N = 6 in (b), no motion model
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Figure 3.26: The value on (x, y) indicates N( 1
σ2 (J−1

11 +J−1
22)) , where N = 10 in (a),

N = 30 in (b), no motion model
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Figure 3.27: N( 1
σ2 (J−1

11 + J−1
22)),

(a)Normalized CR bound for point set 2
(b)Normalized CR bound for point set 1
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is in the range of [0, 6].

As shown in Fig.3.27, we plot the normalized Cramer-Rao bound for each points

given number of transmitters. The normalized Cramer-Rao bound is solely dependent

on the geometry of the sensor network and the position of the object. It depicts the

lower estimation bound given normalized received power. We make some observations

here:

(1) The normalized Cramer-Rao bound N( 1
σ2 (J−1

11 + J−1
22)) converges to a

constant pretty fast as the number of the transmitters increases for all the points.

(2) The normalized Cramer-Rao bound converges to 8
3 as we predicted when the

point is inside the radius 2 circle. While it converges to a larger value, for those points

outside the circle, since the assumption that those transmitters are uniformly distributed

angularly fails.

(3)The normalized Cramer-Rao bound increases as the point moves away from the

origin. In the next section we will explore the asymptotical property of the Cramer-Rao

bound when the object moves to infinitely faraway.

3.2.4 Cramer-Rao bound for the outside region

As stated in the third observation above, if the object is outside the sensor field,

the normalized Cramer-Rao bound increases as the distance between the object and the

sensors increases. In this section, we explore the relation between the distance and the

normalized Cramer-Rao bound.

3.2.4.1 CR bound in Euclidean metric space

First we explore the estimation variance in 2D Euclidean space,

E((x − x̂)2 + (y − ŷ)2). The geometry of the problem is illustrated in Fig. 3.28. We

explore the more general problem of multiple transmitter and multiple receiver case.

Suppose N transmitters at (xi, yi), i = 1, 2, ...N and M receivers (x′j , y
′
j), j = 1, 2, ...M
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are uniformly located inside a circle of radius r,centered in the origin. The distance

from the object to the origin is L. Since we are interested in the Cramer-Rao bound of

the position estimation V (x) + V (y), without loss of generality, we assume the object

is on the x-axis, i.e. (x, y) = (L, 0).

Theorem 3.8. CR bound V (x) + V (y) for faraway region If the N transmitters and

M receivers are uniformly distributed inside a circle with radius r. And the distance

between the center of the sensor field and the object is L, s.t. L À r Then

limN→∞,M→∞MN(V (x) + V (y)) = (
2L2σ2

r2
) in probability (3.107)

Proof. : We first make some observations.

Figure 3.28: The object is far away from the sensor network

If the transmitter i at (xi, yi) are uniformly distributed inside the circular region

with radius r, centered at the origin O = (0, 0). Then E(xi) = E(yi) = 0, and:

E(x2
i ) = E(y2

i ) =

∫ 2π
0

∫ r
0 (ρcos(θ))2ρdρdθ

πr2
=

r2

4
(3.108)

Obviously x′j , y
′
j have the same mean and variance. Noticing that L À r > xi, yi, x

′
j , y

′
j .

We have :

L− xi√
(L− xi)2 + y2

i

≈ 1√
1 + y2

i

(L−xi)2+y2
i

≈ 1 (3.109)
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Similarly

yi√
(L− xi)2 + y2

i

≈ yi

L
(3.110)

As shown in Eqn.3.50, following the standard process we have the Fisher infor-

mation matrix J2×2

J11 =
1
σ2

∑

i,j

(
x− xi√

(x− xi)2 + (y − yi)2
+

x− x
′
j√

(x− x
′
j)2 + (y − y

′
j)2

)2

=
1
σ2

∑

i,j

(
L− xi√

(L− xi)2 + (0− yi)2
+

L− x
′
j√

(L− x
′
j)2 + (0− y

′
j)2

)2

(3.111)

Notice that the variance goes to zero when N and M are large and by using the law of

large numbers together with the observations we made above:

J11

MN
≈ 1

MNσ2

∑

i,j

(1 + 1)2 ≈ 4
σ2

(3.112)

Similarly :

J22

MN
≈ r2

2L2σ2
(3.113)

J21

MN
=

J12

MN
≈ 0 (3.114)

All the ≈ are in the sense of convergence in probability as N, M goes to infinity. Now

we have the Cramer-Rao bound

MN(V (x) + V (y)) = MN
J11 + J22

J11J22 − J2
12

≈ σ2(
2L2

r2
+

1
4
) ∼ σ2(

2L2

r2
) (3.115)

¤

So the position estimation variance

V (x) + V (y) ∼ σ2

MN
(
2L2

r2
) (3.116)
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Following the same argument, we have the CR bound for an N transmitter, single

receiver network.

V (x) + V (y) ∼ σ2

N
(
4L2

r2
) (3.117)

We have some experimental results as show in Fig.3.29. For the MTMR case as in

Fig(a), we randomly put 100 transmitters and 100 receivers inside the unit circle.For

the MTSR case as in Fig(a), we randomly put 100 transmitters inside the unit circle,

and the receiver at the origin (0, 0). The object is put on the x-axis from 0 to 100.

The normalized CR bound is plotted in blue curve. And the theoretical bounds 2L2

r2 for

multiple transmitter, multiple receiver,4L2

r2 for multiple transmitter, single receiver are

drawn as red crosses. They are consistent.

3.2.4.2 CR-bound in polar coordinate system

For some applications, the Euclidean position of the object is not interesting.

Instead, we want to know the distance from the origin to the object ρ, and the di-

rection of the line linking the origin and the object θ. The geometry is as shown in

Fig.3.30. We now derive the Cramer-Rao estimation bound for the estimation of ρ, θ.

The observations are still the multi-path distance measures
−→
l .

Theorem 3.9. CR bound in Polar coordinates for faraway region If the N transmitters

and M receivers are uniformly distributed inside a circle with radius r. And the distance

between the center of the sensor field and the object is L, s.t. L À r Then

limN→∞,M→∞MNV (ρ) =
σ2

4
in probability (3.118)

limN→∞,M→∞MNV (θ) =
2σ2

r2
in probability (3.119)

Proof. : The probability density is the same as in Eqn.3.47 by replacing (x, y) with the
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Figure 3.29: Theoretical bound (red plus )vs. experimental results (blue curve).
(a)Normalized CR bound (V(x)+V(y)) for multiple transmitter, multiple receiver vs
L/r
(b)Normalized CR bound (V(x)+V(y)) for multiple transmitter, single receiver vs L/r
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Figure 3.30: The object is far away from the sensor network, the position of the object
is in polar coordinates
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polar coordinates (ρcos(θ), ρsin(θ)).

p(
−→
l |θ, ρ) =

∏

16i6N,16j6M

1√
2πσ2

exp(
−(lij −

√
(ρcos(θ)− xi)2 + (ρsin(θ)− yi)2 −

√
(ρcos(θ)− x′j)2 + (ρsin(θ)− y′j)2)

2

2σ2
)

(3.120)

Let θ be the first parameter, ρ the second parameter. The Fisher information

matrix J2×2 is as following.

ln(p(
−→
l |θ, ρ)) =

MN

2
ln(2πσ2)− 1

2σ2

∑

i,j

(lij −
√

(ρcos(θ)− xi)2 + (ρsin(θ)− yi)2 −
√

(ρcos(θ)− x′j)2 + (ρsin(θ)− y′j)2)
2

J11 = E(
∂2ln(p(

−→
l |θ, ρ))

∂θ2
)

=
1
σ2

∑

i,j

(
−sin(θ)ρ(ρcos(θ)− xi) + cos(θ)ρ(ρsin(θ)− yi)√

(ρcos(θ)− xi)2 + (ρsin(θ)− yi)2
+

−sin(θ)ρ(ρcos(θ)− x′j) + cos(θ)ρ(ρsin(θ)− y′j)√
(ρcos(θ)− x′j)2 + (ρsin(θ)− y′j)2

)2

≈ 1
σ2

∑

i,j

(sin(θ)xi − cos(θ)yi + sin(θ)x′j − cos(θ)y′j)
2 (3.121)

Using the law of large numbers and the known variances of xi, yi’s. We have:

J11

NM
≈ r2

2σ2
(3.122)
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Similarly :

J22 = E(
∂2ln(p(

−→
l |θ, ρ))

∂ρ2
)

=
1
σ2

∑

i,j

(
cos(θ)(ρcos(θ)− xi) + sin(θ)(ρsin(θ)− yi)√

(ρcos(θ)− xi)2 + (ρsin(θ)− yi)2
+

cos(θ)(ρcos(θ)− x′j) + sin(θ)(ρsin(θ)− y′j)√
(ρcos(θ)− x′j)2 + (ρsin(θ)− y′j)2

)2

≈ 1
σ2

∑

i,j

(1 + 1)2 (3.123)

J22

MN
≈ 4

σ2
(3.124)

J21

MN
=

J12

MN
≈ 0 (3.125)

Thus:

limN→∞,M→∞MNV (ρ) =
σ2

4
in probability (3.126)

MNV (θ) =
2σ2

r2
in probability (3.127)

¤

So the Cramer-Rao bound for the estimation of ρ is V (ρ) = σ2

4NM , the estimation

bound for θ is V (θ) = 2σ2

NMr2 . Similarly for the N transmitter, 1 receiver case, assuming

the receiver is at (0, 0). We have : V (ρ) = σ2

4N , V (θ) = 4σ2

Nr2 .

The reason why the variance of estimation error does not increase as the object

moves farther away from the sensors is that the difference of multi-path distances for

different sensors does not decrease to 0 as the object moves to infinity. Thus it is still

possible to tell the θ-coordinate of the object.

We have some experimental results as show in Fig.3.31. For the MTMR case in

Fig(a),We randomly put 100 transmitters and 100 receivers inside the unit circle with

radius 2. For the MTSR case in Fig(b),We randomly put 4000 transmitters inside the

unit circle with radius 2 and the receiver at the origin (0, 0). The object is put on the

x-axis from 6 to 200. The normalized CR bound V (ρ) is plotted in blue curve,V (θ) is
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plotted in red curve. Notice r = 2 here, the simulation results are consistent with the

theoretical analysis.

Here we have another experiment on a 6 transmitter, single receiver network.

We put the receiver at the origin (0, 0), the transmitters at 2(cos(2kπ
6 ), sin(2kπ

6 )), k =

0, 1, 2, 3, 4, 5. The results are illustrated in Fig.3.32 and Fig.3.33. As can be seen, the

Cramer-Rao bounds on both θ and ρ are larger inside the sensor field. Especially the

bound on θ. The reason is that when the object is in the center of the sensor field, the

multipath distance is not as sensitive to θ and ρ as when the object is far away from

the sensor field. One extreme example is when the object is located in the origin (0, 0),

where θ is indifferent thus the Cramer-Rao bound is infinity.

3.2.4.3 Discussions on the position estimation variance

From the previous section, we know that there are different measures in the

position estimation variance. If the purpose of the estimation is to figure out where the

object is, then the variance V (x) + V (y) is the right measure. However, if the absolute

position of the object is not important, it could be true that V (x) + V (y) does not

best characterize the estimation variance for that specific interest. In this section, we

explore the proper measure of the estimation variance for the following scenario. After

estimating the position of the object, two new sensors join the network with position

(a1, b1), (a2, b2), and we are only interested in the multi-path distance estimation from

sensor 1 to sensor 2 reflected by the object.

First we have the direct path length from sensor (a, b) to the object (x, y): d =
√

(a− x)2 + (b− y)2. Suppose the estimation of the position is deviated by a small

vector (∆x,∆y), then the error in the calculation in d is ∆d.

∆d =
∂d

∂x
∆x +

∂d

∂y
∆y =

x− a

d
∆x +

y − b

d
∆y

= cos(α)∆x + sin(α)∆y (3.128)
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Figure 3.31: Experimental results (a)Normalized CR bound NM
σ2 V (ρ)(in blue),

NM
σ2 V (θ)(in red) for multiple transmitter, multiple receiver

(b)Normalized CR bound N
σ2 V (ρ)(in blue), N

σ2 V (θ)(in red) for multiple transmitter, sin-
gle receiver
Notice that they are all consistent with the theoretical results V (ρ) ∼ 1

4 ,V (θ) ∼ 2
r2 for

MTMR, and V (θ) ∼ 4
r2 for MTSR
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Figure 3.32: Normalized Cramer-Rao Bound (Polar coordinate) (−10, 10) × (−10, 10)
(a)Normalized CR bound V (ρ)
(b)Normalized CR bound log10(V (θ))
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Figure 3.33: Normalized Cramer-Rao Bound (Polar coordinate)(−3, 3) × (−3, 3)
(a)Normalized CR bound V (ρ)
(b)Normalized CR bound log10(V (θ))
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The geometric interpretation of α is show in Fig.3.34

Figure 3.34: α

For sensor i, j, the multi-path distance l =
√

(ai − x)2 + (bi − y)2+
√

(aj − x)2 + (bj − y)2.

The deviation ∆l = ∆di +∆dj = (cos(αi)+ cos(αj))∆x+(sin(αi)+ sin(αj))∆y. Thus

the the estimation variance of the multi-path distance l is (∆l)2.

Case 1: the object is in the sensor network field. In this case, α can be thought

as uniformly distributed in [0, 2π]. With basic trigonometry and assuming that E(∆x) =

E(∆y) = 0, we know that E(∆l2) = E((cos(αi)+cos(αj))2∆x2+(sin(αi)+sin(αj))2∆y2) =

V (x)+V (y). Thus the variance measure in the Euclidean metric is good in our purpose.

Case 2: the object is far away from all the sensors. In this case, all the αk s are

around the same angle α. Notice that (x, y) = (ρcos(θ), ρsin(θ)). For sensor pair 1, 2

at (ai, bi), i = 1, 2,we have :

∆l = ∆d1 + ∆d2 =
∑

i=1,2

∂di

∂ρ
∆ρ +

∂di

∂θ
∆θ

=
∑

i=1,2

(cos(αi)cos(θ) + sin(αi)sin(θ))∆ρ +
∑

i=1,2

(sin(αi)cos(θ)− cos(αi)sin(θ))ρ∆θ

=
∑

i=1,2

cos(αi − θ)∆ρ +
∑

i=1,2

sin(αi − θ)ρ∆θ (3.129)

Notice that αis are close to θ since the object is far away from the origin. Then

we have sin(αi − θ) = kir
ρ , ki ∈ [−1, 1] depending on the position of the sensor. Then

we have E(∆l2) ≈ ∆ρ2 + (k1 + k2)2r2∆θ2 ≈ ∆ρ2 + 4r2∆θ2. So V (ρ) + 4r2V (θ) is a
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good measure if the goal is to estimate the multi-path distance. If the goal is to predict

the communication channel between 2 nodes, we need analyze the Cramer-Rao bound

in both Euclidean and polar coordinates depending on the position of the object.

3.2.5 A linear algorithm for a small sensor network

3.2.5.1 The linear algorithm

For a sensor network with very few transmitters and receivers, we have the fol-

lowing simple linear estimation scheme. Notice that for a single transmitter-receiver

pair: Tx = (ai, bi), Rx = (uj , vj), if the multi-path distance measure is dij . Then we

have the following equation :

dij =
√

(x− ai)2 + (y − bi)2 +
√

(x− uj)2 + (y − vj)2

(dij −
√

(x− ai)2 + (y − bi)2)2 = (x− uj)2 + (y − vj)2

(uj − ai)x + (vj − bi)y − dij

√
(x− ai)2 + (y − bi)2 =

u2
j + v2

j − a2
i − b2

i − d2
ij

2

(uj − ai)x + (vj − bi)y − dijlti =
u2

j + v2
j − a2

i − b2
i − d2

ij

2
(3.130)

Similarly, we have :

(ai − uj)x + (bi − vj)y − dij

√
(x− uj)2 + (y − vj)2 =

a2
i + b2

i − u2
j − v2

j − d2
ij

2

(ai − uj)x + (bi − vj)y − dijlrj =
a2

i + b2
i − u2

j − v2
j − d2

ij

2
(3.131)

Where (x, y) is the position of the object. Write lti =
√

(x− ai)2 + (y − bi)2, the

distance between the object and the i th transmitter. lrj =
√

(x− uj)2 + (y − vj)2,F

the distance between the object and the j th receiver. For an N transmitter M receiver

sensor network, we have 2NM linear equations of ~z = (x, y, lt1, lt2, ...ltN , lr1, ...lrM )T .

There are N + M + 2 unknowns, meanwhile we have 2NM equations. So we need

2NM ≥ N + M + 2, i.e N + M ≥ 4. The linear equations are as following:

A~z = ~g (3.132)
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Where the 2((i − 1)M + j) − 1 th entry of the 2NM dimensional vector ~g is

u2
j+v2

j−a2
i−b2i−d2

ij

2 , the 2((i − 1)M + j) th entry of ~g is
a2

i +b2i−u2
j−v2

j−d2
ij

2 . And if we write

the k th row of A as ~α(k)

~α(2((i− 1)M + j)− 1)
T
~z = (uj − ai)x + (vj − bi)y − dijlti (3.133)

~α(2((i− 1)M + j))
T
~z = (ai − uj)x + (bi − vj)y − dijlrj (3.134)

i = 1, 2, ..N ; j = 1, 2, ..M . With well conditioned matrix A, we can directly solve

~z = (AT A)−1AT~g (3.135)

From now on, we focus the discu ssion on N = 2,M = 2. The Cramer-Rao

bound is different for different setups of transmitters and receivers. We give 2 setups of

the transmitters and receivers as shown in Fig.3.35. The Cramer-Rao bound plots are

shown in Fig.3.36, where σ2 is the multi-path distance measure variance.

Figure 3.35: (a) setup 1: parallel (b) setup 2: crossing

The second setup has some obvious advantages in the sense of smaller average

CR-bound. Furthermore, for the first setup there is a singular point at the origin,

meanwhile there is no such singular point for setup 2. And in order to use the linear

equation in Eqn.3.132 to solve for x, y, we also need the condition number χ(A) =

‖A‖2‖(AT A)−1AT ‖2 to be reasonably small. For the second setup, we have the condition

number plot in Fig.3.37. The condition numbers are small for the setup, so we can
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Figure 3.36: (a)log10(
V (x)+V (y)

σ2 ) CR bound for setup 1

(b) V (x)+V (y)
σ2 CR bound for setup 2
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directly use Eqn.3.132 to solve for x, y.

~z = (AT A)−1AT~g (3.136)

Where ~z and ~g are 6× 1, 8× 1 vectors respectively, A is a 8× 6 matrix.

Figure 3.37: χ(A)

3.2.5.2 Simulation Results

In our simulation, we put the receivers at (1, 1), (−1,−1), transmitters at (−1, 1), (1,−1)

as shown in Fig.3.35(b). (a1, b1) = (−1, 1), (a2, b2) = (1,−1),(u1, v1) = (−1,−1), (u2, v2) =

(1, 1). In real experiment, we expect noises not only on the multi-path distance measure,

but also on the positions of the transmitter and receivers. So we have the multi-path

distance measurement

dij =
√

(ai + ξai − x)2 + (bi + ξbi − y)2 +
√

(uj + ξuj − x)2 + (vj + ξvj − y)2 + εij

Where ξai is the additive noise to the x coordinate of the i th transmitter, similar

for ξbi, ξuj , ξvj , they are assume to be IID Gaussian noises ∼ N(0, ς2). εij is the additive

noise to the multi-path distance measure from the i the transmitter to the j th receiver.



128

And ε′ijs are are assumed to be IID Gaussian ∼ N(0, σ2).

And in Fig.3.38 we plot the average square estimation error (x̂ − x)2 + (ŷ − y)2

over 100 independent experiments. Where x̂, ŷ are directly calculated from Eqn.3.136.

In Fig.3.38(a), we have the plots for σ2
1 = 4 × 10−4, ς2 = 0, (no sensor position error

case). in Fig.3.38(b) we have the plots for σ2
1 = 4× 10−4, ς2 = 10−4.

As can be seen in the Cramer-Rao plot in Fig.3.36, setup 2 is much better than

setup 1. This observation brought up an interesting question, what is the optimal place-

ment for the transmitters and receivers? The design placement of the sensor network is

likely to be interesting to study, especially for a small sensor network.
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Figure 3.38: Average value of (x̂− x)2 + (ŷ − y)2

(a)σ2
1 = 4× 10−4 ,ς2 = 0 (b)σ2

1 = 4× 10−4 ,ς2 = 10−4
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3.3 Multiple Object Tracking by a Multiple-Sensor Sensor network

(MSMO)

In the case where multiple objects are in the sensor network field, for a transmitter-

receiver pair, there are multiple reflections bouncing from the objects. As show in

Fig.3.39.

Figure 3.39: Multiple-Sensors, Multiple Objects

If there are M objects in the field. For a single transmitter-receiver pair trans-

mitter i, receiver j, there are M mutli-path lengh estimations d1(i, j) < d2(i, j) < ... <

dM (i, j). Since there is no intrinsic ID for the objects, we will order the objects by

the order of the transmitter-receiver pair 1, 2. i.e. the object with multi-path measure-

ment d1(1, 2) will be named object − 1, the object with measurement d2(1, 2) will be

called object − 2.. and so on. For another transmitter-receiver pair k, l, (k, l) 6= (1, 2),

there are M mutli-path lengh d1(k, l), d2(k, l), ..., dM (k, l), but which measurement is

for object−m,m = 1, 2, ...,M is unknown. We can use the algorithm mentioned in the

previous section to help estimating the positions of the objects.
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3.3.1 An Exhaustive Search Algorithm

We can exhaust all the the possibilities to search for the optimal position estima-

tion of the objects. To simplify the problem suppose for every object k, for any sensor

pair (i, j), sensor i receives the signal from sensor j reflected by object−k. In an N sen-

sors, M objects network. There are N(N−1) transmitter-receiver pairs. For transmitter

i, receiver j, there are M mutli-path lengh estimations d1(i, j), d2(i, j), ..., dM (i, j).

Let F be the set of all 1 − 1 mappings from 1, 2, ...M to 1, 2, ...M , i.e. ∀f ∈ F ,

f(i) ∈ 1, 2, ..., M,∀i and f(i) 6= f(j), if i 6= j. And F contains all such f . Write

G = F × F × ...× F = FN(N−1)−1.

Given the position of the i th sensor (ai, bi). Assign N(N−1) multi-path distnace

measurements
−→
l = (l(1, 2), l(1, 3), ...., l(1, N), l(2, 1), ..., l(2, N), ...., l(N, 1), ..., l(N,N −

1)), where l(i, j) is the multi-path distance measurements at sensor j from the signal

sent by sensor i. Using the multi-sensor single-object position estimation algorithm

in the previous section, we write (u, v) = H(
−→
l ), where (u, v) is the estimation of the

position of the object.

Thus we have the following exhaustive search algorithm:

Definition 3.1 (position estimation for a map g, (
−−→
u(g),

−−→
v(g))). : Suppose g ∈ G, we

write gk, k = 1, 2, ..., N(N−1)−1 as the kth map of g, then
−−→
u(g) = (u(g)1, ..., u(g)M ),

−−→
v(g) =

(v(g)1, ..., v(g)M ), (u(g)i, v(g)i) is the position estimation of object− i given map g. i.e.

(u(g)i, v(g)i) = H(
−→
li ).

−→
li = (di(1, 2), dg1(i)(1, 3), ...., dgN(N−1)−1(i)(N, N − 1). For the

simplicity of future notation, we define map K, K(1, 2) = 0,K(1, 3) = 1, ..., K(N, N −

1) = N(N − 1)− 1 and g0 is the identical map no matter what g is .

Now we have the following exhaustive search algorithm :
−−−→
u(g∗),

−−−→
v(g∗) is the position estimation of the M objects. Where (u(g∗)i, v(g∗)i) is
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the position estimation of the i th object. Where

g∗ = argming

M∑

t=1

∑

1≤i6=j≤N)

(
√

(u(g)t − ai)2 + (v(g)t − bi)2 +
√

(u(g)t − aj)2 + (v(g)t − bj)2 − dgK(i,j)(t)(i, j))
2

(3.137)

In one word, the algorithm searches for all possible correspondence between the

multi-path distance measurements, and find the optimal one. And there are M ! differ-

ent correspondence for 2 different transmitter-receiver pair, and if we have N(N − 1)

transmitter-receiver pairs in the sensor network, there are total (M !)N(N−1)−1 different

correspondence. Which is huge even there are only 2 objects. Thus the algorithm which

simply searches all the possible correspondences are not quite practical.

3.3.2 Hough Transform Inspired Algorithm

In this section, we introduce an algorithm inspired by the Hough Transform [14].

The Hough transform is a standard method in finding some geometric structures from

a noisy image. Given a noisy image as the input from the image space, the Hough

transform is trying to find the line structures in the dual space of line equations. The

idea behind our scheme is similar. Given the multi-path distances, we simply want

to find out the points on the dual space (2D space) with large likelihood. Again, we

are dealing with an N sensor M objects sensor network. And we suppose that the

additive noise to the mutli-path measurements are iid Gaussian ∼ N(0, σ2). Now given

transmitter i, receiver j, a point (x, y), we define a likelihood function for the 4-tuple

(x, y, i, j). The likelihood function Li,j(x, y) tells how likely there exists an object on the

point (x, y) given the multi-path distance measurements from transmitter i to receiver

j, d1(i, j), d2(i, j), ...dMi,j (i, j)
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Definition 3.2 (Likelihood function Li,j(x, y) of (x,y,i,j)).

L(x, y, i, j) = maxk
1√

2πσ2
e−

(
√

(x−ai)
2+(y−bi)

2+
√

(x−aj)2+(y−bj)2−dk(i,j))2

2σ2 (3.138)

In the above definition, we do not assume that the jth receiver has exactly M

multi-path measurements, which is true if 2 objects have the same multi-path distance

measurements.

With the assumption on the measurement error, we can define the likelihood

function of a point (x, y), which tells how likely there is an object on the point (x, y).

Definition 3.3 (Likelihood function L(x, y) of (x,y)).

L(x, y) =
∏

(i,j)∈S

Li,j(x, y)

=
∏

(i,j)∈S

maxk
1√

2πσ2
e−

(
√

(x−ai)
2+(y−bi)

2+
√

(x−aj)2+(y−bj)2−dk(i,j))2

2σ2

= (
1√

2πσ2
)|S|e

∑
i,j∈S maxk−

(
√

(x−ai)
2+(y−bi)

2+
√

(x−aj)2+(y−bj)2−dk(i,j))2

2σ2

(3.139)

Where S={(i,j)|i is a transmitter, j is a receiver}. The larger L(x, y) is, the more

likely there is an object on the point (x, y). Notice that the only thing really matters

is the exponential part. Thus we have the following definition of the cost function of

point (x, y).

Definition 3.4 (Cost function C(x, y) of (x,y)).

C(x, y) =
∑

(i,j)∈S

mink(
√

(x− ai)2 + (y − bi)2 +
√

(x− aj)2 + (y − bj)2 − dk(i, j))2

(3.140)

Notice that, the smaller C(x, y) is, the more likely there is an object is on (x, y).

In the noiseless case, there are generally M points with 0 cost function and those points

are where the objects are . The cost function is always non-negative, so we have M
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local optimal points in terms of the cost function. But the cost function C(x, y) is not

convex for as can be seen in the following example. C(x, y) ≥ 0, if C(x, y) is convex

then if C(x1, y1) = 0, C(x2, y2) = 0 implies that C(tx1 +(1− t)x2), (ty1 +(1− t)y2) = 0,

∀t ∈ [0, 1]. This is not always true because if the multipath distance measures are

noise-free, then C(x, y) = 0 on only finite points. And there are a huge number of

local optimal points for the cost function C(x, y). However, our goal is NOT to find

the point (x, y) with the smallest cost function. Thus we will not use any traditional

optimal algorithm to solve the problem. Instead we will use an approximation algorithm

inspired by the Hough Transform. Our scheme is consisted of two steps. In the first

step, we use Hough Transform to find some candidate points. With candidate points, we

get associates between multipath distance measures dk(i, j)′s and the objects. Then we

invoke the MSSO algorithm to give the final estimation of the positions of the objects.

3.3.2.1 The Hough Transform Inspired Algorithm

The Hough Transform is to first discretize a bounded space. Then search for

optimal solutions on the grids. In our problem, we can assume the objects are in a

bounded 2D space. So we first define the searching region (xl, xr, yu, yd) where all those

objects are possibly presented, without loss of generality we let xr − xl = yd − yu = D

where xl < min(ai), xr < max(ai), yd < min(bi), yu > max(bi). We will constraint our

search to the rectangular region {(x, y)|xl < x < xr, yd < y < yu}. Then we discretize

the searching region into a N × N grid. i.e. we will do our searching on the points

(xl + iW, yd + jW ), 0 6 i 6 N, 0 6 j 6 N, and W = D
N . Our scheme is to search for

a local optimal point in the grid points, then set a threshold and pick all those points

better than the threshold to be candidate points for the objects. The cost function

C(x, y) is not good for our purposes. First, C(x, y) is not bounded so it is hard to

set a threshold. Second is that if for a transmitter-receiver pair, a multi-path distance

measurement for an object at x, y is corrupted by a noise with very large magnitude
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which is likely to happen when some multipaths are blocked by the objects, then C(x, y)

would be largely affected by that single bad measurement especially when the number of

transmitter-receiver pairs are not big. i.e. C(x, y) is not very stable in a sensor network

with small number of sensors. In Appendix M, we will give an example of how one bad

measurement could affect the cost function. Instead of using the Cost function C(x, y),

we use the following score function S(x, y) which is related to C(x, y).

Definition 3.5 (Score function S(x, y) of (x,y)).

Si,j(x, y) = mink(
√

(x− ai)2 + (y − bi)2 +
√

(x− aj)2 + (y − bj)2 − dk(i, j))2, for (i,j) ∈ S

S(x, y) =
∑

(i,j)∈S

MAX(1− Si,j(x, y)
K

, 0) (3.141)

K is a parameter to be determined. Notice that 0 ≤ S(x, y) ≤ |S|. The value

of K determines the behavior of the score function S(x, y). If K is too large, the score

function cannot distinguish the object with another point very well. If K is too small,

then a little bit noise or the discretized error could give a 0 score to the true object

position, which again cannot tell any differences between an object with an arbitrary

point. A proper value for K should be able to tolerate the noises and the discretizing

errors yet still distinguish the objects from those points which are far away from the

objects.

In searching for a local optimal point, since we are working on a discrete space,

we have to define the term local. A proper size of the local region should be defined. In

the second step of the algorithm, we discard all the candidate local optimal points below

r × NTxNRx, where (x, y) is a candidate point, NTx, NRx are number of transmitters

and receivers respectively. The threshold parameter r is another value we need to select.

A proper value of r would only leave the right local optimal points above the threshold.

We will analyze the proper selections of K, r in the discussions.

Now we summarize the Hough transform inspired algorithm :

1)Discretizing the square region into N ×N grids.
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2)Searching on all the grid-points for local maximal points of score function

S(x, y), generate a candidate set {(xi, yi), i = 1, ...K}.

3) For those (xi, yi), s.t. S(xi, yi) > rNTxNRx, report a discovery of an object.

3.3.2.2 Simulation Results

In our simulation, all the sensors and objects are uniformly distributed in a T ×T

region, where T = 3aN
D . There are M objects. We pick the parameters K, r as following:

K = W 2 + σ2, r = 0.4 (3.142)

And the local optimal points are those which are optimal in the 3× 3 region around it.

3.3.2.3 Discussions on the Hough Transform Inspired Algorithm

In an N sensor, M objects sensor network. The algorithm needs to compute the

value of all functions S(i,j)(x, y). Suppose for each transmitter-receiver pair (i, j), we

have M multi-path distance measurements, for each S(i,j)(x, y), we need to do M basic

calculations as in Eqn. 3.141. So totally we need to do MN2|S| basic calculations. If

all the sensors can both send and receive signals, that number is MN2L(L− 1).

And the accuracy of the Hough Algorithm is ultimately limited by the size of the

grids which is D
N . However, we can use the MSSO algorithm to give a more accurate

estimation of the position of the objects. Suppose (x, y) is one of the object positions

reported by the Hough Algorithm. Then for each transmitter-receiver pair (i, j), we

write the following multi-path distance measurement to be the true one.

l(i, j) = argmindk(i,j)(
√

(x− ai)2 + (y − bi)2 +
√

(x− aj)2 + (y − bj)2 − dk(i, j))2

k = 1, 2, ..M (3.143)

Then we can apply the MSSO algorithm to give a better estimation of the objects.

Here we have a 2-step algorithm. The 1st step is to use the Hough transform algorithm
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Figure 3.40: 5 transmitters, 4 receivers, 3 objects D=10, N=200,σ2 = 0.01
(a) blue circles: Tx; red circles: Rx; × : object; 2 estimation
(b) score function S(x, y)
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Figure 3.41: 10 transmitters-receivers, 5 objects D=10, N=200,σ2 = 0.01
(a) blue circles: Tx-Rx; ; × : object; 2 estimation
(b) score function S(x, y)
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to match each object with a candidate grid, then match a multi-path distance from each

Tx-Rx pair to that grid. The 2nd step is to input all those multi-path distances to the

MSSO algorithm and give the ultimate estimation of the positions of the objects.

If the Hough transform algorithm matches all the true distances to the object,

the overall performance would be the same as the performance of MSSO.

Discretize the rectangular
region into a N by N grids

Compute the score
function on the grids

For a candidate point
(xk,yk), a Tx-Rx pair i,j

finds the
 most likely multi-path

distance measure d
k*

(i,j)
from i to j , reflected

 by object k.

(xk,yk)

(x
k
,y

k
) k=1,..M

multi-path
distance

measurements
dk(i,j),k=1,2,...M

0<i,j<L+1

ML(L-1)
measurements

d
k
(i,j)

Positions of
the sensors

(ak bk)

For an object k, input all
dk*(i,j) to the MSSO
algorithm , position
estimation (x k,yk)

dk*(i,j)

(ak bk)

Find points (x k*,yk*)
k=1,2,..,M  to locally
maximize the score

function

s(i,j)

Figure 3.42: Flowchart of MSMO position estimation

As can be seen, the proper selections of K and r are crucial to the success of

the algorithm. Here we analyze the behavior of the score function S(x, y), then deduce

the criteria for the selections of K and r. As shown in Fig.3.43(a). Point B at (u, v),

is the closest grid point to the true position of the object, A at (x, y). Notice that

‖u− x‖ ≤ W
2 , ‖v − y‖ ≤ W

2 .

We hope the Score function to be prominently larger on point B than other

grid points. For a single transmitter receiver pair i, j, with position (ai, bi), (aj , bj)

respectively. The multi-path distance measurement is l =
√

(x− ai)2 + (y − bi)2 +
√

(x− aj)2 + (y − bj)2 + ε. Where ε is assumed to be Gaussian ∼ N(0, σ2). Now we
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Figure 3.43: (a)A is the object, B is the closest grid point (b)definition of α
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have the cost function on (u, v) as following:

C(u, v) = (
√

(u− ai)2 + (v − bi)2 −
√

(x− ai)2 + (y − bi)2

+
√

(u− aj)2 + (v − bj)2 −
√

(x− aj)2 + (y − bj)2 − ε)2 (3.144)

Noticing that u − x, v − y are bounded by W
2 , half of the grid size, which is generally

very small. Thus by doing the Taylor expansion, we have:

Ci,j(u, v) = ((cos(αi)− cos(αj))(u− x) + (sin(αi)− sin(αj))(v − y)− ε)2

Where cos(αi) = x−ai√
(x−ai)2+(y−bi)2

,sin(αi) = y−bi√
(x−ai)2+(y−bi)2

, as show in Fig.3.43(b).

Assume that the angles α’s are uniformly distributed in [0, 2π] and the independence

of the noise. We have : E(Ci,j(u, v)) = (u − x)2 + (v − y)2 + σ2 ≤ W 2

2 + σ2.Now we

pick K to be W 2 + 2σ2, which is around the expectation value of the cost function.

Si,j(u, v) = max(1− Ci,j(u,v)
K , 0), if the size of the grid is much smaller than the square

root of the noise variance,i.e. W 2 << σ2, then we have the distribution of S(i, j) as

following, let ζ = 1− Si,j(u, v). Then

Pr(ζ = 1) = 2
∫ −√2

−∞

1√
2π

exp(−x2

2
)dx ≈ 0.1573 (3.145)

p(ζ) =
1√
πζ

exp(−ζ), for ζ ∈ [0, 1) (3.146)

E(Si,j(u, v)) ≈ 1 − 1
2
√

2π
(
∫ √2

−√2
x2exp(−x2

2 )dx + 2
∫ −√2
−∞ exp(−x2

2 )dx) ≈ 0.629. So the

total score function S(u, v) =
∑

i,j Si,j(u, v) ≈ 0.629NTxNRx,where (x, y) is a candidate

point, NTx, NRx are number of transmitters and receivers respectively.

We now have the following hypothesis testing problem:

H0: (u, v) is the closest grid point to an object.

H1: (u, v) is not the closest grid point to an object.

And the decision is made on the observations of S(u, v) =
∑

i,j Si,j(u, v) with decision

rule: reject H0, if S(x, y) < rNTR, where NTR is the total transmitter receiver pairs.

Assuming the independence of Si,j(u, v) and with the assumption that W 2 << σ2. We



142

have the following table for r on the plane of NTRvs Pr(reject H0|H0). The results are

based on our Monte Carlo experiment of sample size 20000.

α = 0.01 α = 0.05 α = 0.10 α = 0.20 α = 0.50

NTR = 5 0.2261 0.3463 0.4067 0.4902 0.6370

NTR = 10 0.3513 0.4302 0.4768 0.5308 0.6330

NTR = 15 0.3993 0.4692 0.5052 0.5500 0.6326

NTR = 30 0.4699 0.5172 0.5425 0.5730 0.6305

NTR = 60 0.5169 0.5515 0.5691 0.5903 0.6301

NTR = 100 0.5417 0.5682 0.5818 0.5981 0.6293

NTR = 200 0.5681 0.5865 0.5962 0.6079 0.6290

NTR = 400 0.5851 0.5986 0.6053 0.6135 0.6289

We pick r to be 0.4 which would work for not too big NTxNRx.
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3.4 Conclusions and Future Work

In this chapter, we studied the object tracking by a sensor network problem. We

argued that in a single transmitter, single receiver network, the position of the object

can not be accurately estimated by showing that the Cramer Rao bound is very big

even with an unrealistic constraint on the motion. Furthermore if the object moves

with arbitrary velocity, then it is impossible to track the motion of the object in a

single transmitter, single receiver network because two different motions could yield

same multipath distances measures all the time.

For tracking an object in a multiple nodes sensor network, we computed the

Cramer-Rao bounds in different scenarios based on the number of transmitter or re-

ceivers and analyzed the asymptotic behavior of the Cramer-Rao bounds as the number

of sensors goes to infinity. It turns out that the estimation accuracy is proportional to

the total received SNR in the sensor network. First we showed that the Cramer-Rao

bound is inversely proportional to the the number of total transmitter receiver pairs,

if the object is in the center of the sensor field. Then we found that the Cramer-Rao

bound in the Euclidean coordinate increases proportionally to the square of distance

between the object and the sensors if the object is faraway from the sensor field, even

if the distance measure remains the same accuracy.

We then gave an algorithm which is order optimal. For a sensor network with a

small number of sensors, we gave a linear algorithm and we thoroughly studied the track-

ing problem in a 2 transmitter, 2 receiver sensor network. By seeing the performance

difference of two different placements of sensors, we believe that the design placement

of the sensor network is likely to be interesting to study, especially for a small sensor

network. At last, we found that the tracking problem is more challenging if there are

multiple objects in the sensor field. We then present a heuristic algorithm that works

well in simulations.
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In our report, we always assume the sizes of the objects are small. So we consider

objects as points on the 2D plane. However, the sizes of objects are often not negligibly

small. How to take the sizes of the objects into account needs to be studied. In the

indoor environment, it is more challenging to take the structural objects (walls, floors,

ceilings, etc.) into account.

Also in our report, we always assume the sensors are static. In practice the

sensors can move in the sensor field. How to estimate the positions of the objects while

simultaneously estimate the motions of the sensors using multi-path distance measures

is a challenging problem. In the object tracking by multiple-sensor sensor network

problem, we proposed an estimation scheme without taken the motion of the object(s)

into account. A Kalman filter like estimation scheme, which takes the motion into

account, could improve the estimation accuracy meanwhile reduces the computational

and communication requirements.

We have discussed the object tracking problem in the high SNR (per transmitter

receiver pair) regime where the the multipath distance measures are reasonably accurate.

In the low SNR regime where multipath distance measures cannot be extracted, the

reliable object tracking problem remains open. We believe that the estimation accuracy

will depend primarily on the total SNR.

As mentioned in chapter 1, the communication channel(s) in a sensor network is

largely determined by the geometry and the positions of the objects in the sensor field.

With accurate position information, we can possibly accurately estimate and predict the

communication channels. And the relation between channel capacity and the tracking

accuracy is a very interesting problem.
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Appendix A

Uniqueness of the positions of a point set

If a point set S is assigned an anchor-free coordinate system and N points in this

point set are anchors (with known global positions). As mentioned in Section 1.1.2 .

In general, the point set can be fixed into the anchored coordinate system if N ≥ 3.

In Fig.A.1 we have a simple example. S, consisting of 7 points, is point set with

an anchor-free coordinate system. Both red set and blue set have the same anchor-free

coordinate system as shown in Fig.A.1. N black points are anchors with known global

positions. If N = 0, 1, then as shown in Fig.A.1(a),and (b), there could be infinitely

many solutions for the positions of the points, if N = 2, there could be 2 possible

solutions as in (c). Meanwhile, if N ≥ 3 as shown in Fig.A.1(d), there is a unique

solution for the positions of the point set S.
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Figure A.1: An illustration of uniqueness of the positions of a point set
(a) 0 points has known positions. (b) 1 point has known positions.
(c) 2 points has known positions. (d) 3 points has known positions.



Appendix B

Proof of Eqn.2.25

In Eqn.2.25 in Section 2.2.1 we used the following results.

Theorem B.1. For a positive definite N ×N matrix J .

J =




A B

BT C


 (B.1)

Where A is an M ×M symmetric matrix, C is an N −M ×N −M symmetric matrix

and B is an M ×N −M matrix. If we write

J−1 =




A′ B′

B′T C ′


 (B.2)

Where A and A′ have the same size, B and B′ have the same size, so do C and C ′.

C ′ − C−1 is positive semi-definite

First we need several lemmas.

Lemma B.1. A is positive definite.

Proof: ∀~x ∈ RM , x 6= 0. Let ~y = (~x,~0)T , where ~0 is the 1× (N −M) all 0 vector,

~y is an N dimensional vector. Then ~xT A~x = ~yT J~y > 0.

The last inequality is true because J is positive definite,and ~y 6= 0. ~x is arbitrary,

so A is positive definite. ¤

Similarly C is positive definite, and thus A,C are nonsingular.
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Lemma B.2. A−BC−1BT is positive definite.

Proof: First notice that for a positive definite matrix J , J can be written as

JT
HJH , where JH is an N ×N non-singular matrix. Write JH = (S R), where S is an

N ×M , R is an N × (N −M) matrix. Then

A = ST S; B = ST R; C = RT R (B.3)

C is nonsingular, so R has full rank N −M . The singular value decomposition of R is

R = UΛV , where U is an N ×N matrix, UT U = UUT = I,V is an (N −M)× (N −M)

matrix, V T V = V V T = I, and Λ is an N × (N −M) matrix.

Λ =




diag(λ1, ...λN−M )

0M×(N−M)


 (B.4)

λi > 0 because R has full rank N −M . Now:

A−BC−1BT = ST S − ST R(RT R)−1RT S = ST (I −R(RT R)−1RT )S =

ST (I − (UΛV )((UΛV )T (UΛV ))−1(UΛV )T )S = ST (I − UΛV (V T ΛT ΛV )−1V T ΛT UT )S =

ST (I − UΛV V T (ΛT Λ)−1V T V ΛT UT )S = ST (I − UΛ(ΛT Λ)−1ΛT UT )S =

ST U(I − Λ(ΛT Λ)−1ΛT )UT S = ST U∆UT S (B.5)

Where ∆ = diag(δ1, δ2, ...δN ), where δi = 0, i = 1, 2, ..., N −M and δi = 1, N −M <

i ≤ N . Obviously A−BC−1BT is positive semi-definite. Suppose ∃~x ∈ RM , ~x 6= 0, but

~xT ST U∆UT S~x = 0. Then we have UT S~x = (y1, y2, ..., yN )T = ~y and yN−M+1, ...yN all

equal to 0. Now S~x = U~y and from the fact that yN−M+1, ...yN all equal to 0, we have:

Λ(ΛT Λ)−1ΛT ~y = ~y. Write ~z = V T (ΛT Λ)−1ΛT ~y, then S~x = U~y = UΛV ~z = R~z,where

~x 6= 0. This contradicts to the fact that (S R) is full rank. ¤.

Similarly C −BT A−1B is positive definite, and thus both are full rank.

Lemma B.3. (C −BT A−1B)−1 = C−1BT (A−BC−1BT )−1BC−1 + C−1
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Proof. : Notice that both A and (A−BC−1BT ) are full rank, then,

(C−1BT (A−BC−1BT )−1BC−1 + C−1)(C −BT A−1B)

= I + C−1BT (A−BC−1BT )−1B − C−1BT A−1B − C−1BT (A−BC−1BT )−1BC−1BT A−1B

= I + C−1BT ((A−BC−1BT )−1 −A−1 − (A−BC−1BT )−1BC−1BT A−1)B

= I + C−1BT ((A−BC−1BT )−1(A−BC−1BT )A−1 −A−1)B = I

¤

Lemma B.4. J−1 If we write

J =




A B

BT C


 and J−1 =




A′ B′

B′T C ′




Where A and A′ have the same size, and so do B and B′, C and C ′.

Then C ′ = (C −BT A−1B)−1

Proof. : Given the form of J−1, we have BT B′+CC ′ = I(N−M)×(N−M) and AB′+BC ′ =

0. From the latter equation, we get B′ = −A−1BC ′. Substitute into the first equation,

we get: −BT A−1BC ′ + CC ′ = I(N−M)×(N−M). Notice the dimensions of the matrices

all match. Thus we get the desired result. ¤

Now we can give the proof of Theorem B.1.

Proof. : C ′ = (C−BT A−1B)−1 following Lemma B.4. Then from Lemma B.3, we know

(C −BT A−1B)−1 = C−1BT (A−BC−1BT )−1BC−1 + C−1. Thus

C ′ − C−1 = C−1BT (A − BC−1BT )−1BC−1 = C−1T
BT (A − BC−1BT )−1BC−1 The

second equality follows since CT = C. So all we need to prove is that (A−BC−1BT )−1

is positive definite. And this is true following LemmaB.2. ¤

Definition B.1. Up-left submatrix

1 ≤ n ≤ m, the up-left n × n submatrix of an m ×m matrix A is an n × n matrix B,

s.t. B(i, j) = A(i, j), ∀1 ≤ i ≤ n, 1 ≤ j ≤ n.
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Corollary B.1. Monotonically increasing matrices

For a positive definite N ×N matrix matrix J . Let 1 ≤ n1 ≤ n2 ≤ ... ≤ nM = N , let A

be the up-left ni × ni submatrix of A. Let, Bi be the up-left n1 × n1 submatrix of A−1
i .

Then we have:

A−1
i = B1 ≤ B2 ≤ B3 ≤ ... ≤ BM (B.6)

Proof. : Notice that an up-left submatrix of a positive definite matrix is still positive

definite as shown in Lemma B.1. Repeatedly applying Theorem B.1, we get the desired

result. ¤



Appendix C

An Example of M/K Equivalence Class Estimation

In Section 2.2.2 we proposed the equivalence class estimation problem frame-

work for a class of estimation problems. An M/K equivalence class estimation is

an estimation problem in a M dimensional space and the equivalence class mani-

forld is K dimensional. In this appendix, we give an example of 2/1 equivalence

class estimation problem. i.e. the parameter space is 2 dimensional, the equiva-

lence class manifold is 1 dimensional. Suppose the parameter θ = (x, y) ∈ R2, and

the observation is
√

x2 + y2 + δ, where δ ∼ N(0, σ2. The equivalence classes are

θ̃t = {(x, y)|x2 + y2 = t}, t ≥ 0. And except for θ̃0, θ̃t is a 1 dimensional manifold.

Figure C.1: Equivalence classes are circles centered at (0, 0)



Appendix D

There is no subspace in which parameter estimation can be done for

the anchor-free coordinate estimation problem

In Section 2.2.2.3, we proposed a framework for estimation, the equivalence class

estimation problem to deal with the singular Fisher Information Matrix. The intrinsic

reason for the singularity of the Fisher Information Matrix is the redundancy of the

parameter (vector ~θ) space. For example if a parameter θ1 is unobservable then the

Fisher Information matrix is singular. But we can remove that unobservable parameter

from the estimation then we can still analyze the estimation problem in the subspace.

However, the redundancy is not always trivial. We can transform an equivalence class

estimation problem into a parameter estimation problem in a subspace, if and only if

we can find a subspace s.t. the metric in that subspace is the same as the metric for the

equivalence classes.

Here we give a simple example to show that there is no subspace in which a

parameter estimation can be done for anchor-free coordinate estimation problem. We

are going to show that for any subset what we can do parameter estimation, the metric

is no loner the same as the metric of the equivalence classes by a simple example.

Assuming we are doing the localization estimation for M points from the measured

distances between point pairs.. Suppose the parameter estimation could be properly

done, then ∃S ⊆ R2M , s.t. ∀θ, α, β ∈ R2M , ∃θ∗ ∈ θ̃
⋂

S,∃β∗ ∈ β̃
⋂

S,∃α∗ ∈ α̃
⋂

S, and

d(α∗, β∗) = d(α̃, β̃),d(α∗, θ∗) = d(α̃, θ̃),d(θ∗, β∗) = d(θ̃, β̃)
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Figure D.1: Counter example
θ1 Red ©,θ2 Blue ©,θ3 Black ©
β1 Red ¤,β2 Blue ¤,β3 Black ¤
α1 Red 4,α2 Blue 4,α3 Black 4
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Let M = 3. First, without loss of generality, we assume θ∗ = ((0, 0), (0, 1), (1, 0)),

because we can always translate and rotate S to make any given point on it, without

altering the metric on S.

Let β = ((0,−1), (0, 0.5), (2, 0)),α = ((0,−0.5), (0, 1.5), (0.5, 0)).

From the optimization problem in Eqn. 2.83, we know that the only β∗ ∈ R6, s.t

d(θ∗, β∗) = d(θ̃, β̃), is ((−0.602,−0.179), (−0.025, 1.205), (1.628,−0.025)), the only α∗ ∈

R6, s.t d(θ∗, α∗) = d(θ̃, α̃), is ((0.259,−0.513), (0.038, 1.474), (0.701, 0.038)). But the

only α∗∗ ∈ R6, s.t d(β∗, α∗∗) = d(β̃, α̃), is ((0.125,−0.490), (0.224, 1.506), (0.649,−0.016)).

α∗ 6= α∗∗, contradiction!

Figure D.2: Counter example
θ1 Red ©,θ2 Blue ©,θ3 Black ©
β∗1 Red ¤,β∗2 Blue ¤,β∗3 Black ¤
α∗1 Red 4,α∗2 Blue 4,α∗3 Black 4
α∗∗1 Red ?,α∗∗2 Blue ?,α∗∗3 Black ?
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Non-convexity of Eqn.2.65

The anchored free localization problem can be treated as an optimization problem

as in Section2.3.1. However the optimization problem is not convex thus traditional

optimization schemes are unlikely to work well.

Here we give a simple example to show the non-convexity of 2.65. Given 3 points

on the plane, with distance measurements di,j = 2, i, j ∈ {1, 2, 3}. If we fix the posi-

tions of point 1 and point 2 at (−1, 0), (1, 0) respectively. The following figure shows
∑

i,j(d̂i,j − di,j)2 for the different positions of point 3,(x, y), it is obviously non-convex.

Where d̂i,j =
√

(xi − xj)2 + (yi − yj)2.

Figure E.1: Values of Eqn.2.65 in the region [−3, 3]× [−3, 0



Appendix F

Multiple local minimum of Eqn.2.69 of variable d12

As shown in Section 2.3.1.1, in the first step of our 2-step anchored localization

scheme, we can optimize the distance of d12, the distance between the base points

in an anchor-free coordinate. Here we give a simple example to show that using our

algorithm in the first step of the coordinate estimation inside a cell, the optimization

problem in Eqn.2.69 of variable d12 has multiple minimum points. Suppose we have

4 points with noisy direct path distances measure: d12 = 3, d13 = 4, d14 =
√

2, d23 =
√

2, d24 = 1, d34 = 0.1. Then we let d12 take value from 0 to 5 and for each value of d12,

p2 = (d12, 0) we estimate the positions of p3 and p3. Then we calculate the following

function: E =
∑

i,j∈C(d̂i,j − di,j)2.

Where d̂i,j =
√

(xi − xj)2 + (yi − yj)2 and pi = (xI , yi). Clearly, E has multiple

minimum points.
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Figure F.1: Total squared error E vs d12



Appendix G

The bias of the ML anchor-free coordinate estimation

In Section 2.3.1 we proposed an anchored localization scheme. From the sim-

ulation results, we can observe that our estimation scheme is usually biased. In this

appendix, we are going to give a rigid proof on the bias of a particular scenario. Suppose

we know the anchored positions of two points P1, P2, P3 with position (0, 0), (d, 0), (a, b)

respectively, and a point P with unknown position (x, y), WLOG, y > 0. The setup is

shown in Fig.G.1. We have the measures of the distances from P to point Pi, li, where

li = di + εi, where εi are iid ∼ N(0, σ2). Suppose we are about to estimate the position

of P using the scheme mentioned in the anchor-free coordinate estimation. Let P3 be

the reference point. Then the position estimation of (x, y) is l1cos(α), l1sin(α), where

cos(α) = d2+l21−l22
2dl1

. We are going to argue that ŷ = l1sin(α) is biased. In fact y > 0

implies E(ŷ − y) ≤ 0.

Figure G.1: Local coordinate estimation
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From the estimation scheme we know that sin(α) =
√

1− cos(α)2 =
√

1− ( l21+d2−l22
2dl1

)2,

so

ŷ = l1

√
1− (

l21 + d2 − l22
2dl1

)2 =

√
4l21d

2 − (l21 + d2 − l22)2

4d2
(G.1)

l1 = d1 + ε1, l2 = d2 + ε2. We have :

ŷ =

√
4d2

1d
2 − (d2

1 + d2 − d2
2)2

4d2
+ e =

√
y2 + e (G.2)

e =
4(ε21 + 2ε1d1)d2 + 2(2d1ε1 + ε21 − 2d2ε2 − ε22)(d

2
1 + d2 − d2

2)− (2d1ε1 + ε21 − 2d2ε2 − ε22)
2

4d2

And notice that

√
A + e =

√
A +

e

2
√

A
− e2

8
√

A3
+ O(e3) (G.3)

Substitute A with y2, and take the expectation we have

E(ŷ) = y + E(
e

2y
)−E(

e2

8y3
) + E(O(e3)) = y +

E(e)
2y

− E(e2)
8y3

+ E(O(e3)) (G.4)

Omit the terms with order 3 or higher for εi and notice that E(εK2
2 εK1

1 ) = 0,K1 + K2 is

odd. We have:

E(e) = E(
4ε21d

2 + 2(ε21 − ε22)(d
2
1 + d2 − d2

2)− 4d2
1ε

2
1 − 4d2

2ε
2
2

4d2
) =

(d2 − d2
1 − d2

2)σ
2

d2

E(e2) = E((
d1(d2

1 + 3d2 − d2
2)

d2
)2e2

1 + (
d2(d2

1 + d2 − d2
2)

d2
)2e2

2)

= σ2 d2
1(d

2
1 + 3d2 − d2

2)
2 + d2

2(d
2
1 + d2 − d2

2)
2

d4
(G.5)

So

E(ŷ − y) = E(
e

2y
)−E(

e2

8y3
) =

4E(e)y2 − E(e2)
8y3

(G.6)

Now we are going to prove that the above value is smaller than 0.

Case 1: d2 − d2
1 − d2

2 < 0, then E(e) < 0, so E(ŷ − y) < 0.

Case 2: d2−d2
1−d2

2 ≥ 0, it is enough to prove that 4E(e)y2−E(e2) < 0, equivalent

to prove

(d2 − d2
1 − d2

2)(4d
2
1d

2 − (d2
1 + d2 − d2

2)
2)− d2

1(d
2
1 + 3d2 − d2

2)
2 − d2

2(d
2
1 + d2 − d2

2)
2 < 0

(G.7)
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Let A = (d2
1 + d2 − d2

2). Then it is equivalent to

(A− 2d2
1)(4d

2
1d

2 −A2)− d2
1(A + 2d2)2 − d2

2A
2 < 0

−A3 + A2d2
1 − 8d4

1d
2 − 4d2

1d
4 − d2

2A
2 < 0 (G.8)

A2(d2
1 −A)− 8d4

1d
2 − 4d2

1d
4 − d2

2A
2 < 0 (G.9)

The last inequality is true because d2
1 − A = d2

2 − d2 < 0. Thus we proved that with

y > 0, E(ŷ − y) < 0. ¤



Appendix H

The optimization problem in Eqn. 2.83

In Section 2.3, we proposed an anchored localization scheme. In our scheme, we

repeatedly need to solve the following problem: N points with positions zi = (ai, bi)T , i =

1, ...N , another N points with positions z′i = (ci, di)T , i = 1, ...N . The following opti-

mization problem is stated.

E = argminα,T

N∑

i=1

‖R(α)zi + T − z′i‖2
2

(H.1)

Where

R(α) =




cos(α) −sin(α)

sin(α) cos(α)


 , T =




tx

ty


 (H.2)

Eqn. H.1 could be written as following

E = argminα,T

N∑

i=1

(cos(α)ai − sin(α)bi − ci + t1)2 + (cos(α)bi + sin(α)ai − di + t2)2(H.3)

This is an unconstrained optimization problem which means that the we only

need to get the derivative of Eqn.H.3, set the derivative to 0, and solve the equations.
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We get the following results:

dE

dt1
=

N∑

i=1

(cos(α)ai − sin(α)bi − ci + t1) = 0 (H.4)

Thus t1 = − 1
N

N∑

i=1

(cos(α)ai − sin(α)bi − ci) (H.5)

Similarly t2 = − 1
N

N∑

i=1

(cos(α)bi + sin(α)ai − di) (H.6)

dE

dα
=

N∑

i=1

(cos(α)ai − sin(α)bi − ci + t1)(−cos(α)bi − sin(α)ai) +

N∑

i=1

(cos(α)bi + sin(α)ai − di + t2)(cos(α)ai − sin(α)bi) = 0 (H.7)

It turns out that the Eqn. H.7 can be simplified by grouping cos(α) and sin(α) terms:

Acos(α) + Bsin(α) = 0 (H.8)

α1 = arctan(−A

B
) (H.9)

α2 = arctan(−A

B
) + π (H.10)

Where A =
1
N

N∑

i=1

N∑

k=1

(aidk − bick) +
N∑

i=1

(−aidi + bici) (H.11)

B =
1
N

N∑

i=1

N∑

k=1

(−aick − bidk) +
N∑

i=1

(aici + bidi) (H.12)

Now we can substitute αi into Eqn. H.5 and Eqn. H.6 to get t1i, t2i, i = 1, 2. Then

substitute αi, t1i, t2i, i = 1, 2 into Eqn. H.3, pick the i to minimize Eqn. H.3 . Thus we

have solved the optimization problem. ¤



Appendix I

STSR Object Tracking of Constant Acceleration Motion

In Section 3.1 we studied the object tracking problem. In a single transmitter

single receiver sensor network, the motion can possibly be estimated only if there is a

proper motion model. In Section 3.1 we showed that if the object is moving with a

constant velocity, then theoretically the object can be tracked. In this appendix, we

prove that if the object moves with a constant acceleration, the motion is also trackable.

Theory

If an object A is moving in a sensor network field with constant acceleration,

then there are 6 parameters to be estimated. (x, y, u, v, a, b), where (x, y) is the starting

point of the motion, (u, v) is the velocity of the object at (x, y),(a, b) is the constant

acceleration. At time t, the object is at point

(xt, yt) = (x + tu +
t2a

2
, y + tv +

t2b

2
) (I.1)

Thus the 6 parameters uniquely determine the motion of the object. At time t,

the multi-path distance is dt. The analysis here is similar to the analysis for the constant

velocity case.

xt
2

p2
t

+
yt

2

q2
t

= 1 (I.2)
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Where pt = dt
2 , qt =

√
(dt

2 )2 − 1, substitute Eqn.I.1 into the above equation. We get :

(x + tu + t2a
2 )2

p2
t

+
(y + tv + t2b

2 )2

q2
t

= 1

x2 + t2u2 + t4

4 a2 + 2txu + t2ax + t3ua

p2
t

+
y2 + t2v2 + t4

4 b2 + 2tyv + t2ax + t3vb

q2
t

= 1

Thus we have a linear equation for (x2, u2, a2, xu, xa, ua, y2, v2, b2, yv, yb, vb), 12

unknowns. However, noticing that the coefficients for u2, xa are always the same, the

coefficients for v2, yb are always the same, thus the linear equation system is not full

rank given 12 unknowns. We actually have to combine u2, xa into a single unknown, and

v2, yb into a single unknown to make the linear equation system full rank. Now we have

a linear equation for (x2, u2 +xa, a2, xu, ua, y2, v2 + yb, b2, yv, vb), 10 unknowns. Gener-

ally we need 10 linear equations to solve 10 unknowns, so we need 10 multi-path distance

measurement to recover the vector (x2, u2 + xa, a2, xu, ua, y2, v2 + yb, b2, yv, vb), then

with some ambiguity, we can solve for the motion (x, u, a, y, v, b). The ambiguity comes

from the symmetry of the geometry. We now argue that there are 4 possible solutions

for (x, u, a, y, v, b) from a single solution of (x2, u2+xa, a2, xu, ua, y2, v2+yb, b2, yv, vb) =

(q1, q2, ..., q10). First, there are 2 possible solutions for x,
√

q1 and −√q1, as long as x is

fixed, u = q4

x , a = q5

u are fixed. Same for y, v, b, so we have totally 4 possible solutions

for (x, u, a, y, v, b) given one solution from the linear equation system. Similarly we can

generalize the analysis to high order motion models.

Stability Analysis

Here we analyze the stability issue of the linear equation system for (x2, u2+xa, a2, xu, ua, y2, v2+

yb, b2, yv, vb). Assuming out goal is to estimate the positions of the object at time

0, 1/2, 1. Knowing these 3 positions, we can fully recover the whole motion of the ob-

ject given constant acceleration assumption. Then we have x0 = x, x1/2 = x + u
2 +

a
8 , x1 = x + u + a

2 , y0 = y, y1/2 = y + v
2 + b

8 , y1 = y + v + b
2 . Noticing the trans-

form matrix is not ill-conditioned. Thus the condition number of the matrix for the
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(x2, u2 +xa, a2, xu, ua, y2, v2 +yb, b2, yv, vb) is a good measure on how good we can esti-

mate the location of the object at time 0, 1
2 , 1. Write −→z = (x2, u2+xa, a2, xu, ua, y2, v2+

yb, b2, yv, vb)T . We have the following linear equation system: A−→z =
−→
D . Where the

k’th element of
−→
D is pk

2qk
2. The k’th row of matrix A is

(qk
2, qk

2t2,
qk

2t4

4
, 2qk

2t, qk
2t3, pk

2, pk
2t2,

pk
2t4

4
, 2pk

2t, pk
2t3) (I.3)

Where pk
2 = dk

2

4 , qk
2 = pk

2 − 1, and

dk =
√

(x + ku
N + k2a

2N2 − 1)2 + (y + kv
N + k2b

2N2 )2+
√

(x + ku
N + k2a

2N2 + 1)2 + (y + kv
N + k2b

2N2 )2

And we have the χ(A) to measure the stability of the the linear equation system.

As can be seen, χ(A) is generally huge for the constant acceleration model. Thus

a little error in multi-path distance measurements would result in a huge error in the

motion estimation.
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Figure I.1: The value on (x, y) ∈ [−3, 3] × [−3, 3] indicates log10(χ(A)), (a) (u, v) =
(0, 0), (a, b) = (1, 1) ;(b) (u, v) = (1, 0), (a, b) = (0, 1)



Appendix J

Degenerate Cases for STSR

In the object tracking by a single transmitter single receiver problem, we proposed

a simple linear scheme in Section 3.1.1. In that scheme we need to compute the pseudo-

inverse of a matrix A. A is dependent on the motion of the object. In this appendix we

are going to show that A is full rank except 3 degenerate cases. Thus in the 3 degenerate

cases we cannot use the simple scheme to track the object.

In the single transmitter single receiver network, the object is assumed to be

moving with constant velocity. We have the A matrix defined in Eqn.3.8. In general A

is full rank (6) except the following 3 cases. First we need a well known result which

can be found in [18]:

Lemma J.1. dependence of polynomials: K > N + 1, then any K polynomials with

order not bigger than N are linear dependent.

In the following analysis, we treat the k′th row of matrix A as a function of k.

Again, the motion starts at (x, y), ends at (u, v).

Case (1): The object moves along the perpendicular bisector of the transmitter-

receiver pair. As shown in Fig.J.1, the red arrow. d2
k = 2(y2

k +1) = 2(( k
N v+ N−k

N y)2+1),

so a2
k = ( k

N v + N−k
N y)2 + 1, b2

k = ( k
N v + N−k

N y)2

The k′th row of A is (bk
2(1− k

N )2, 2bk
2(1− k

N ) k
N , bk

2( k
N )2, ak

2(1− k
N )2, 2ak

2(1−
k
N ) k

N , ak
2( k

N )2) Notice that ak, bk are quadratic function of k, thus the k′th row of A is
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a vector of 6 degree 4 polynomials of k. From the lemma we know that A is singular.

Case (2): The object moves along the transmitter-receiver line and the motion is

in between the transmitter and the receiver. As shown in Fig. J.1, as the black arrow.

dk = 2, so a2
k = 1, b2

k = 0

The k′th row of A is (0, 0, 0, (1− k
N )2, 2(1− k

N ) k
N , ( k

N )2), A is obviously singular.

Case (3): The object moves along the transmitter-receiver line. And the motion

is outside of the transmitter-receiver line segment. As shown in Fig.J.1, the blue arrow.

dk = 2xk = 2( k
N u + N−k

N x), so a2
k = ( k

N u + N−k
N x)2, b2

k = ( k
N u + N−k

N x)2 − 1

The k′th row of A is (bk
2(1− k

N )2, 2bk
2(1− k

N ) k
N , bk

2( k
N )2, ak

2(1− k
N )2, 2ak

2(1−
k
N ) k

N , ak
2( k

N )2) Notice that ak, bk are quadratic functions of k, thus the k′th row of A

is a vector of 6 degree 4 polynomials of k. From the lemma we know that A is singular.

Figure J.1: A matrix defined in Eqn.3.8 is singular if the object moves along the arrows
in the figure.

If the object moves along the transmitter-receiver line, and it crosses the trans-

mitter or receiver. Then the matrix A for the whole motion is full-rank (6). Without

loss of generality, we assume the object first moves inside the line segment of the Tx and

Rx, then moves across the receiver, then moves outside of the line segment. Then the

matrix A is composed of 2 parts. In the first part, the rows are like what we have in case

(2), in the other part, the rows are like those in case (3). Assuming in the first part, we

have L measurements, in part 2 we have M measurements. And M, L ≥ 3,M +L = N .

Now we have A as following:
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A =




0 D

E F


 , (J.1)

Where 0, D are L× 3 matrices, E, F are M × 3 matrices. A is full-rank (6) if and only

if E, D are all full-rank(3). The k’th row of D is ((1− k
N )2, 2(1− k

N ) k
N , ( k

N )2), and we

know the 3 quadratic functions (1 − z)2, 2(1 − z)z, z2 are linearly independent, so as

long as we have 3 different k’s there (L ≥ 3), D is full-rank (3).

As for E, similar to case(3) the k − L’th row of E is

(bk
2(1 − k

N )2, 2bk
2(1 − k

N ) k
N , bk

2( k
N )2), where b2

k = ( k
N u + N−k

N x)2 − 1. x, u are the

starting and ending x − position for the object respectively. Replace k
N with z. We

have the k−L’th row of E is (uz+x(1−z))2((1−z)2, 2(1−z)z, z2), those 3 polynomials

are linearly independent as long as x 6= u. So if we have not less than 3 measurements,

the matrix E is full-rank(3).

We just proved that E, D are all of rank 3, we can claim that matrix A is full-rank

(6).



Appendix K

Convergence of χ(AN)

In Section 3.1.1 we gave a linear scheme for object tracking by a single trans-

mitter single receiver network. If we have N multipath distance measurements, then we

have a linear equation system as shown in Eqn.3.9. To solve that equation we directly

apply the pseudo-inverse of the matrix AN as shown in Eqn.3.10. The condition number

of AN is interesting because it tells if the solution in Eqn 3.9 is stable. Here we are

going to prove χ(AN ) converges to a finite real value or goes to infinity.

Lemma K.1. Convergence of AT
NAN/N Write BN = AT

NAN

N

limN→∞BN = B entry-wisely (K.1)

Where B is a real matrix, all entries of B are bounded.

Proof. : If the starting point is (x, y), ending point is (u, v), let (x(t), y(t)) = (1 −

t)(x, y) + t(u, v),

d(t) =
√

(x(t)− 1)2 + y(t)2 +
√

(x(t) + 1)2 + y(t)2, a(t) = d(t)
2 , b(t) =

√
d(t)
2

2 − 1

Let t = k
N , then the kth row of AN is

(b(t)2(1 − t)2, 2b(t)2(1 − t)t, b(t)2(t)2, a(t)2(1 − t)2, 2a(t)2(1 − t)t, a(t)2(t)2) the (1, 1)

element of BN :

BN (1, 1) =
1
N

∑

t∈{0, 1
N

, 2
N

,... N
N
}
(b(t)2(1− t)2)2

limN→∞BN (1, 1) =
∫ 1

0
(b(t)2(1− t)2)2dt (K.2)
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Notice that (1− t)2 and b(t)2 are bounded continuous function in [0, 1], the limit

exists. Thus we proved the (1, 1) element of BN converges, similarly other entries of

BN converge. So AT
NAN

N converges. ¤

Obviously B is positive semi-definite, thus all eigenvalues of B is not less than 0.

Theorem K.1. If the minimal eigenvalue of B, minEig(B) > 0, then

limN→∞χ(AN ) = χ(B) (K.3)

On the other hand, if minEig(B) = 0, then the condition number goes to infinity.

Proof. : First observe that χ(AN ) =
√

cond(AT
NAN ) =

√
cond(AT

NAN

N ) =
√

cond(BN ).

And cond(B) = maxEig(B)
minEig(B) . And for a finite dimension non-singular matrix B, 6 × 6

here, if a sequence of matrices BN converges to B entry-wisely. Then the eigenvalues of

BN all converge to eigenvalues of B.

limN→∞maxEig(BN ) = maxEig(B)

limN→∞minEig(BN ) = minEig(B) (K.4)

And the lemma tells that AT
NAN

N converges to B entry-wisely.We know χ(AN )

converges to χ(B). ¤



Appendix L

Confusing Paths for STSR

1In Section 3.1, we assumed that the object moves with a constant velocity.

If the multipath distance measures are accurate then we can accurately estimate the

motion of the object as shown in Section 3.1.1. In this appendix, we are going to show

that if the object is allowed to move with an arbitrary velocity, then it is impossible to

track the motion of the object by a single transmitter, single receiver network even the

multipath distance measures are noiseless.

In a single transmitter, single receiver network, the position of object A is P (t) =

(x(t), y(t)), t ∈ [0, 1]. If we only constrain the motion to be continuous (or smooth),

then it is impossible to estimate the position of the object. We are going to prove

this by showing there exists 2 different motions with the same multi-path distance

measurements for t ∈ [0, 1]. This result is summarized in Theorem L.1.

Suppose the transmitter is at (−1, 0), receiver is at (0, 1). Given a point P at

P = (x, y), define d(P ) =
√

(x− 1)2 + y2 +
√

(x + 1)2 + y2, d(P ) is the multi-path

distance of point P .

Definition L.1. Good pair: A pair of points (P1, P2), s.t. 2 < d(P1) < d(sP1 + (1 −

s)P2) < d(P2), ∀s ∈ (0, 1). essentially, if an object moves from P1 to P2, the multi-path

distance increases monotonically.

Definition L.2. path: [17]A path is a continuous map from [0, 1] to R2.
1 The author would like to thank Hansen Bow for his original idea which inspired this work.
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Figure L.1: (P1, P2) is a good pair,(Q1, Q2) is a good pair, too. (P1, T ), (P2, T )

are not good pairs.
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Definition L.3. Confusing paths Objects A,B moves along the path PA(t), PB(t), t ∈

[0, 1]. i.e. at time t, A is at point PA(t) = (xA(t), yA(t)). If d(PA(t)) = d(PB(t)),∀t ∈

[0, 1], then we call PA(t), PB(t) confusing paths.

Theorem L.1. Existence of confusing pairs: Given any 4 points P1, P2, Q1, Q2, s.t.

(P1, P2), (Q1, Q2) are good pairs as shown in Fig.L.1. d(Pi) = d(Qi), i = 1, 2. An

object A moves with constant velocity from P1 to P2, from time 0 to 1, i.e. PA(t) =

(1− t)P1 + tP2. Another object B moves along path PB(t), t ∈ [0, 1], then there exits a

path PB(t) s.t.:

(1)PB(t) = (1−S(t))Q1 +S(t)Q2, where S is a continuous map from [0, 1] to [0, 1] and

S(0) = 0, S(1) = 1, i.e. object B moves straightly and continuously from Q1 to Q2.

(2) d(PA(t)) = d(PB(t)), ∀t ∈ [0, 1]

proof: At time t, PA(t) = (xt, yt) = (1 − t)P1 + tP2,PB(t) = (ut, vt) = (1 −

S(t))Q1 + S(t)Q2 if d(PA(t)) = d(PB(t)), then we have

u2
t

a2
t

+
v2
t

b2
t

= 1 (L.1)

Where at = d(PA(t))
2 , bt =

√
(d(PA(t))

2 )2 − 1, let Q1 = (q1x, q1y), Q2 = (q2x, q2y), then

ut = (1−S(t))q1x + S(t)q2x,vt = (1−S(t))q1y + S(t)q2y. Substitute these into Eqn.L.1,

we have:

((1− S(t))q1x + S(t)q2x)2

a2
t

+
((1− S(t))q1y + S(t)q2y)2

b2
t

= 1

(
(q2x − q1x)2

a2
t

+
(q2y − q1y)2

b2
t

)S(t)2 + 2(
(q2x − q1x)q1x

a2
t

+
(q2y − q1y)q1y

b2
t

)S(t) +

(
q2
1x

a2
t

+
q2
1y

b2
t

− 1) = F (S(t)) = 0 (L.2)

Where F is a quadratic function. Since, (P1, P2), (Q1, Q2) are good pairs. So d(Q1) =

d(P2) > d(PA(t)) > d(P1) = d(Q1),∀t ∈ (0, 1). Thus we have:

F (0) =
q2
1x

a2
t

+
q2
1y

b2
t

− 1 < 0

F (1) =
q2
2x

a2
t

+
q2
2y

b2
t

− 1 > 0 (L.3)



178

F (0) < 0 < F (1), ∀t ∈ (0, 1), thus there is a unique solution for S(t). We give the

explicit expression for S(t):

S(t) =
−( (q2x−q1x)q1x

a2
t

+ (q2y−q1y)q1y

b2t
)

(q2x−q1x)2

a2
t

+ (q2y−q1y)2

b2t

+

√
( (q2x−q1x)q1x

a2
t

+ (q2y−q1y)q1y

b2t
)2 − ( q2x−q1x)2

a2
t

+ (q2y−q1y)2

b2t
)( q2

1x

a2
t

+
q2
1y

b2t
− 1)

(q2x−q1x)2

a2
t

+ (q2y−q1y)2

b2t

(L.4)

It can be easily verified that S(t) is a continuous function in [0, 1], and furthermore

S′(t), S′′(t) are continuous in [0, 1]. To prove the continuousness, we only need to verify

all those functions are bounded since at, bt are bounded continuous function of t ∈ [0, 1],

and S(t) is an algebraic function of at, bt.

An example of confusing pairs:

Figure L.2: Confusing paths

As illustrated in Fig.L.2,P1 = (2, 0), P2 = (4, 0), Q1 = (0,
√

3), Q2 = (0,
√

15), Q3 =

(2.141, 3.272). (P1, P2), (Q1, Q2), (Q1, Q3) are good pairs. And d(P1) = d(Q1), d(P2) =

d(Q2) = d(Q3), if an objet A moves from P1 to P2 with constant velocity from time 0

to 1. At time t ∈ [0, 1], the position of A is PA(t) = (1− t)P1 + tP2. From the theorem

we just proved, ∃S1(t), S2(t). S.t. an object B moves from Q1 to Q2, an object C move

s from Q1 to Q3 from time 0 to 1, and at time t, B is at (1− S1(t))Q1 + S1(t)Q2, C is

at (1− S2(t))Q1 + S2(t)Q3, and d(PA(t)) = d(PB(t)) = d(PC(t)). Where Si(t), i = 1, 2

is smooth.
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Si(t) and S′i(t) are shown in Fig.L.3. As can be seen, Si(t)′s are quite close to

the path with constant velocity which is in blue.
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Figure L.3: Blue line is the motion with constant velocity, red curves are the S1(t), S′1(t)
for a path from Q1 to Q2 to confuse with a path from P1 to P2 with constant velocity.
Green curves are S2(t), S′2(t) for a path from Q1 to Q3 to confuse with the same path.



Appendix M

Stability of the Cost function

In multiple object tracking problem, the first step is always to associate the

multipath distances measures with the objects. In our 2-step scheme, we first discretize

the space then search for the local optimal grid points of some function. The cost

function as defined in Eqn.3.140 is a natural choice. However, as pointed out in Section

3.3.2.1. The cost function C(x, y) defined in is not quite stable. In the sense that if

one very bad multi-path distance measurement is presented (likely to happen due to the

sensor failure), then C(x, y) would be largely affected by that single bad measurement.

In the contrary, the score function S(x, y) defined in Eqn.3.141 is more stable as shown

in Fig.M.3.

Here we give an example. In a 2 transmitter, 2 receiver sensor network as

shown in Fig.M.1. The transmitters are located at (0, 0), (0.5, 0), (1, 0), receivers are

at (0, 1), (0.5, 1), (1, 1). The object is at (0.5, 0.5). Then all the multi-path distance

measurements should ∈ [1,
√

2]. And we have the cost function C(x, y) in Fig.M.2(a). If

the multi-path distance measure from Tx3 to Rx2 reflected by the object is 1.957 instead

of the true one 1.207, then we have the cost function C(x, y) as show in Fig.M.2(b).

And the point with the minimum cost function is (0.4, 0.12) instead of the true location

of the object (0.5, 0.5).

Meanwhile in Fig.M.3, we plot the score functions S(x, y) for noiseless and noisy

case. It can be seen that a single sensor failure does not change the output as dramat-
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Figure M.1: A simple sensor network

ically as it does on the cost function C(x, y). From the second plots, we can see that

if the multi-path distance measure is corrupted by a big noise, then that single false

measure would only affect the region around the false ellipse, but would do nothing on

other part of the plane.
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Figure M.2: (a) C(x,y) for true multi-path distances (b) C(x,y) for noisy multi-path
distance measures
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Figure M.3: (a) S(x,y) for true multi-path distances (b) S(x,y) for noisy multi-path
distance measures



Appendix N

Synchronization and Distance Estimation in a Sensor Network

To complete the localization problem, we are going to study the synchronization

problem in a sensor network. Our scheme is a centralized linear estimation scheme

which achieves optimality if the noises are modelled as additive iid Gaussian noises.

The performance of the localization scheme that we proposed is highly dependent

on the accuracy of the distance measurements. Two kinds of noises could occur in the

estimation of distances. One is the measurement noises, which is often assumed to be

iid Gaussian, the other is the system error from the offsets of the sensor clocks which

can be treated as the system parameters. In a UWB system, if a sensor can both send

and receive signals, then we can estimate the offsets of the sensor clocks and distances

simultaneously.

Assume that sensor i, i = 1, 2...N has an clock offset Ti, i.e. the clock of sensor i

is Ti when the universal clock is 0. Notice that since we have no universal clock in the

sensor network, the only thing matters is the relative offset.

Define

S = {(i, j)|sensor i and j can communicate to each other, i < j}

. We write S = {(i1, j1), ...(i|S|, j|S|)}.We have the following 2 equations:

dij

c
− Ti + Tj = εij − Eij

dji

c
− Tj + Ti = εji − Eji (N.1)
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Where Eij is the estimated time difference at sensor j. dij = dji is the distance between

sensor i, j,εij is the estimation error which can be assumed to be iid Gaussian r.v.

∼ N(0, σ2), c is the speed of light.

So now we have a bunch of linear equations, unknown variables are dij , (i, j) ∈

S, Ti, i = 1, 2...N , but the linear equation system is singular. This can be easily proved

by the fact that xij = 0 ∀i, j, Ti = c,∀i is in the zero space of the linear equation system

in Eqn.N.1. Now think of the N dimensional space RN , the solutions of Ti, i = 1, ..N is

a point in RN . Essentially all the lines perpendicular to the N − 1 dimensional plane
∑N

i=1 Ti = 0 form an equivalent class, where every point on the line are equivalent. So

we add one more constraint
∑

Ti = 0 and do the estimation in the subspace
∑

Ti = 0.

Here the form of the constraint could be something like T1 = 0 or T3 + T7 = 5. But our

choice is the only symmetric linear constraint. With this additional constraint we can

figure out one single solution in an equivalent class.

Now we have a linear equation system as following:

A−→x =




−→
b +−→ε

0


 (N.2)

Where −→x = (T1, ...TN , di1j1 , ...di|S|j|S|)
T is the unknown vector of dimension N + |S| ×

1.
−→
b = (Ei1j1 , Ej1i1 , ...Ei|S|j|S| , Ej|S|i|S|)

T is the time difference estimation vector of

dimension 2|S|×1. −→ε = (εi1j1 , εj1i1 , ...εi|S|j|S| , εj|S|i|S|)
T is the noise vector of dimension

2|S|. A is a (2|S|+1)× (N + |S|) dimensional matrix. The 2k−1, 2k th, k = 1, 2, ..., |S|,

row vector of A is a2k−1, a2k (each one is of dimension 1× (N + |S|)) :



a2k−1

a2k


−→x =




dij

c − Ti + Tj

dij

c − Tj + Ti


 (N.3)

The 2|S|+ 1 th row vector of A is simply (1, 1, ..., 1).

Notice that −→ε is a zero mean gaussian random vector with autocorrelation σ2I2|s|
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The optimal estimation of x is simply

−̂→x = (AT A)−1AT




−→
b

0


 (N.4)

A second thought on this problem leads to the following solution which is more

computational efficient. Notice that dij which is equal to dji only appears in two equa-

tions. From Eqn.N.1, and given the noises are iid gaussian, the optimal estimation of

dji is simply :

d̂ji =
−c(Eij + Eji)

2
(N.5)

It is independent of the estimation of Ti’s. This is the optimal estimation of Ti, so it

must be the same as the solution in Eqn.N.4. Substitute the estimation of di into Eqn.

N.1, we have the following linear equations:

−Ti + Tj =
εij − εji

2
+

Eji − Eij

2

−Tj + Ti =
εji − εij

2
+

Eij − Eji

2
(N.6)

As we can see, those two equations are identical. Thus one is redundant. We will use

the second one of the two in the further analysis. Now we have a linear equation system

as following:

G−→y =




−→
h +

−→
ε
′

0


 (N.7)

Where −→y = (T1, ...TN ) is the unknown vector of dimension N .
−→
h is a |S| dimensional

vector of the observations,
−→
h = (Ei1j1

−Ej1i1
2 , ...

Ei|S|j|S|−Ej|S|i|S|
2 )T .

−→
ε′ = (−εi1j1

+εj1i1
2 , ...

−εi|S|j|S|+εj|S|i|S|
2 )T is the noise vector of dimension |S|, where

−→
ε′ ∼ N(0, σ2

2 I|S|). G is a

(1 + |S|)×N dimensional matrix. The k th, k = 1, 2, ..., |S|, row vector of G is simply

(0, 0, ...0, 1, 0, ..., 0,−1, 0, ....0), i.e. the ik th element is 1, the jk th element is −1. And

the optimal (also linear) estimation of −→y is:
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−̂→y = (GT G)−1GT




−→
h

0


 (N.8)

From Eqn.N.7, we know that −̂→y = −→y − (GT G)−1G
−→
ε
′
. The estimation error is a

linear transform of a zero mean white gaussian vector, which is still a zero mean gaussian

vector. Now suppose in the sensor network, every sensor pair i, j can communicate to

each other, i.e. |S| = N(N−1)
2 . Then we have some interesting result :

GT G = NIN (N.9)

Where IN is the N×N identical matrix. So the estimation error of −→y is a N dimensional

zero mean gaussian vector with autocorrelation:

E((−→y − −̂→y )((−→y − −̂→y ))T ) = E((GT G)−1GT




−→
ε
′

0


 (

−→
ε
′ T , 0)G(GT G)−1)

= N−1INGT σ2

2




IN(N−1)
2

0

0 0


GN−1IN

=
σ2

2N2




N −1 . . . −1

−1 N . . . −1
...

. . .
...

−1 . . . N




(N.10)

From the above discussion we conclude this section. In a sensor network with N nodes,

the variance of the clock-offset estimation is decreasing at rate N−1, if the transmission

power per sensor is constant.


