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Abstract— In channel coding, reliable communication takes
place at rates below capacity at the fundamental cost of end-to-
end delay. Error exponents tell us how much faster convergence
is when we settle for less rate. For lossless source coding, entropy
takes the place of capacity and error exponents tell us how much
faster convergence is when we use more rate. While in channel
coding without feedback the block error exponent is a good proxy
for studying the more fundamental tradeoff with fixed end-to-end
delay, it is not so in source coding. Block-coding error exponents
are quite conservative (despite being tight!) when it comes to
the tradeoff with delay. Nonblock codes can achieve much better
performance with fixed delay and we present both the fundamental
bound and how to achieve it in a delay-universal manner. The
proof gives substance to Shannon’s cryptic statement about how
the duality between source and channel coding is like the duality
between the past and the future.

I. INTRODUCTION AND PROBLEM SETUP

Shannon closed his seminal paper on lossy source coding
[1] with an intriguing comment:

“[The duality between source and channel cod-
ing] can be pursued further and is related to a duality
between past and future and the notions of control
and knowledge. Thus we may have knowledge of the
past and cannot control it; we may control the future
but have no knowledge of it.”

While there has been much work exploring the relationship
between source and channel coding, no connection to the past
and the future has emerged so far. In this paper, we demonstrate
such a connection by looking at the fundamental error exponent
with respect to fixed delay between the time a message is first
made known to the encoder and its deadline at the decoder. For
channel coding without feedback, the dominant error event is
caused by the channel’s “future” behavior in that errors can be
forced by mild channel misbehavior during the period between
the message arrival time and its deadline [2], [3]. This sort of
mild misbehavior is exactly what is bounded by the traditional
sphere-packing arguments for block coding. When feedback is
allowed, the encoder can do flow-control and become robust to
such mild misbehavior even when facing fixed-delay deadlines
[4], [3]. The fundamental limits are instead given by the
“focusing bound” [3].

This paper develops a lossless source-coding counterpart to
the focusing bound. This reveals that the dominant source of
errors is the “past” misbehavior of the source, over which
the encoder has no control. Since the communication medium
is a noiseless fixed-rate bit-pipe, the future is entirely under
the control of the encoder. This bound is also asymptotically
achievable using fixed-to-variable codes whose variable-rate
nature is smoothed out by using a queue.

A. Review of block source coding results
The discrete memoryless source S generates iid random

variables xi from a finite alphabet X according to distribution
px . Without loss of generality, assume px(x) > 0, ∀x ∈ X .
A rate R block source coding system for n source symbols
consists of a encoder-decoder pair (En,Dn) where

En : Xn −→ {0, 1}bnRc
, En(xn

1 ) = b
bnRc
1

Dn : {0, 1}bnRc −→ Xn
, Dn(b

bnRc
1 ) = bxn

1

The probability of block decoding error is P (xn
1 6= bxn

1 ) =
P (xn

1 6= Dn(En(xn
1 ))).

Shannon proved that arbitrarily small error probabilities are
achievable by letting n get big as long as the encoder rate is
larger than the entropy of the source, R > H(px). Furthermore,
it turns out that the error probability goes to zero exponentially
in n.

Lemma 1: (From [5]) For a discrete memoryless source x ∼
px and encoder rate R < log2 |X |,
∀ε > 0, ∃K(ε) < ∞, ∀n ≥ 0, ∃ a block encoder-decoder

pair En,Dn satisfying

P (xn
1 6= bxn

1 ) ≤ K(ε)2−n(Eb(R)−ε) (1)

This result is asymptotically tight, in the sense that for any
sequence of encoder-decoder pairs En,Dn,

lim sup
n→∞

−
1

n
log2 P (xn

1 6= bxn
1 ) ≤ Eb(R) (2)

where Eb(R) is defined as the block source coding reliability
function with the form:

Eb(R) = min
q:H(q)≥R

D(q‖px) (3)

Paralleling the definition of the Gallager function for channel
coding [6], define

E0(ρ) = (1 + ρ) log2[
X

x

px(x)
1

1+ρ ] (4)

Then, as mentioned as an exercise in [5]:

Eb(R) = sup
ρ≥0

{ρR − E0(ρ)} (5)

= D(pxρR
‖px)

where pxρR
is the tilted distribution of parameter ρR satisfying

H(pxρR
) = R. The tilted distribution of parameter ρ ∈

(−1,∞) of a distribution px is: ∀x ∈ X

pxρ(x) =
px(x)

1
1+ρ

P
s px(s)

1
1+ρ

(6)
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Fig. 1. Delay-universal sequential source coding at R = 2

px0 = px and as shown in [7], ∂H(pxρ )

∂ρ
≥ 0 and is generally

strictly positive unless px is uniform on X . Thus the optimal
ρR corresponding to R is unique unless px is uniform over X
which is a uninteresting case.

B. Sequential Source Coding
Rather than being known in advance, the source symbols

enter the encoder in a real-time fashion. We assume that the
source S generates one source symbol x per second from a
finite alphabet X . The j’th source symbol xj is not known
at the encoder until time j. Rate R operation means that the
encoder sends 1 binary bit to the decoder every 1

R
seconds.

For obvious reasons, we focus on cases with H(px) < R <

log2 |X |.
Definition 1: A sequential encoder-decoder pair E ,D are

sequence of maps. {Ej}, j = 1, 2, ... and {Dj}, j = 1, 2, ....
The outputs of Ej are the outputs of the encoder E from time
j − 1 to j.

Ej : X j −→ {0, 1}bjRc−b(j−1)Rc

Ej(x
j
1) = b

bjRc

b(j−1)Rc+1

The outputs of Dj are the decoding decisions of all the arrived
source symbols by time j based on the received binary bits up
to time j.

Dj : {0, 1}bjRc −→ X

Dj(b
bjRc
1 ) = bxj−d

1

Where bxj−d
1 (j) is the estimation, at time j, of x

j−d
1 and thus

has end-to-end delay of d seconds. In a delay-universal scheme,
the decoder emits revised estimates for all source-symbols so
far. A rate R = 2 delay-universal sequential source coding
system is illustrated in Figure 1.

For sequential source coding, it is important to study the
symbol by symbol decoding error probability instead of the
block coding error probability.

Definition 2: A family of rate R sequential source codes
{(Ed, Dd)} are said to achieve delay-reliability Es(R) if and
only if: ∀i

lim inf
d→∞

−1

d
log2 P (xi 6= bxi(i + d)) ≥ Es(R)

II. UPPER BOUND ON Es(R)

To bound the best possible error exponent with fixed delay,
we consider a genie-aided encoder/decoder pair and translate
the block-coding bounds of [5] to the fixed delay context. The
arguments are analogous to the “focusing bound” derivation in
[3] for the case of channel coding with feedback.

Theorem 1: For fixed-rate encodings of discrete memoryless
sources, it is not possible to achieve an error exponent with
fixed-delay better than

E
∗
s (R) = inf

α>1

1

α − 1
Eb(αR) (7)

Proof: For simplicity of exposition, we ignore integer
effects arising from the finite nature of d, R, etc. For every
α > 1 and delay d, consider a code running over its fixed-rate
noiseless channel till time αd

α−1
. By this time, the decoder will

have committed to estimates for the source symbols up to time
i = d

α−1
. The total number of bits used during this period is

αd
α−1

R.
Now consider a genie that gives the encoder access to the

first i source symbols at the beginning of time, rather than
forcing the encoder to get the source symbols one at a time.
Simultaneously, loosen the requirements on the decoder by
only demanding correct estimates for the first i source symbols
by the time α

α−1
d. In effect, the deadline for decoding the past

source symbols is extended to the deadline of the i-th symbol
itself.

Any lower-bound to the error probability of the new problem
is clearly also a bound for the original problem. Furthermore,
the new problem is just a fixed-length block-coding problem
requiring the encoding of i source symbols into α

α−1
dR bits.

The rate per symbol is

(
α

α − 1
dR)

1

i
= (

α

α − 1
dR)

α − 1

d
= αR

Theorem 2.15 in [5] tells us that such a code has a prob-
ability of error that is at least exponential in iEb(αR). Since
i = d

α−1
, this translates into an error exponent of at most

Eb(αR)
α−1

with parameter d.
Since this is true for all α > 1, we have a bound on the

reliability function Es(R) with fixed delay d:

Es(R) ≤ inf
α>1

1

α − 1
Eb(αR)

The right hand side is defined to be E∗
s (R). The minimizing α

tells how much of the past ( d
α−1

) is involved in the dominant
error event. �

This bound can be rewritten in terms of the ρ parameter to
get a form paralleling the symmetric channel case from [3].

Corollary 1:
Es(R) ≤ E0(ρ

∗) (8)

where ρ∗ satisfies R = E0(ρ∗)
ρ∗ .

Proof: For convenience, define

GR(ρ) = ρR − E0(ρ) (9)

and notice that GR(ρ∗) = 0. As shown in [7]:

dGR(ρ)

dρ
= R − H(pxρ),

d2GR(ρ)

dρ2
≤ 0

GR(0) = 0, GR(∞) < 0 (10)
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Fig. 2. GR(ρ)

GR(ρ) is a concave ∩ function as illustrated in Figure 2.
Consider ρR ≥ 0 for which R − H(pxρR

) = 0. By concavity,
we know that ρR < ρ∗. Write:

FR(α, ρ) =
1

α − 1
(ραR − E0(ρ))

= ρR +
GR(ρ)

α − 1

Then for any α ∈ (1,
log2 |X|

R
),

∂FR(α,ρ)
∂ρ

=
αR−H(pxρ )

α−1
,

∂2FR(α, ρ)

∂ρ2
≤ 0

FR(α, 0) = 0, FR(α,∞) < 0 (11)

So for any α ∈ (1,
log2 |X|

R
) let ρ(α) be so FR(α, ρ(α)) is

maximized. ρ(α) is thus the unique solution to:

αR − H(pxρ(α)
) = 0

Define α∗ =
H(pxρ∗ )

R
which satisfies

α
∗ =

H(pxρ∗ )

R
≤

H(px∞)

R
=

log2 |X |

R

α
∗ =

H(pxρ∗ )

R
≥

H(pxρR
)

R
= 1

Since α∗R − H(pxρ∗ ) = 0, ρ∗ maximizes FR(α∗, ρ) over all
ρ.

Using (5) and the above analysis:

Es(R) ≤ inf
α>1

1

α − 1
Eb(αR)

= inf
α>1

sup
ρ>0

1

α − 1
(ραR − E0(ρ))

= inf
α>1

sup
ρ>0

FR(α, ρ)

≤ sup
ρ>0

FR(α∗
, ρ)

= FR(α∗
, ρ

∗)

= ρ
∗
R (12)

This proves the desired upper bound. �

III. ACHIEVABLE EXPONENTS

To lower-bound the error exponent with delay, we give an
explicit fixed-rate coding scheme that is a minor variation of
the scheme analyzed in [8]. In [3], an achievable scheme was
given for channel coding with feedback when there was an
additional low-rate noise-free link that could carry flow-control
information. In source-coding, there is just a noise-free link
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Fig. 3. Sequential source coding using a variable-length code

and the flow control information is made implicit by using a
prefix-free code. Just as in [3], the queuing behavior is what
will determine the achieved delay error exponent. Rather than
repeating the from first principles’ derivation of [3], here we
give an alternate derivation by applying Cramáer’s theorem.

A. A sequential variable length source coding scheme
We are interested in the performance with asymptotically

large delays d. A block-length N is chosen that is much
smaller than the target end-to-end delays, while still being large
enough. For a discrete memoryless source and large block-
lengths N , the best possible variable-length code is given in
[5] and consists of two stages: first describing the type of the
block ~x using O(|X | log N) bits and then describing which
particular realization has occurred by using a variable H(~x)
bits. The overhead O(|X | log N) is asymptotically negligible
and the code is also universal in nature.

While the above code will also work, for simplicity of
analysis, we instead consider a Shannon-code built for a
particular tilted distribution for X .

Definition 3: The instantaneous code CN,λ for λ > −1 is a
mapping from XN to a variable number of binary bits.

CNλ
(xN

1 ) = b
l(xN

1 )
1

where l(xN
1 ) is the codeword length for source sequence xN

1 .
The first bit is always 1 and the rest of the codewords are the
Shannon codewords based on the λ tilted distribution of px

l(xN
1 ) = 1 + d− log2

px(x
N
1 )

1
1+λ

P
sN
1 ∈XN px(sN

1 )
1

1+λ

e

≤ 2 −

NX

i=1

log2

px(xi)
1

1+λ

P
s∈X px(s)

1
1+λ

(13)

From (13), the longest code length lλN is

l
λ
N ≤ 2 − N log2

p
1

1+λ
xminP

s∈X px(s)
1

1+λ

(14)

Where pxmin = minx∈X px(x). The constant 2 is insignificant
compared to N .

This variable-length code is turned into a fixed rate R code
as follows:
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Fig. 4. Number of bits in the buffer: ∆t

Definition 4: The sequential source coding scheme is il-
lustrated in Figure 3. At time kN , k = 1, 2, ... the en-
coder E uses the variable length code CNλ

to encode the
k’th source block ~xk = xkN

(k−1)N+1 into a binary sequence
b(k)1, b(k)2, ...b(k)l(~xk).

This codeword is pushed into a FIFO queue with infinite
buffer-size. The encoder drains a bit from the queue every 1

R

seconds. If the queue is empty, the encoder simply sends 0’s
to the decoder until there are new bits pushed in the queue.

The decoder knows the variable length code book and
the prefix-free nature1 of the Shannon code guarantees that
everything can be decoded correctly.

B. Sequential error events

The number of the bits ∆k in the encoder buffer at time kN ,
is a random walk process with negative drift and a reflecting
barrier. An example sample-path is illustrated in Figure 4. At
time (k + d)N , the decoder can make an error in estimating
~xk if and only if part of the variable length code for source
block ~xk is still in the encoder buffer.

Since the FIFO queue drains deterministically, it means that
when the k-th block’s codeword entered the queue, it was
already doomed to miss its deadline of d. Formally, for an error
to occur, the number of bits in the buffer ∆k ≥ bdNRc. Thus,
meeting a specific end-to-end latency constraint over a fixed-
rate noiseless link is like the buffer overflow events analyzed
in [8]. Define the random time tkN to be the last time before
time kN when the queue was empty. A missed-deadline will
occur only if

Pk

i=tk+1 l(~xi) > (d + k − tk)NR.
For arbitrary 1 ≤ t ≤ k − 1, define the error event

P
k,d
N (t) = P (

kX

i=t

l(~xi) > (d + k − t)NR)

Using the following lemma, we will derive a tight, in the
large deviation sense, upper bound on P

k,d
N (t).

Lemma 2: Cramáer theorem [9] Consider iid random vari-
ables Yi ∈ Σ = {σ1, ...σ|Σ|}, Yi ∼ py and f : Σ → R+,
Xi = f(Yi). Write Sn = 1

n

Pn

i=1 Xi. For any closed set
F ⊆ R+.

P (Sn ∈ F ) ≤ (n + 1)|Σ|2−n infx∈F I(x)

1The initial 1 is not really required since the decoder knows the rate
at which source-symbols are arriving at the encoder. Thus, it knows
when the queue is empty and does not need to even interpret the 0s it
receives.

Where the rate function is [9]:

I(x) = inf
ν:

P|Σ|
i=1 νif(σi)=x

D(ν‖py )

ν is a distribution defined on Σ. It is shown in [9] that:

I(x) = sup
ρ∈R

{ρx − log2(

|Σ|X

i=1

pyi2
ρf(σi))}

Write I(x, ρ) = ρx − log2(
P|Σ|

i=1 pyi2
ρf(σi)), then ∀x > 0,

∀ρ < 0, I(x, ρ) < 0. Obviously I(x, 0) = 0, which means
that the ρ to maximize I(x, ρ) is positive. This implies that
I(x) is monotonically increasing with x.

Using the definition of l(~x):

log2(
X

~x∈XN

px(~x)2λl(~x))}

≤ 2λ + N log2[(
X

x

px(x)1−
λ

1+λ )(
X

x

px(x)
1

1+λ )λ]

= 2λ + N(1 + λ) log2[
X

x

px(x)
1

1+λ ]

= 2λ + NE0(λ) (15)

The 2λ is insignificant and so as a simple corollary of the
Cramáer theorem, we have an upper bound on P

k,d
N (t).

P
k,d
N (t) = P (

kX

i=t+1

l(~xi) ≥ (d + k − t)NR)

= P (
1

k − t

kX

i=t+1

l(~xi) ≥
(d + k − t)NR

k − t
)

≤ (k − t)|X|N 2−EN (CNλ
,R,k−t,d)

Where:

EN (CNλ
, R, k − t, d)

≥ (k − t) sup
ρ∈R+

{ρ
(d + k − t)NR

k − t
− log2(

X

~x∈XN

px(~x)2ρl(~x))}

≥ (k − t)[λ
(d + k − t)NR

k − t
− log2(

X

~x∈XN

px(~x)2λl(~x))]

≥ (k − t)N(λ
(d + k − t)R

k − t
−

2λ

N
− E0(λ))

= dNλR + (k − t)N [GR(λ) −
2λ

N
] (16)

C. Lower bound on Es(R)

Theorem 2: For any ε > 0, by appropriate choice of N, λ, it
is possible to achieve an error exponent with delay of E0(ρ

∗)−
ε universally over large enough delays d for the ρ∗ satisfying
R = E0(ρ∗)

ρ∗ .
Proof: For the sequential source coding scheme of CN,λ,

the decoding error for the k’th source block at time (k + d)N
is P

k,d
N . tkN is the last time before k when the buffer is empty.

4



P
k,d
N =

k−1X

t=0

P (tk = t,

kX

i=t+1

l(~xi) ≥ (d + k − t)NR)

≤

k−1X

t=0

P (
kX

i=t+1

l(~xi) ≥ (d + k − t)NR)

≤

k−1X

t=0

(k − t + 1)|X|N 2−EN (CNλ
,R,k−t,d)

= 2−dNλR
k−1X

t=0

(k − t + 1)|X|N 2−(k−t)N [GR(λ)− λ
N

]

The above equality is true for all N, λ. Pick λ = ρ∗ − ε
R

.
From the discussion at the end of previous section, we know
that GR(λ) > 0. Choose N > λ

GR(λ)
. Then define

K(ε, R, N) =
∞X

i=0

(i + 1)|X|N 2−iN [GR(λ)− λ
N

]
< ∞

which is guaranteed to be finite since dying exponentials
dominate polynomials in sums. Thus:

P
k,d
N ≤ K(ε)2−dNλR = K(ε, R, N)2−dN(ρ∗R−ε)

where the constant K(ε, R) does not depend on the delay in
question. Since E0(ρ

∗) = ρ∗R and the encoder also is not
targeted to the delay dN , this scheme achieves the desired
exponent delay-universally. �

This theorem effectively proves that E∗
s (R) = E0(ρ

∗) is
asymptotically achievable. For every realization of ~x, the code-
lengths of this code differ from the optimal universal code by at
most O(log(N)), which is insignificant compared to N . Thus,
this delay-exponent can also be attained universally over both
discrete-memoryless sources and delays d.

IV. AN EXAMPLE OF SUBOPTIMAL CODING

Large N are not needed to do substantially better than block-
coding in the fixed delay context. The advantages of variable-
length encoding are so great that even very simple VL-codes
will outperform the best possible block-code. Consider the
following ternary example from [10].

Suppose px(a) = 0.9, px(b) = 0.05 and px(c) = 0.05.
Consider rate R = 3

2
. The best possible block coding er-

ror exponent is 1.474. Consider the following sub-optimal
variable length sequential coding scheme with N = 2. Map
(a, a) to 00, and other source symbol pairs are mapped to
1000, 1001, ....1111. Simple birth-death Markov chain analysis
reveals that this achieves an error exponent of 6.27 with fixed-
delay despite being suboptimal even as a VL-code!

V. CONCLUSIONS AND FUTURE WORK

The lossless source-coding version of the uncertainty fo-
cusing bound was developed and used to show that fixed-to-
variable length coding is optimal from an end-to-end latency
point of view, even when the deadlines are specified in terms
of a fixed latency. In a very precise sense, lossless source-
coding is like channel coding with feedback and using block-
codes results in a substantial loss in the error exponents. While

the parametric form of the focusing bound is the same in the
channel-coding and source-coding cases, the interpretation is
a bit different. In source-coding, the dominant error events
always involve only the past. As the rate varies, the only
change is how much of the past is involved. For channel
coding with feedback, both the past and the future are involved
since the past is now known while the future remains only
partially controllable. In channel-coding without feedback, only
the future is involved since the past is entirely unknown.

A similar story should hold for the error exponents of point-
to-point lossy source coding. Once again, the source-coding
context guarantees that only the past behavior will matter
in the dominant error event. The results here hint that VQ
followed by variable-rate entropy-coding may also be optimal
in the fixed-delay setting. A more interesting direction is in
extending our understanding of sequential distributed coding
for correlated sources (Slepian-Wolf source coding). So far,
we have only achievable exponents in general [7] and a good
upper bound only for symmetric cases with side-information
at the receiver [11]. For the case considered in [11], it turns
out that only the future behavior of the source matters. We
suspect that depending on the rate point and the nature of the
source, different combinations of the past and future will be
involved in the dominant error event and the optimal codes
will in general have a mixed nature involving both queuing
and binning.
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