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Abstract— We consider the lossless encoding of two
simultaneous sources. The encoder may choose to discrim-
inate against one source and hence the error exponents for
the two sources can be different. The goal of this paper is to
understand the region of achievable error-exponent pairs
for lossless source coding. In the fixed-block-length case,
the error exponent region is completely characterized and
is found to be relatively trivial. However, in the streaming
context, it is shown that there exists a non-trivial trade-off
between the two error exponents. Both an inner bound
and an outer bound are given for that case, but they do
not match. The outer bound comes from a multi-stream
version of the uncertainty-focusing bound.

I. I NTRODUCTION AND PROBLEM SETUP

Classical error exponents show the tradeoff between
the amount of information communicated and the reli-
ability of that communication [7]. In a multiuser set-
ting, a new tradeoff is possible since different users
can have differenterror exponentswhile sharing the
same underlying communicationresources. The vectors
of achievable error exponents are known as the error
exponent region. The error exponent region is studied for
Gaussian broadcast and multiple-access channels in [11]
where outer and inner bounds are derived.

In this paper, we simplify the problem further by
considering only the case when the two users can jointly
encode and jointly decode. In the context of stream-
ing1 messages, the feedback-channel-coding version of
even this simplified problem is very important since
[9] established an intimate link between multistream

C. Chang is with HP Labs, Palo Alto. This work was done
when the first author was doing his Phd study at UC Berkeley.
A. Sahai is with the Wireless Foundations Center, Department of
Electrical Engineering and Computer Science, University of Califor-
nia at Berkeley.Email: cchang@eecs.berkeley.edu,
sahai@eecs.berkeley.edu

1The streaming context is where the message is revealed to the
encoder gradually in real-timeand is composed of finely-grained
information that is incrementally useful in small chunks. The streaming
context is distinguished from the hard real-time (or zero-delay) context
in that the streaming context tolerates a substantial end-to-end delay
between when the chunk of information enters the encoder and when
it is needed at the destination. The streaming context is distinguished
from the usual block-coding context in that the streaming end-to-end
delay is considered to be much larger than the granularity of the
information itself. The usual block-coding context can be considered
one in which the tolerable end-to-end delay is equal in size to
one information chunk. See [8] for a detailed discussion about the
difference between the streaming and block contexts.

anytime-reliability regions and the stabilizability over
noisy channels of unstable linear systems with vector-
valued states. However, as was seen in [8], [2], the
case of source coding error exponents is often simpler
than that of channel coding. Therefore, the ideas are
developed here in the source coding context.

In Section I-A and Section I-B, we review the point
to point error exponent results for both the fixed-block-
length and streaming contexts. Then, in Section I-C,
we formally define the error-exponent region for the
two sources one encoder problem. The main results are
then stated in Section II with a numeric example in
Section III. Abbreviated proofs follow in Section IV.

A. Point-to-Point fixed length lossless source coding

Consider a discrete memoryless iid source with distri-
bution px defined on finite alphabetX . A rate-R fixed-
block-length source coding system forn source symbols
consists of an encoder-decoder pair(En,Dn), where2

En : Xn −→ {0, 1}nR, En(xn
1 ) = bnR

1

Dn : {0, 1}nR −→ Xn, Dn(bnR
1 ) = x̂n

1

The probability of block decoding error is defined as

Pr[xn
1 6= x̂n

1 ] = Pr[xn
1 6= Dn(En(xn

1 ))].

In his seminal paper [10], Shannon proved that arbi-
trarily small error probabilities are achievable by letting
n get big as long as the encoder rate is larger than the
entropy of the source,R > H(px). Furthermore, it turns
out that the error probability goes to zero exponentially
in n.

Theorem 1:(From [5]) For a discrete memoryless
sourcex ∼ px and encoder rateR < log |X |,
∀ε > 0, ∃Kε < ∞, s.t. ∀n ≥ 0, ∃ a block encoder-

decoder pairEn,Dn such that

Pr[xn
1 6= x̂n

1 ] ≤ Kε2−n(Ex
b(R)−ε). (1)

This result is asymptotically tight, in the sense that∀ε >
0, ∃Gε > 0, s.t. ∀n ≥ 0, for all block encoder-decoder
pairsEn,Dn

Pr[xn
1 6= x̂n

1 ] ≥ Gε2−n(Ex
b(R)+ε) (2)

2We assume thatnR is an integer. It should be clear that this
assumption is insignificant in the asymptotic regime wheren is big.
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whereEx
b (R) is defined as the block source coding error

exponent with the form:

Ex
b (R) = min

q:H(q)≥R
D(q‖px). (3)

The error exponentEx
b (R) is monotonically increasing

and convex [6] forR ∈ [H(px), log(|X |)] as illustrated
in Figure 1.

 H(x)  log(|X|)
0  

Rate R

E
x b(R

)

   
   

Fig. 1. Block coding error exponentEx
b (R)

B. Point-to-Point delay constrained streaming source
coding

In [1] and [8], delay constrained streaming source
coding and streaming channel coding are studied. The
delay-universal source coding model is illustrated in Fig-
ure 2. Rather than being known in advance, the source
symbols enter the encoder in a streaming fashion. We
assume that the discrete memoryless source generates
one source symbolxi per second from finite alphabet
X . Wherexi’s are i.i.d from a distributionpx . The ith

source symbolxi is not known at the encoder until time

i. This is the fundamental difference in the system model
from the block source coding setup in Section I-A.

Definition 1: A delay-universal sequential encoder-
decoder pairE ,D is a sequence of maps:{Ej}, j =
1, 2, ... and{Dj}, j = 1, 2, .... The outputs ofEj are the
outputs of the encoderE from time j − 1 to j,

Ej : X j → {0, 1}bjRc−b(j−1)Rc, Ej(x
j
1) = b

bjRc
b(j−1)Rc+1.

The outputs of the delay-universal decoderDj are the
decoding decisions of all the arrived source symbols at
the encoder by timej based on the received binary bits
up to timej

Dj : {0, 1}bjRc → X j , Dj(b
bjRc
1 ) = x̂j

1(j)

wherex̂j
1(j) is the estimation, at timej, of xj

1 and thus
the end-to-end delay of symbolxi at time j is j − i
seconds fori ≤ j. In a delay-universal scheme, the
decoder emits revised estimates for all source symbols
so far. The coding system is illustrated in Figure 2.

Definition 2: A delay-constrained error exponent
Ex

s (R) is said to be achievable if and only ifEx
s (R)

is the largest real number s.t. for allε > 0, there exists
Kε < ∞, ∃ delay-universal encoder/decoder pairsE , D,
s.t. ∀0 < i < j < ∞:

Pr[xi 6= x̂i(j)] ≤ Kε2−(j−i)(Ex
s(R)−ε)

This error exponent is derived in [1] and [3], [2].

Theorem 2:(From [1]) delay-constrained error expo-
nent for streaming source coding

Ex
s (R) = inf

α>0

1
α

Ex
b ((α + 1)R) (4)

2



x1 x2 x3 x4 x5 x6 ...

b1(x
2
1 ) b2(x

4
1 ) b3(x

6
1 ) ...Encoding

Source

? ? ? ? ? ?

x̂1
1 (1) x̂2

1 (2) x̂3
1 (3) x̂4

1 (4) x̂5
1 (5) x̂5

1 (6) ...

Rate limited channel

Decoding

? ? ?

Fig. 2. Time line of delay-universal source coding: rateR = 1
2

-- - Decoder(x , y)
x̂

ŷ
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whereEx
b (R) is the block-coding error exponent defined

in Theorem 1.

C. Two sources and one encoder problem and its error
exponent region

Instead of having one source, we study the problem
illustrated in Figure 3. There are two sources, both
of which enter the single encoder and must be recon-
structed by the single decoder. If the decoding error
is defined asPr[(x , y) 6= (x̂ , ŷ)], this problem was
discussed in the previous two sections. However, in this
paper, we study theerror vector— (Pr[x 6= x̂ ],Pr[y 6=
ŷ ]) and the asymptotic behaviors as the block-length or
delay gets long — error-exponent vectors for both the
block-coding and streaming contexts.

Definition 3: We denote by(E(R, x), E(R, y)) an
achievable error-exponent pair for rateR. All the achiev-
able pairs form an error-exponent region that is a
subset of the first quadrant:{(X, Y ) ∈ R+ × R+ :
X andY are achievable error exponents for sourcex
andy respectively}

In this setup, the two sources share the total rate of
R. The goal of this paper is to characterize the error-
exponent region for both block and streaming source
coding.

We say an error exponent pair(E1, E2) dominates
another pair(F1, F2) iff E1 ≥ F1 and E2 ≥ F2, this
gives a partial order onR×R. Obviously, we only need
to determine those exponent pairs that are not dominated
by any other exponent pairs.

II. M AIN RESULTS

A. Fixed-block-length coding

Theorem 3:Consider fixed-block-length source cod-
ing of iid data (xi, yi) ∼ pxy , and the error exponent
region in Definition 3, then the error exponent region is
an “L” shaped region:

E(R, x) ≤ Ex
b (R) and E(R, y) ≤ Ey

b (R)
E(R, x) ≤ Exy

b (R) or E(R, y) ≤ Exy
b (R).

B. Delay-universal streaming coding

We summarize the outer bound result in Theorem 4
and the inner bound result in Theorem 5.

Theorem 4:(Outer bound) Consider the delay con-
strained source coding of iid sources(xi, yi) ∼ pxy , and
the error exponent region in Definition 3, then the error
exponent region is asubsetof:

{(X, Y ) : X ≤ Ex
s (R) andY ≤ Ey

s (R)}
⋂

{
⋂

α∈[0,1],β>0

Ax
R(α, β)}

⋂
{

⋂

α∈[0,1],β>0

Ay
R(α, β)}

whereAx
R(α, β) andAy

R(α, β) are “L” shaped regions,
Ax

R(α, β) is

{(X, Y ) : X ≤ 1
β

F x
R(α, β) or Y ≤ 1

1 + β − α
F x

R(α, β)}

whereF x
R(α, β) =

min
θ∈[0,1]

αExy
b (

θ(1 + β)R
α

) + (1− α)Ex
b (

(1− θ)(1 + β)R
1− α

)

and similarlyAy
R(α, β) is

{(X, Y ) : X ≤ 1
1 + β − α

F y
R(α, β) or Y ≤ 1

β
F y

R(α, β)}

whereF y
R(α, β) =

min
θ∈[0,1]

αExy
b (

θ(1 + β)R
α

) + (1− α)Ey
b (

(1− θ)(1 + β)R
1− α

).

Theorem 5:(inner bound) Consider the delay con-
strained source coding of iid sources(xi, yi) ∼ pxy , and
the error exponent region in Definition 3, then the true
error exponent region is asupersetof:

{
⋃

α∈[0,1]

Bx
R(α)}

⋃
{

⋃

α∈[0,1]

By
R(α)}

where Bx
R(α) and By

R(α) are rectangular regions
Bx

R(α) =⋂
β>0,θ∈[0,1]

{(X,Y ) :

X ≤ α
β Exy

b ( θ(1+β)R
α ) + 1−α

β Ex
b ( (1−θ)(1+β)R

1−α ) and

Y ≤ 1
β Exy

b (θ(1+β)R)+ min{β, 1
α−1}

β Ex
b ( (1−θ)(1+β)R

min{β, 1
α−1} )}.
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Similarly for Bx
R(α).

These two bounds are illustrated in Figure 5.

III. N UMERICAL RESULTS

The source consists of two independent random vari-
ablesx andy with marginalspx = py = (0.02, 0.98).

At rate R = 0.5, the fixed-block-length error expo-
nents areEx

b (R) = Ey
b (R) = 0.1426 and Exy

b (R) =
0.0253. The error-exponent region is the shaded region
in Figure 4.A andB are the only two operating points
that is not dominated by other achievable error exponent
pairs.

At rate R = 0.5, the delay-constrained error expo-
nents areEx

s (R) = Ey
s (R) = 0.9019 and Exy

b (R) =
0.2255. The inner and outer bounds are plotted in
Figure 5.
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Fig. 5. Delay constrained streaming coding error exponent region

IV. PROOFS

In this section, we give the sketch of the proofs of
Theorems 3, 4 and 5.

A. Proof of Theorem 3

Converse: the proof of converse is trivial. By Theo-
rem 1, we know that

E(R, x) ≤ Ex
b (R) andE(R, y) ≤ Ey

b (R) (5)

and for any ε > 0, there exists aGε > 0, s.t. the
following is true for alln:

Pr[(xn
1 , yn

1 ) 6= (x̂n
1 , ŷn

1 )] ≥ Gε2−n(Exy
b (R)+ε). (6)

Then by noticing that eitherPr[xn
1 6= x̂n

1 ] or Pr[yn
1 6=

ŷn
1 ] has to be at least half ofPr[(xn

1 , yn
1 ) 6= (x̂n

1 , ŷn
1 )]:

Pr[xn
1 6= x̂n

1 ] ≥ Gε

2
2−n(Exy

b (R)+ε)

or Pr[yn
1 6= ŷn

1 ] ≥ Gε

2
2−n(Exy

b (R)+ε).

Taking logarithm at both sides, notice that this is true
for all ε andn, by letting ε → 0 andn →∞, we have

E(R, x) ≤ Exy
b (R) or E(R, x) ≤ Exy

b (R) (7)

Combining (5) and (7), we prove the converse.
Achievability: By symmetry and the partial order

established by dominance, we only need to show
that the following error-exponent pair is achievable:
(Ex

b (R), Exy
b (R)). By Theorem 1, for allε > 0, there

existsKε < ∞, s.t. for alln there exist a source coding
system(Ex

n ,Dx
n) s.t.

Pr[xn
1 6= Dx

n(Ex
n(xn

1 ))] ≤ Kε2−n(Ex
b(R)−ε)

and there exist a source coding system(Exy
n ,Dxy

n ) s.t.

Pr[(xn
1 , yn

1 ) 6= Dxy
n (Exy

n (xn
1 , yn

1 ))] ≤ Kε2−n(Exy
b (R)−ε).

The new “biased” coding system(Ex>y
n ,Dx>y

n ) is
as follows: for a source sequence pair(xn

1 , yn
1 ), if

(xn
1 , yn

1 ) = Dxy
n (Exy

n (xn
1 , yn

1 ))

Ex>y
n (xn

1 , yn
1 ) = 〈0, Exy

n (xn
1 , yn

1 )〉
otherwiseEx>y

n (xn
1 , yn

1 ) = 〈1, Ex
n(xn

1 )〉, where〈~a1,~a2〉
concatenate two binary strings~a1 and~a2. We denote by
~b the output of the encoder. The length of~b is nR + 1,
to simply the notations we denote by~b−1 the string of
~b with the first bit removed.

At the decoder side, if the first bit of the string~b is
0,

Dx>y
n (~b) = Dxy

n (~b−1) = Dxy
n (Exy

n (xn
1 , yn

1 )),

if the first bit is 1,

Dx>y
n (~b) = (Dx

n(~b−1), 0n
1 ) = (Dx

n(Ex
n(xn

1 )), 0n
1 ).

Obviously the new coding system(Ex>y
n ,Dx>y

n ) makes
an decoding error onx only if (Ex

n ,Dx
n) makes an de-

coding error onx, and(Ex>y
n ,Dx>y

n ) makes an decoding

4



error ony only if (Exy
n ,Dxy

n ) makes an decoding error
on (x, y). The new coding system uses one extra bit
that is insignificant asymptotically. This gives the desired
result that the error-exponent pair(Ex

b (R), Exy
b (R)) is

achievable.

B. Proof of Theorem 4

The proof is the multistream generalization of the
proof for the single source streaming source coding case
in [1], [3], [2]. The idea is to figure out thedominant
error event for a particular delay. By using the method of
types [4], we can give exponent of the dominant error
event in the block coding context. Then, we translate
these block coding errors to symbol errors and thus
derive a bound on the delay-constrained error exponent
for streaming source coding.

Now we can only give the sketch of the proof due
to the space limitations. As shown in Figure 6, if the
total empirical entropy of the random sequence3 of
(xn

1 , yαn
1 ) is higher than(1+β)nR, with high probability

the coding system makes a block decoding error at
time (1 + β)n for (xn

1 , yαn
1 ). We know that the true

distribution of the source ispxy , so the probability that
the source behaves atypically such that the empirical
entropy is higher than(1 + β)nR is as follows:

Pr[(xn
1 , yαn

1 ) 6= (x̂n
1 (1 + β)n, ŷαn

1 (1 + β)n)]
≥ 2−n(αD(qxy‖pxy )+(1−α)D(rx‖px )−ε), (8)

∀ αH(qxy ) + (1− α)H(rx) > (1 + β)nR.

The last line is equivalent to∃θ ∈ [0, 1], s.t.

αH(qxy ) > θ(1 + β)nR

and (1− α)H(rx) > (1− θ)(1 + β)nR.

Substitute the above two inequalities into (8) and
by the definition of the source coding error exponents
defined in Theorem 1, we have:

Pr[(xn
1 , yαn

1 ) 6= (x̂n
1 (1 + β)n, ŷαn

1 (1 + β)n)]

≥ 2
−n min

θ∈[0,1]
(αExy

b (
θ(1+β)R

α )+(1−α)Ex
b(

(1−θ)(1+β)R
1−α )−ε)

. (9)

Now assume the delay-constrained error exponent pair
is (X, Y ), then the decoding error at time(1 + β)n can

3We denote the entropy of the type of a sequence byempirical
entropy. We ignore the integer effects sincen can be arbitrarily large.

-
0 αn n (1 + β)n

Time Line

x

y

Decision

Fig. 6. Bounding theatypicality for the outer bound

be bounded as follows:

Pr[(xn
1 , yαn

1 ) 6= (x̂n
1 (1 + β)n, ŷαn

1 (1 + β)n)]

≤
n∑

i=1

Pr[xi 6= x̂i ((1 + β)n)]

+
αn∑

i=1

Pr[yi 6= ŷi ((1 + β)n)]

≤ Kε

(
2−nβ(X−ε) + 2−n(1+β−α)(Y−ε)

)
.

Combining the above inequality with (9) and letting
(n, ε) go to (∞, 0), we get the desired result:

X ≤ 1
β

F x
R(α, β) or Y ≤ 1

1 + β − α
F x

R(α, β) (10)

whereF x
R(α, β) is defined in Theorem 4. We have the

obvious bounds that

E(R, x) ≤ Ex
s (R) andE(R, y) ≤ Ey

s (R). (11)

Combining (11) and (10) and noticing the symmetry, we
prove Theorem 4. ¤

C. Proof of Theorem 5

Due to the space limitations, we can only give the
sketch of the coding scheme here and must omit the
proof entirely. We describe the scheme that treatsX
with higher priority, with a parameterα ∈ [0, 1]. The
case of givingY priority is identical.

The coding system is illustrated in Figure 7. The
encoder first chops the sequencesx1, .... andy1, .... into
blocks of sizeN , where N is sufficiently big. Then
the encoder converts each block~xi and ~yi of length
N into prefix-free codes with lengthN(H(~xi) + εN )
and N(H(~yi|~xi) + εN ) respectively , whereH(~xi) is
the empirical entropy of block~xi and H(~yi|~xi) is the
empirical conditional entropy,εN goes to 0 asN goes
to infinity.

The FIFO (α) encoder buffer hastwo buffers, one for
x, one for y. The buffer sends onecode wordfor an
x block ~xi or a y block ~yj based on the priority order
described as follows.~xi has higher priority than any~xj ,
j > i, in that the individual buffers are FIFO. Suppose

5
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at timet, ~xi and~yj are the topmost blocks for sourcex
and sourcey respectively. Denote byl(t) the last time
that both of the buffers were empty. Then~xi has higher
priority if α(i − l(t)

N ) ≥ (j − l(t)
N ), otherwise~yj has

higher priority. Notice thatα < 1, so i ≥ j.
The decoding error is then converted into a buffer

overflow problem, and then the inner bound in Theo-
rem 5 is derived following the analysis in [1], [2].

V. STREAMING ERROR EXPONENT TRADEOFF FOR

BINARY ERASURE CHANNEL (BEC) CODING

Now consider a streaming channel coding problem
shown in Figure 8 The two sources generate a bit
stream according to Bernoulli0.5 every 1

R1
and 1

R2
seconds respectively. Then the two sources are fed into a
feedback channel coding system where the channel is a
binary erasure channel with erasure rateδ. Theanytime
channel coding problem for a single data streaming is
studied in [8]. Similar to the source coding case, the
delay constrained error exponent tells how fast the bit
error converges to zero exponentially withdelay.

Pr(ai 6= âi(j)) ' 2−(j−i)E(R)

In [8], a “focusing bound” is derived for BEC’s which
says:

E1(R) = inf
β>0

1 + β

β
D(1− R

1 + β
‖δ) (12)

The achievability of this bound is proved by a simple
send until through coding system. This can be done
because the channel is a binary erasure channel with
feedback, in a way, the encoder and the decoder are
synchronized at every step.

Similar to the source coding problem in Definition 3,
the anytime reliability region is defined as follows.

Definition 4: We denote by(Ea(R1, δ), Eb(R2, δ))
an achievable error-exponent pair for feedback BEC with
erasure rateδ and two data streams that operate at rate
R1 and R2 respectively. All the achievable pairs form
an error-exponent region that is a subset of the first

quadrant:{(Ea, Eb) ∈ R+ × R+ : Ea and Eb are
achievable anytime reliability functions for two streams
with rateR1 andR2 respectively}

First we describe an outer and an inner bound on the
anytime reliability region.

A. Error exponent region for BEC with feedback

We summarize the outer bound result in Theorem 6
and the inner bound result in Theorem 7.

Theorem 6:(Outer bound) Consider the anytime
channel coding for BEC (δ) for two source with rateR1

and R2 respectively, and the error exponent region in
Definition 4, then the error exponent region is asubset
of:

{(A,B) : A ≤ E1(R1) andB ≤ E1(R2)}
⋂

{
⋂

α∈[0,1],β>0

RA(α, β)}
⋂
{

⋂

α∈[0,1],β>0

RB(α, β)}

whereRA(α, β) and RB(α, β) are “L” shaped re-
gions,RA(α, β) is

{(A,B) : A ≤ 1 + β

β
G(α, β) or B ≤ 1 + β

1 + β − α
G(α, β)}

where

G(α, β) = D(1− R1 + αR2

1 + β
‖δ),

and similarlyRB(α, β) is

{(A,B) : A ≤ 1 + β

1 + β − α
G′(α, β) or B ≤ 1 + β

β
G′(α, β)}

where

G′(α, β) = D(1− R2 + αR1

1 + β
‖δ).

Theorem 7:(inner bound) Consider the anytime
channel coding for BEC (δ) for two source with rate
R1 andR2 respectively, and the error exponent region in
Definition 4, then the error exponent region is asuperset
of:

{
⋃

α∈[0,1]

SA(α)}
⋃
{

⋃

α∈[0,1]

SB(α)}

whereSA(α) andSB(α) are rectangular regions:

SA(α) =


 ⋂

β>0

R̄(α, β)


 ⋂

(13)

{(A,B) : B < inf
α−1<β<0

1 + β

1 + β − α
D(1−R1 − αR2

1 + β
‖δ)}

6
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whereR̄(α, β) , {(A,B) : A ≤ 1 + β

β
G(α, β) and

B ≤ 1 + β

1 + β − α
G(α, β)}.

Similarly for SB(α). The second line in (13) comes
from the scenario where a decoding error might be made
at time (1 + β)n for bαn, whereα − 1 < β < 0. A
proper bounding of the error probability gives the extra
term in the second line of (13). This gives the monotonic
behavior of the inner bound boundary which is lacking
in previous studies.

Remark: Note that the corner point of̄R(α, β) for
the inner bound and the corner point ofR(α, β) are
the same. This is quite interesting because the BEC with
feedback problem is simpler than the two stream source
coding problem, because all the randomness comes from
the single source–the channel. And it is also easy to see
why the inner bound is smaller than the outer bound.
The outer bound is the intersections of the “L” shaped
regions with corners parameterized by(α, β), while the
inner bound is a subset of the union (parameterized by
α)of the intersection of rectangles (parameterized byβ)
with the same corners parameterized by(α, β).

B. Proofs

1) Outer bound: Now we consider the most likely
error event for those bits considered in Figure 9.

Pr((anR1
1 , bαnR2

1 ) 6= (ânR1
1 ((1 + β)n), b̂αnR2

1 (1 + β)n))

An error occurs if the number of bits through the BEC
with feedback from time1 to (1 + β)n is less than the
total number of bits generated by the two sources. Or
equivalently, the bits erased by the channel is more than

(1 + β)n− nR1 − αnR2

The empirical erasure rate is1 − R1+αR2
1+β . The proba-

bility of that is lower bounded by

2−[(1+β)n](D(1−R1+αR2
1+β ‖δ)−εn) (14)

where εn converges to0 with n. Note that we are
concerned the union bound on the errors for both the
data streams. So similar to the streaming source coding
case we have:

Pr((anR1
1 , bαnR2

1 ) 6= (ânR1
1 ((1 + β)n), b̂αnR2

1 (1 + β)n))

> 2−[(1+β)n](D(1−R1+αR2
1+β ‖δ)−εn). (15)

This means that at time(1 + β)n, at least one bit of
anR1
1 or one bit of bαnR2

1 is not decoded correctly.
The minimumeffective delay isβn and (β + 1 − α)n
respectively. This implies that either

Ea ≤ 1 + β

β
D(1− R1 + αR2

1 + β
‖δ) (16)

or

Eb ≤ 1 + β

1 + β − α
D(1− R1 + αR2

1 + β
‖δ). (17)

Sinceβ and α are arbitrary, and by noticing the sym-
metry, we have the desired result in Theorem 6. ¥
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Fig. 9. Bounding theatypicality for the two stream BEC with
feedback

2) Inner boundd:The encoder is similar to the single
stream anytime channel coding for BEC’s. The encoder
simply sends the bit with the highest priority remained
in the buffer. If the bit gets erased by the channel, the
encoder resends it until the decoder receives the bit. If
the buffer is empty the encoder sends a garbage bit to the
channel. The encoder and the decoder are synchronized
in the sense that the decoder is aware of when the
encoder buffer is empty thus simply discards the garbage
bit when the buffer is empty.

The only remaining issue is to give the priorities to
the bits in the encoder buffer. Similar to the two stream
source coding problem, we implement the FIFO(α)
protocol. Within the same stream, older bits always
have higher priority. Now we give the priority across
the streams. Without loss of generality we assume that
the first stream with rateR1 has higher priority, this is
parameterized by anα ∈ [0, 1]. Now suppose the last
time when the buffer is empty is at time0 (if not, we
can shift the time-line to make it so). Then thenR1’th
bit from stream1 which is generated at timen: anR1

has the same priority as theαnR2’th bit from stream2
which is generated at timeαn: bnR2 .

With the in-stream and cross-stream priorities defined,
we can bound the dominant error event for any bit.
Again, without loss of generality we assume that the last
time the buffer is empty is at time0. As illustrated in
Figure 9, a decoding error probability foranR1 andbnR2

are the same at time(1 + β)n for β > 0, because they
have the same priority. Exactly the same as the outer
bound analysis, an error occurs if and only if there are
too many erasures between time0 and time(1 + β)n.
Hence we have

Pr(anR1 6= ânR1((1 + β)n))

< 2−[(1+β)n](D(1−R1+αR2
1+β ‖δ)+εn) (18)

and

Pr(bαnR2 6= b̂αnR2((1 + β)n))

< 2−[(1+β)n](D(1−R1+αR2
1+β ‖δ)+εn) (19)

-
0 αn (1 + β)n n

Time Line

R1

R2

Decision

Fig. 10. Bounding theatypicality for the two stream BEC with
feedback, caseβ < 0

The effective delay isβn and (β + 1 − α)n respec-
tively. Union bounding all the error probabilities for
β > 0, we have

Ea ≥ inf
β>0

1 + β

β
D(1− R1 + αR2

1 + β
‖δ) (20)

and

Eb ≥ inf
β>0

1 + β

1 + β − α
D(1− R1 + αR2

1 + β
‖δ). (21)

Now let us consider the scenario when the decoder
decodesbαn before timen, this is illustrated in Fig-
ure 10. Following the same argument as before, we can
easily get

Pr(bαnR2 6= b̂αnR2((1 + β)n))

< 2−[(1+β)n]
(

D(1−R1(1+β)+αR2
1+β ‖δ)+εn

)
(22)

The effective delay is still(1 − α + β)n for stream 2,
thus we have4

Eb > inf
α−1<β<0

1 + β

1 + β − α
D(1−R1 − αR2

1 + β
‖δ)

= inf
α<λ<1

1
1− λ

D(1−R1 − λR2‖δ).

Note that the above object function does not haveα in
it. So there existsλ∗ ∈ [0, 1] to minimize it, hence if
α < λ∗, the above bound does not change withα. This
is clearly illustrated in Figure 11.

The above three inequalities onEa andEb are true for
a fixedα ∈ [0, 1] which is predetermined by the coding
system. Now the union of those rectangle regions and
symmetry give the desired result. ¥

These two bounds are illustrated in Figure 11.

4On the second line we replaceα
1+β

with λ which is within [α, 1].
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