Trade-off of lossless source coding error exponents

Cheng Chang and Anant Sahai

Abstract—We consider the lossless encoding of two anytime-reliability regions and the stabilizability over
simultaneous sources. The encoder may choose to discrim- noisy channels of unstable linear systems with vector-
inate against one source and hence the error exponents for valued states. However, as was seen in [8], [2], the

the two sources can be different. The goal of this paper is to f di ts is oft imol
understand the region of achievable error-exponent pairs case Ol source coding error exponents Is often simpler

for lossless source coding. In the fixed-block-length case, than that of channel coding. Therefore, the ideas are
the error exponent region is completely characterized and developed here in the source coding context.

is found to be relatively trivial. However, in the streaming In Section I-A and Section I-B, we review the point
context, it is shown that there exists a non-trivial trade-off to point error exponent results for both the fixed-block-

between the two error exponents. Both an inner bound lenath and streaming contexts. Then. in Section I-C
and an outer bound are given for that case, but they do 9 g ’ ’ !

not match. The outer bound comes from a multi-stream We formally define the error-exponent region for the
version of the uncertainty-focusing bound. two sources one encoder problem. The main results are
then stated in Section Il with a numeric example in
. INTRODUCTION AND PROBLEM SETUP Section 1ll. Abbreviated proofs follow in Section IV.
Classical error exponents show the tradeoff betweeR Point-to-Point fixed | h loss| di
the amount of information communicated and the reli-™ oint-to-Point fixed length lossless source coding
ability of that communication [7]. In a multiuser set- Consider a discrete memoryless iid source with distri-

ting, a new tradeoff is possible since different user§utionp, defined on finite alphabet. A rate-R fixed-
can have differenierror exponentswhile sharing the block-length source coding system foisource symbols
same underlying communicatioasources The vectors COnsists of an encoder-decoder péf,, D,,), wheré

of achievable error exponents are known as the error Ep X" — {0,1}"F, Ep(al) = PP
exponent region. The error exponent region is studied for D, : {0,1}"F — xm D, (b"R) = 77
Gaussian broadcast and multiple-access channels in [11] L ’ AL
where outer and inner bounds are derived. The probability of block decoding error is defined as

In this paper, we simplify the problem further b <

s pap Pify the P Y Pl £ R = il £ D& ()]

considering only the case when the two users can jointly _ _ _

encode and jointly decode. In the context of stream- In his seminal paper [10], Shannon proved that arbi-

ing! messages, the feedback-channel-coding version #grily small error probabilities are achievable by letting

even this simplified problem is very important sincen get big as long as the encoder rate is larger than the

[9] established an intimate link between multistreanentropy of the sourceR > H (p). Furthermore, it turns

out that the error probability goes to zero exponentially
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1The streaming context i_s wherg the message is' reveale_d to thpacoder paifn,,Dn such that

encoder gradually in real-timend is composed of finely-grained

information that is incrementally useful in small chunks. The streaming Pr[x #X"] < KGQ*"(Eb(R)*E)_ (1)

context is distinguished from the hard real-time (or zero-delay) context

in that the streaming context tolerates a substantial end-to-end delgthis result is asymptotically tight, in the sense thiat>

between when the chunk of information enters the encoder and wh
it is needed at the destination. The streaming context is distinguishgg _HGe >0, s.t.¥n > 0, for all block encoder-decoder

from the usual block-coding context in that the streaming end-to-enpalrs En, Dy,

delay is considered to be much larger than the granularity of the n  ~n —n(EX(R)+e)

information itself. The usual block-coding context can be considered PY[Xl 75 Xl} > G2 b (2)
one in which the tolerable end-to-end delay is equal in size to

one information chunk. See [8] for a detailed discussion about the 2We assume thakR is an integer. It should be clear that this
difference between the streaming and block contexts. assumption is insignificant in the asymptotic regime wheris big.
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whereE}(R) is defined as the block source coding erroti. This is the fundamental difference in the system model

exponent with the form: from the block source coding setup in Section I-A.
EX(R)= min D(q||px)- (3) Definition 1: A delay-universal sequential encoder-
¢:H(q)>R decoder pairf, D is a sequence of maps¢;},j =

The error exponents; (R) is monotonically increasing | 9 gng {D;},j =1,2,.... The outputs of; are the
and convex [6] forR € [H(px),log(|X|)] as illustrated outputs of the encodef from time j — 1 to 7,
in Figure 1. _ . . - ;
£+ X7 — {0, JURIZLO=DR] gy = pd ™
The outputs of the delay-universal decodrare the
decoding decisions of all the arrived source symbols at
the encoder by timg based on the received binary bits

R)

e up to timej
, , RlIx i)
D; {0,137 — X7, D; (0™ = 2] (j)
0 . .
Rate R ool wherez1 (j) is the estimation, at timg, of x{ and thus

the end-to-end delay of symbal at time j is j — ¢

seconds fori < j. In a delay-universal scheme, the

decoder emits revised estimates for all source symbols

so far. The coding system is illustrated in Figure 2.

Definition 2: A delay-constrained error exponent

X(R) is said to be achievable if and only EX(R)

is the largest real number s.t. for alt> 0, there exists
In [1] and [8], delay constrained streaming sourcek, < oo, 3 delay-universal encoder/decoder pafitsD,

coding and streaming channel coding are studied. Thet. V0 < i < j < oo:

delay-universal source coding model is illustrated in Fig- Prlx; £ %i(j)] < K2~ 0= (R=0)

ure 2. Rather than being knpwn in adva_nce, the_ sou\r/@%is error exponent is derived in [1] and [3], [2].

symbols enter the encoder in a streaming fashion. We

assume that the discrete memoryless source generate§heorem 2:(From [1]) delay-constrained error expo-

one source symbak; per second from finite alphabet nent for streaming source coding

X. Wherex;'s are i.i.d from a distributiorp,. The ‘" 1

source symbok; is not known at the encoder until time E{(R) = ;I;fo gElf((O‘ +1)R) (4)

Fig. 1. Block coding error exponeri; (R)

B. Point-to-Point delay constrained streaming source,
coding



II. MAIN RESULTS

Source x1 X X x4 x5 X6 o A. Fixed-block-length coding
l i i l l l Theorem 3:Consider fixed-block-length source cod-
Encoding by (x2) b (x3) by(x%) .. Ing of iid data (x;,y;) ~ px, and the error exponent

region in Definition 3, then the error exponent region is

an “L” shaped region:
Rate limited channel

E(R,x) < Ej(R) and E(R,y)< E}(R)
Decoding 1) %22 BB) %@ 2G) %) .. E(R,x) < EY(R) or E(R,y) < E”(R).
Fig. 2. Time line of delay-universal source coding: réte= 1 B. Delay-universal streaming coding

We summarize the outer bound result in Theorem 4
and the inner bound result in Theorem 5.

Rate R X Theorem 4:(Outer bound) Consider the delay con-

(X,Y)ﬂ Encoder DecoderF, ; strained source coding of iid sources, y;) ~ p,,, and

the error exponent region in Definition 3, then the error
Fig. 3. Two sources one encoder source coding exponent region is aubsetof:

{(X,Y): X <EX(R) andY < EY(R)}()

whereEX(R) is the block-coding error exponent defined { ﬂ AR (o }ﬂ{ ﬂ A% (o, 8)}
in Theorem 1. a€l0,1],8>0 a€l0,1],8>0

where A% («, ) and A% («, 3) are “L” shaped regions,
C. Two sources and one encoder problem and its errod%(«, 8) is

exponent region 1 1
{(X,Y): X < ZFg(a,p) ory < Fp(a,8)}
Instead of having one source, we study the problem p 1+f~a
illustrated in Figure 3. There are two sources, botlwhere Fi(a, 5) =
of which enter the single encoder and must be recon-
. " +B)R L 1=0(1+p)R
structed by the single decoder. If the decoding erronghl)nl] aE?( ( aﬁ) )+ (1 fa)Eb(#)

is defined asPr[(x,y) # (X,¥)], this problem was
discussed in the previous two sections. However, in thignd similarly A% (c, 3) is
paper, we study therror vecto— (Pr[x # X], Pr[y # 1 1
y]) and the asymptotic behaviors as the block-length (X, Y): X < mFﬁ,(a,ﬁ) ory < EF}%(aaﬂ)}
delay gets long — error-exponent vectors for both the Y
block-coding and streaming contexts. where Fip(a, ) =
Definition 3: We denote by(E(R,x), E(R,y)) an . w 01+ B)R vy, (1=0)(1+B3)R

achievable error-exponent pair(fog rd%e)AII t(he a():)hiev- ere%fll] By @ )+ 1 —a)B( 11—« )
able pairs form an error-exponent region that is a
subset of the first quadran{(X,Y) € Rt x RT :
X andY are achievable error exponents for souice
andy respectively}

Theorem 5:(inner bound) Consider the delay con-
strained source coding of iid sources, y;) ~ ps,, and
the error exponent region in Definition 3, then the true
error exponent region is supersetof:

In this setup, the two sources share the total rate of B (o BY(a
R. The goal of this paper is to characterize the error- { U il )}U{ U w(@)}

agcl0,1 acl0,1
exponent region for both block and streaming source 0.1 0.1 )
coding. where B%(«) and BY(a) are rectangular regions
We say an error exponent p&if;, F>) dominates Bi(a) = XV -
another pair(Fy, F) iff By > Fy and Ey > Fs, this 6>ODE[O 1]{( Y):
gives a partial order o x R. Obviously, we only need aExy(9(1+B)R) Loa (1—0)(1+B)R) and
to determine those exponent pairs that are not domlnated - f’ . @ mﬁin{ﬂ”i_l} 1*"‘(179)(1%)1?
by any other exponent pairs. Y < SEY(0(1+8)R)+ =2 Ej( w5, 21y )}



A. Proof of Theorem 3

v A= (EY(R), E}(R)) o
Converse:the proof of converse is trivial. By Theo-
rem 1, we know that
E(R,x) < Ef(R) andE(R,y) < E}(R) Q)
C = (EY(R), EY(R)) and for anye > 0, there exists a&. > 0, s.t. the
B = (EX(R), EY (R)) following is true for alln:
- Pr{(xq", ") # (3,91)] = G2 " 09 (p)

Fig. 4. Error exponent region for block source coding, the thredlhen by noticing that eithePr[x* # XxJ'] or Pr[y]* #

corner points are marked a$,B and C, where A and B are the on n . n on onyl-
dominant operation points. y1'] has to be at least half dfr[(x], yi*) # (X7, y7")):

Pr[x]' # X1 > —<o B (R)+e)

Similarly for B («). or Prlyn £ g1 > Ceg-n(BY (R)+e)
Taking logarithm at both sides, notice that this is true
I1l. NUMERICAL RESULTS for all e andn, by lettinge — 0 andn — oo, we have

The source cpnsists Qf two independent random vari- E(R,x) < EY(R) or E(R,x) < E¥(R) @
ablesx andy with marginalsp, = p, = (0.02,0.98). o

At rate R = 0.5, the fixed-block-length error expo- Combining (5) and (7), we prove the converse.
nents areE;(R) = EJ(R) = 0.1426 and EY (R) = Achievability: By symmetry and the partial order
0.0253. The error-exponent region is the shaded regiofstablished by dominance, we only need to show
in Figure 4.A andB are the Only two operating points that the f)(()llOWIﬂg error-exponent palr is achievable:
that is not dominated by other achievable error exponef; (R), Ey” (R)). By Theorem 1, for alle > 0, there

Ge
2

Ge
2

These two bounds are illustrated in Figure 5.

pairs. exists K. < oo, s.t. for alln there exist a source coding
At rate R = 0.5, the delay-constrained error expo-System(&;, Dy) s.t.

nents areEg(R) = EY(R) = 0.9019 and E;”(R) = _ Pr[x]' # DT (E7(x))] < K2 "(Es(R)=¢)

0.2255. The inner and outer bounds are plotted in

Figure 5. and there exist a source coding systéfjv, DXV) s.t.

Pr{(x', y') # DEY(EX(x, )] < K27 (=0,

The new “biased” coding syster(€Z~>¥, DZ>Y) is
BRI as follows: for a source sequence pdit},y?), if
(@1, y7) = Dp¥(ExY (2T, yT))
- “trivial" outer bound
e £V @t of) = (0.E3(at07)
osl otherwise& = (a1, y1') = (1, &5 (1)), where (dy, dy)
: concatenate two binary strings anda,. We denote by
b the output of the encoder. The lengthiofs nRR + 1,
YR LTI TN PTPOPPPIOS to simply the notations we denote lby; the string of
; b with the first bit removed. .
At the decoder side, if the first bit of the strirbgis
% EYR) 05 E:kR) 1 0,

Di>Y(b) = DY (b-1) = Di¥(E3¥ (a1, 7)),
Fig. 5. Delay constrained streaming coding error exponent regioH.f the first bit is 1,
D;>Y(8) = (D5(b-1),07) = (D5 (B3 (1)), 07).

IV. PROOFS Obviously the new coding syste(@?>¥, D*>¥) makes
In this section, we give the sketch of the proofs ofan decoding error or only if (£¥,DZ) makes an de-
Theorems 3, 4 and 5. coding error one, and(EZ~Y, DZ>Y) makes an decoding



error ony only if (£2Y, Dr¥) makes an decoding error X
on (z,y). The new coding system uses one extra bif
that is insignificant asymptotically. This gives the desired o
result that the error-exponent pdif} (R), E,” (R)) is Decision

achievable. 0 an n 1+ B)n

Time Line

B. Proof of Theorem 4 Fig. 6. Bounding theatypicality for the outer bound

The proof is the multistream generalization of the
proof for the single source streaming source coding case .
in [1], [3], [2]. The idea is to figure out thelominant Be bounded as follows:

error event for a particular delay. By using the method of Pr{(xt", yi'") # (X{'(1 4+ B)n, yi™ (1 + B)n)]

types [4], we can give exponent of the dominant error n

event in the block coding context. Then, we translate < Y Prlx; # % ((1+ f)n)]
these block coding errors to symbol errors and thus i=1

derive a bound on the delay-constrained error exponent — N

for streaming source coding. + Z; Prly; # ¥ (1 + B)n)]

Now we can only give the sketch of the proof due CB(x e (Y
to the space limitations. As shown in Figure 6, if the = e (2 P9 4 gmnlitfmall ')) :
total empirical entropy of the random sequericef Combining the above inequality with (9) and letting

(27, y§™) is higher thar(148)n R, with high probability o to 0). we get the desired result:
the coding system makes a block decoding error eg'?’e) g (00,0), g '

time (1 + @)n for (z7,y7™). We know that the true  x < lFﬁ(a,ﬂ) ory < 1 Fi(a,8) (10)

distribution of the source ig,,, so the probability that B 1+0-«a
the source behaves atypically such that the empiricglhere F(«, 3) is defined in Theorem 4. We have the
entropy is higher thaifl + 5)nR is as follows: obvious bounds that

Prl(xf, y™) # (RE(1+ 0, 581 + 5)n) P < By and B y) < B0, ()

> 97 UaD(gyllpy)+(1=a) D(rullpx) =€) (8) Combining (11) and (10) and noticing the symmetry, we
Y aH(gy) + (1 —a)H(re) > (1+ B)nR. prove Theorem 4. O
C. Proof of Theorem 5
The last line is equivalent tdf € [0,1], s.t. Due to the space limitations, we can only give the
sketch of the coding scheme here and must omit the
aH(gy) > 60(1+ 5)nR proof entirely. We describe the scheme that trefts
and (1—a)H(ry) > (1—6)(1+ B)nR. with higher priority, with a parametes € [0,1]. The

case of givingY” priority is identical.
Substitute the above two inequalities into (8) and The co.dmg system is illustrated in Figure 7 The
- . encoder first chops the sequenggs.... andy;, .... into
by the definition of the source coding error exponent'ﬁlockS of sizeN, where N is sufficiently big. Then

defined in Theorem 1, we have: the encoder converts each blogk and y; of length
N into prefix-free codes with lengttV(H (X;) + en)

Pr{(x’, yi™) # O (1 + B)n, yi™ (1 + B)n)] and N (H (y;|%;) + en) respectively , wherel (%;) is

S 2*”633{11](aEiy(WH(l*a)Ei(%)*ﬁ) ) the empirical entropy of block; and H(y;|%;) is the

- ’ empirical conditional entropyy goes to 0 asV goes
to infinity.

Now assume the delay-constrained error exponent pair The FIFO ) encoder buffer haswvo buffers, one for
is (X,Y), then the decoding error at timie + 3)n can ;. one fory. The buffer sends oneode wordfor an
x block X; or ay block y; based on the priority order

3We denote the entropy of the type of a sequenceehpirical desc”bed as fO||0}NS>{i _has hlgher priority than any]”
entropy We ignore the integer effects sineecan be arbitrarily large. 7 > 4, in that the individual buffers are FIFO. Suppose



Streaming data
R1, Xo, X3 .#{Empirical entropy coder
qguadrant: {(E,, E,) € Rt x Rt : E, and E, are

1. 72, 73 [Empirical cond-entropy code achievable anytime reliability functions for two streams
with rate R; and R, respectively}

l First we describe an outer and an inner bound on the
FIFO anytime reliability region.
@ Rate R bit stream y y reg
Encoder Buff . .
neoder Euner A. Error exponent region for BEC with feedback

We summarize the outer bound result in Theorem 6

Fig. 7. Two sources one encoder source coding and the inner bound result in Theorem 7

Theorem 6:(Outer bound) Consider the anytime
at timet, X; andy; are the topmost blocks for souree  channel coding for BECS) for two source with rateR;
and sourcey respectively. Denote by(?) the last time ang R, respectively, and the error exponent region in
that both of the buffers were empty. Thenhas higher pefinition 4, then the error exponent region isabset
priority if a(i — “2) > (j — U otherwisey; has of-
higher priority. Notice thatv < 1, soi > j.

The decoding error is then converted into a buffer  {(4,B): A< Ei(Ry) andB < E1(Rz)}ﬂ
overflow problem, and then the inner bound in Theo-
rem 5 is derived following the analysis in [1], [2]. { N Ra@BIH (1 Roled)
«€[0,1],8>0 «€[0,1],8>0

V. STREAMING ERROR EXPONENT TRADEOFF FOR where R4 (a, 3) and R(a, 3) are “L" shaped re-
BINARY ERASURE CHANNEL (BEC) CODING . .
gions, R 4(«, B) is

Now consider a streaming channel coding problem

shown in Figure 8 The two sources generate a bi{[(A,B) CA< ﬂg(a’g) orB< ig(a’ﬂ)}
stream according to Bernoulli.5 every - and - s 1+6~a
seconds respectively. Then the two sources are fed intoyhere
feedback channel coding system where the channel is a Ry + aRy
binary erasure channel with erasure ré&tdhe anytime G(a,3) = D(1 - WH&
channel coding problem for a single data streaming is
studied in [8]. Similar to the source coding case, thand similarlyR g(«a, 3) is
delay constrained error exponent tells how fast the bit 148 148
error converges to zero exponentially witlelay: {(A,B): A< WG/(Q’ B) or B < TG/(Q, 2)}
—
Pr(ai 7é al(])) = 2_(j_i)E(R) where
In [8], a “focusing bound” is derived for BEC's which , B Ry + aRy
Says: G(avﬁ)—D(li 1+ﬁ ||5)
Ei(R) = int 1+[7’D(1 R 15) (12) Theorem 7:(inner bound) Consider the anytime

p>0 f3 144 channel coding for BEC4j for two source with rate

The achievability of this bound is proved by a simplefi1 @nd R; respectively, and the error exponent region in
send until through coding system. This can be donPefinition 4, then the error exponent region isuperset
because the channel is a binary erasure channel with
feedback, in a way, the encoder and the decoder are
synchronized at every step. { U SA(Q)}U{ U Spl@)}

Similar to the source coding problem in Definition 3,
the anytime reliability region is defined as follows. ~ whereSs(a) andSg(«a) are rectangular regions:

ael0,1] ael0,1]

Definition 4: We denote by(E,(R1,90), Ep(R2,9)) -
an achievable error-exponent pair for feedback BEC with ~ Sa(o) = ﬂ R(a, B) ﬂ (13)
erasure raté and two data streams that operate at rate B>0
Ry and R, respectively. All the achievable pairs form ) 1+

: - . {(A4,B):B< inf ——r—ro
an error-exponent region that is a subset of the first a-1<6<0 1+ 3 — «

QRQ
1+4

D(1— Ry - 16)}
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Fig. 8. Anytime channel coding for BEC with feedback, 2 streaming data

An error occurs if the number of bits through the BEC
- 143 with feedback from timel to (1 + 8)n is less than the
whereR (o, 3) = {(A,B) : A< ——G(a, ) and total number of bits generated by the two sources. Or
1ﬁ+ 3 equivalently, the bits erased by the channel is more than
B < G(a, )}

T1+p-a (1+B)n —nRy — anRy

Similarly for Sg(«). The second line in (13) comes The empirical erasure rate is— Rlltr%Rz_ The proba-
from the scenario where a decoding error might be mad&-"ty of that is lower bounded by
at time (1 4+ 8)n for by,, wherea —1 < 5 < 0. A
proper bounding of the error probability gives the extra o= [(14+8)m)(D(—1ER2 |15)—e,,) (14)
term in the second line of (13). This gives the monotonic
behavior of the inner bound boundary which is lackingvhere ¢,, converges to0 with n. Note that we are
in previous studies. concerned the union bound on the errors for both the
data streams. So similar to the streaming source coding

Remark: Note that the corner point ®(c, ) for  .ase we have:

the inner bound and the corner point &(«, 3) are

the same. This is quite interesting because the BEC with  Pr((a?™,b5™%2) £ (@77 (1 + B)n), b3 (1 + B)n))
feedback problem is simpler than the two stream source - o [(148)n) (DO~ BxFa2 15) ¢, ) (15)
coding problem, because all the randomness comes from

the single source-the channel. And it is also easy t0 s6&is means that at timél + f)n, at least one bit of
why the inner bound is smaller than the outer boundarle or one bit of bfllnR2 is not decoded correctly.

The outer bound is the intersections of the “L” shapedrhe minimumeffective delay isén and (B+1—a)n
regions with corners parameterized by, 3), while the respectively. This implies that either
inner bound is a subset of the union (parameterized by

«)of the intersection of rectangles (parameterized®y 1+p Rt aRy
. : E, < D(1 16) (16)
with the same corners parameterized (ay, 3). B 1+p
or
B. Proofs
) ] B < 1+ ﬁ R1 + OéRQ s 17
1) Outer bound: Now we consider the most likely e P (1- W” )- (7)

error event for those bits considered in Figure 9.
R Since 8 and « are arbitrary, and by noticing the sym-
Pr((a™, b¢™F2) £ @M (1 + B)n), b8 2(1 + B)n))  metry, we have the desired result in Theorem 6. B
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Decision Decision
0 an n (1+ ﬁ)rn 0 an (1+758)n n ]
Time Line Time Line

Fig. 9. Bounding theatypicality for the two stream BEC with Fig. 10. Bounding theatypicality for the two stream BEC with
feedback feedback, casg < 0

2) Inner boundd:The encoder is similar to the single  Tne effective delay is3n and (8 + 1 — a)n respec-

stream anytime channel coding for BEC's. The encodgfyely. Union bounding all the error probabilities for
simply sends the bit with the highest priority remamqu >0, we have

in the buffer. If the bit gets erased by the channel, the

encoder resends it until the decoder receives the bit. If L1+ Ri + aRs

the buffer is empty the encoder sends a garbage bitto the 2 = é&fo 3 1-— I3 19) (20)

channel. The encoder and the decoder are synchronized

in the sense that the decoder is aware of when trand

encoder buffer is empty thus simply discards the garbage

bit when the buffer is empty. E, > inf iD(l - Mnd). (21)
g>01+ 06—« 1+0

The only remaining issue is to give the priorities to
the bits in the encoder buffer. Similar to the two stream Now let us consider the scenario when the decoder

source coding problem, we implement the FIRD( decodesb,,,, before timen, this is illustrated in Fig-

protocql. W'th"_] t_he Same stre_am, older_ b_|ts alway%re 10. Following the same argument as before, we can
have higher priority. Now we give the priority acrosseasily get

the streams. Without loss of generality we assume that
the first stream with ratd?, has higher priority, this is
parameterized by an € [0,1]. Now suppose the last -~
time when the buffer is e[mp]ty is at tine (if not, we Pr(banr, # bank, (R(lfﬁ)nn))
can shift the time-line to make it so). Then thé&;’th < 2’[(”@”](D(l’%”‘”“") (22)
bit from streaml which is generated at time: a,r,
has the same priority as the:R,’th bit from stream2  The effective delay is stil{1 — « + 3)n for stream 2,
which is generated at timen: b, g, . thus we havé

With the in-stream and cross-stream priorities defined,
we can bound the dominant error event for any bit.

Agam, without Iqss of gen_erallty we assume that thg IastEb > inf +5 D(1— Ry — aRy 16)
time the buffer is empty is at tim@. As illustrated in a—1<B<0 1+ —«a 1+4
Figure 9, a decodi_ng error probability faf,z, andb,, r, —  inf 1 D(1 - Ri — ARy||5).

are the same at timél + §)n for § > 0, because they a<i<i 1 —A

have the same priority. Exactly the same as the outer te that the ab biect function d t havi
bound analysis, an error occurs if and only if there ar&IO € that the above object Tunction does not havie

too many erasures between tifieand time (1 + 5)n. It. So there exists\" < [0, 1] to minimize it, h_ence_ i
Hence we have a < A*, the above bound does not change withThis

is clearly illustrated in Figure 11.
Pr(anr, # Gnr, (1 + B)n)) The above three inequalities @), andE; are true for
< 9-[A+Bm)(D-E1ESE2 15) 4e,,) as) 2 fixedo € [0, 1] which is predetermined by the coding
system. Now the union of those rectangle regions and
and symmetry give the desired result. ]
N These two bounds are illustrated in Figure 11.
Pr(bomRz 7é bong((l + 6)”))

Rj+aR:
< 9= 1A+8)n (D(A- =552 [19)+en) (29) *On the second line we replagel; with X which is within e, 1].
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Fig. 11. Anytime error exponent region for BEC with erasure fatg R; = Rz = 0.4, Ey(R) is the focusing bound.

REFERENCES noisy communication link. part Il: vector system&EE Trans.
Inform. Theory submitted.
[10] Claude Shannon. A mathematical theory of communicatisil

Cheng ChangStreaming source coding with delay, PhD thesis System Technical Journa27, 1948.

University of California, Berkeley, 2007. ) [11] Lihua Weng, Sandeep S. Pradhan, and Achilleas Anastasopoulos.
Cheng Chang and Anant Sahai. The price of ignorance: the * Error exponent regions for gaussian broadcast and multiple
impact on side-information for delay in lossless source coding. access channelEEEE Transactions on Information Theo3008
submitted to IEEE Transactions on Information Thed@§07. to appear.

Cheng Chang and Anant Sahai. The error exponent with delay
for lossless source codingnformation Theory Workshop, Punta
del Este, UruguayMarch 2006.

Imre Csisar. The method of types.IEEE Transactions on
Information Theory 44:2505-2523, 1998.

Imre Csisar and anos Korner. Information Theory Akademiai
Kiadd, Budapest, 1986.

Robert Gallager. Source coding with side information and uni-
versal coding. Technical Report LIDS-P-937, Mass. Instit. Tech.,
1976.

Robert G. Gallagerinformation Theory and Reliable Commu-
nication John Wiley, New York, NY, 1971.

Anant Sahai. Why block-length and delay behave differently if
feedback is presentlEEE Trans. Inform. Theory54(5):1860—
1886, 2008.

Anant Sahai and Sanjoy K. Mitter. The necessity and sufficiency
of anytime capacity for stabilization of a linear system over a



