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Abstract—We study the rate distortion function of the
Bernoulli-Gaussian random variable which can be used to model
sparse signals. Both lower and upper bounds on the rate
distortion function are given. We show that the bounds are almost
tight in the low distortion regime for sparse signals. Interestingly,
a naive coding scheme is near-optimal in this scenario.

I. I NTRODUCTION

Consider a sequence real numbers1 x1, x2, ....xn, wherexi

is either exactly zero or an arbitrary non-zero real number.
In the signal processing literature, the sequencexn is called
sparse if most of the entries are zero. In their seminal work
on compressive sensing [3] and [6], Candès, Tao and Donoho
show that, tolosslesslyreconstruct the sparse sequncexn,
only a fraction of then measurements are needed. Here a
measurement is a linear projection ofxn on the real line
R. Furthermore, the reconstruction can be done by a linear
programming based efficient algorithm. In the compressed
sensing literature, the non-zero part of the sparse signals
are, in general, arbitrary real numbers without any statistical
distribution assigned to them. Furthermore the compressed
sensing system is to recover the signalsxn losslessly. A natural
question to ask is what if the source statistics are known to
the coding system? More significantly, what if the goal of the
sensing system is only to recover the original sequence within
a certain distortion? In the recent work by Fletcher etc. [8],
[7], [9], the authors studied the compressive sensing problem
for sparse Gaussian signals. What is lacking in these papers
is an information theoretic study of the bounds on the rate
distortion functions of the sparse signals. In this paper, we
attempt to answer these questions.

A. Bernoulli-Gaussian random variableΞ(p, σ2)

The information theoretic model of the “sparse Gaussian”
signals is captured in the following what we call a Bernoulli-
Gaussian random variable.

Definition 1: A random variablex is Bernoulli-Gaussian,
denoted byΞ(p, σ2), if x = b × s, where s is a Gaussian
random variable with mean0 and varianceσ2, s ∼ N(0, σ2),

This work was done when the author was with Hewlett-Packard Labs, Palo
Alto.

1We usex , y , u for random variables andx, y, u for the realization of
the random variables. We denote byxn the sequencex1, x2, ...xn. We use
bit and log2 in this paper.

and b is a Bernoullip random variable,Pr(b = 0) = 1 − p
andPr(b = 1) = p, p ∈ [0, 1].

This random variable is a mixture of a continuous and a
discrete random variable. A continuous pdf is not well defined
as the point probability at0 is not zero. This adds to the
difficulties to the study of the rate distortion functions as the
famous Shannon lower bound does not apply. The main result
of this paper is a lower bound and an upper bound on the
rate distortion functions of a sequence of independent random
variables with distributionΞ(p, σ2). First, we review some of
the results in rate distortion theory in both the average sense
and more importantly, the strong sense.

B. Review of rate distortion theory

In the standard setup of rate distortion theory, the encoder
fn maps a length-n sequencexn ∈ Xn, x ∼ px , into nR bits
and the decodergn reconstruct a lossy version of the original
sequence:

fn : Xn → {0, 1}nR and gn : {0, 1}nR → X̂n,

and the distortion is defined as2 d(xn, x̂n) = 1
n

n∑
i=1

d(xi, x̂i).

The rate distortion function in the average sense, defined in [5],
is the infimum of rateR, such that a lossy source coding
system(fn, gn) of that rate exist with

lim
n→∞

E (d(xn, gn(fn(xn)))) ≤ D (1)

The rate distortion function in the strong sense is defined
similarly with the following criteria for the coding system: for
all δ > 0

lim
n→∞

Pr (d(xn, gn(fn(xn)) ≥ D + δ) = 0 (2)

It turns out that the rate distortions function for both the
average distortion and the strong distortion are the same for
discrete random variables as detailed in Chapter 13.6 [5]. This
result can be generalized to continuous and mixed random
variables, like Gaussian Bernoulli, whose variance is finite
and whose pdf satisfies some regularity conditions [4]. The
proof can be carried out by quantizing the probability density

2In this paper, the distortion is the squared error distortion, i.e.d(xn, x̂n) =
1
n

n∑
i=1

(xi − x̂i)
2.
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Fig. 1. A lossy source coding system for Bernoulli-Gaussian sequencexn = bn × sn, anR ∈ {0, 1}nR

function and then by using the proof for discrete random
variables in Chapter 13.6 [5]. A good lossy coding system
in the strong sense is notnecessarilygood in the average
distortion sense. However, given a good lossy coding system
in the strong sense, we can modify it in a way such that it is
good in both senses if the mean and variance of the random
variable are finite [4]. The following lemma characterizes the
rate distortion functionR(D, px), for x ∼ px , in both the
average sense and the strong sense.

Lemma 1:Rate distortion theorem [10]:

R(D, px) = min
px̂|x :E(d(x,x̂))≤D

I(x ; x̂). (3)

where the expectation is taken over the joint distribution
px(x)px̂|x(x̂|x).

It is usually difficult to evaluate (3), however, for Gaussian
random variables the rate distortion functions can be easily
evaluated:

R(D,N(0, σ2)) = {
1
2 log2

σ2

D , 0 ≤ D ≤ σ2,
0, D > σ2.

(4)

It is known that for the squared error distortion, with the
same variance, Gaussian random variable has the highest rate
distortion function [5] [2]. And for the squared error distortion,
the rate distortion function is lower bounded by the Shannon
lower bound [5]. Hence the rate distortion functionR(D, px)
for continuous distributionpx with varianceσ2 can be bounded
by:

h(px)− D

2
log(2πe) ≤ R(D, px) ≤ R(D, N(0, σ2)) (5)

whereR(D, N(0, σ2)) is given in (4) andh(px) is the con-
tinuous entropy ofpx .

The obvious limitation of the above Shannon lower bound
is that the continuous entropy is not well defined for non-
continuous random variables. For the Bernoulli-Gaussian ran-
dom variableΞ(p, σ2), the conditional entropy is, roughly
speaking,−∞, due to the fact that theP (x = 0) > 0. And it is
not known how the Shannon lower bound can be generalized to
non-continuous random variables such as Bernoulli-Gaussian.

C. Rate distortion function forΞ(p, σ2)

A lossy source coding system for Bernoulli-Gaussian se-
quences is shown in Fig. 1. We aim to derive an upper and
a lower bound on the rate distortion functionR(D, Ξ(p, σ2)).
We summarize some properties and bounds ofR(D, Ξ(p, σ2))
in the following four propositions.

First we explain why we only need to studyR(D, Ξ(p, 1)).
We will simply write R(D, Ξ(p, 1)) asR(D, p) in the rest of
the paper and investigateR(D, p).

Proposition 1: R(D, Ξ(p, σ2)) = R( D
σ2 , Ξ(p, 1)).

From this point on, we only investigateR(D, p). Now we
give three somewhat obvious bounds.

Proposition 2: Upper bound I onR(D, p):

R(D, p) ≤ H(p) + pR(
D

p
, N(0, 1))

= pR(D,N(0, p)) + H(p) (6)

whereR(D, N(0, 1)) is the Gaussian rate distortion function
for N(0, 1), defined in (4).

Proposition 3: Upper bound II onR(D, p):

R(D, p) ≤ R(D,N(0, p)) (7)

Proposition 4: A lower bound onR(D, p):

R(D, p) ≥ pR(
D

p
,N(0, 1)) = pR(D, N(0, p)) (8)

The above propositions are fairly straightforward. Propo-
sition 1 is due to the squared error distortion. To prove
Proposition 2, we construct a very simple coding system that
first losslessly describe the locations of the non-zero elements
of xn ∼ Ξ(p, 1) with roughlynH(p) bits, then lossily describe
the non zero part of the sequence, of roughly lengthnH(p),
using a Gaussian lossy coder with roughlypnR(D, N(0, p))
bits. We prove Proposition 3 by using the well known fact that
under squared error distortion, for continuous random vari-
ables with the same variance, Gaussian sequences require the
highest rate. The difficulty is thatΞ(p, 1) is not a continuous
random variable. We approximateΞ(p, 1) by a sequence of
continuous random variables whose rate distortion functions
converge to that ofΞ(p, 1). In the proof of Proposition 4, we
use a genie-based proof by by letting the decoder know the
non-zero locations (bn) for free and derivea lower bound of
R(D, p) by the Gaussian rate distortion function for the non-
zero part ofxn. Due to the page limit, we leave the details of
the proofs in the tech report [4].

Among the three bounds described in Proposition 2, 3
and 4, we find the lower bound in Proposition 4 the most
unsatisfactory. Shannon lower bound (5) does not apply to
the Bernoulli-Gaussian randomΞ(p, 1) variables because the
differential entropy ofΞ(p, 1) is, roughly speaking, negative
infinity. In next several sections, we aim to improve the lower
bound in Proposition 4. As a simple corollary of this new
lower bound, we give a closed form lower bound on the



rate distortion function that improves the previous bound by
p log2

1
p in the low distortion regime (D ¿ 1). Notice that

the gap between the lower bound in Proposition 4 the upper

bound in Proposition 2 isH(p), and lim
p→0

p log2
1
p

H(p) = 1. Hence

we close the gap between the upper and lower bound for sparse
signals (p ¿ 1) in low distortion regime (D ¿ 1).

II. M AIN RESULT: A NEW LOWER BOUND ONR(D, p)
The main result of this paper is an improved lower bound

on the rate distortion function for Bernoulli-Gaussian random
variableΞ(p, 1), summarized in the following theorem.

Theorem 1:A improved lower bound on the rate distor-
tion functionR(D, p) for Bernoulli-Gaussian random variable
Ξ(p, 1) under distortion constraintD.

R(D, p) ≥ pR(D, N(0, p)) + RI(D, p). (9)

whereRI(D, p) = max
L≥0

{ min
U≥L,r∈[0,1−p]:T (L,U,r)≤D

h(L,U, r)}

andT (L,U, r) = rL2 + 2p

∫ U

L

(s− L)2
1√
2π

e−
s2
2 ds, (10)

h(L,U, r) =
{ (p× Pr(|s| > U) + r)D( p×Pr(|s|>U)

p×Pr(|s|>U)+r‖p),

if p×Pr(|s|>U)
p×Pr(|s|>U)+r ≥ p

0, if p×Pr(|s|>U)
p×Pr(|s|>U)+r < p

where s ∼ N(0, 1) and D(p1‖p2) is the KL divergence
between the Bernoulli-p1 and Bernoulli-p2 distributions.

We defer the sketch of the proof to the next section. It is
hard to see the significance of Theorem 1 in its current form.
Comparing (9) with the lower bound in (6) in Proposition 4,
we see thatRI(D, p) is the improvement over the known lower
bound in Proposition 4. So how much is the improvement? The
following proposition tells us that the improvement is bigger
for small distortionD, i.e. the high resolution regime.

Proposition 5: RI(D, p) is monotonically decreasing with
D, i.e. for D1 > D2, RI(D1, p) ≤ Ri(D2, p).

The improvement cannot exceedH(p) because the gap
between the upper bound in Proposition 2 and the lower bound
in Proposition 4 isH(p). In the low distortion regime, i.e.
D ¿ 1, the next proposition tells us that the improvement
RI(D, p) is close top log2

1
p .

Proposition 6: Asymptotic behavior ofRI(D, p) in the low
distortion regime: for anyp > 0

lim
D→0

RI(D, p) ≥ p log2

1
p

This is a very interesting result as we know that forp → 0

H(p) = p log2(
1
p
) + (1− p) log2(

1
1− p

) = p log2(
1
p
) + O(p)

As log2(
1
p ) À 1 for p ¿ 1, so the ratio of the improvement,

RI(p,D), over H(p) converges to1 asp → 0. WhereH(p)

is the gap between the lower bound in Proposition 4 and the
upper bound in Proposition 2, This tells us that in this regime
( p ¿ 1 and D ¿ 1), the upper bound in Proposition 2 and
the lower bound in Theorem 1 together with Proposition 6 are
quite tight.

In summary, we have the following lower and upper bounds
that are almost identical in the low distortion (D ¿ 1) regime:
Upper bound(Proposition 2):pR(D,N(0, p)) + H(p).
Lower bound(Proposition 6):pR(D,N(0, p)) + p log2

1
p .

The gap between these two bounds is at mostO(p) which
is o(H(p)) for small p ¿ 1.

An example
We plot the bounds in Propositions 2, 3, 4 and Theorem 1

in Figure 2 for p = 0.1, i.e. bounds for the rate distortion
function for random variableΞ(0.1, 1). As shown in Figure 2.
As predicted in Proposition 5, the improvementRI(D, p) on
the lower bound is bigger for smallerD.
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Fig. 2. Lower and upper bounds onR(D, p) for p = 0.1 at high distortion
levels, the distortionD runs from0.005 to 0.1

Next we illustrate the asymptotic behavior of the improve-
mentRI(D, p) asD → 0. As predicted in Proposition 6, the
improvementRI(D, p) converges top log2

1
p asD → 0. This

is shown in Figure 3 forp = 0.1.

III. PROOF OFTHEOREM 1

Due to page limit, we only sketch our proof in this paper.
Details are in Tech Report [4].

For a lossy source coding system forxn = bn × sn ∼
Ξ(p, 1) as shown in Fig. 1, the output of the encoder isanR.
If the distortionD is satisfied in both the average sense and
the strong sense, the rateR can be lower bounded as follows:

R ≥ I(anR; sn|bn) + I(anR; bn)
n

(11)

≥ pR(D,N(0, p)) +
I(anR; bn)

n
(12)

≥ pR(D,N(0, p)) + RI(p,D) (13)

where the RHS of (13) is the final form in Theorem 1.
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First in (11), we lower bound the number of bitsnR
by the sum of two mutual information terms. The first is
a “continuous” mutual information term in (12). We lower
boundI(anR; sn|bn) by using an argument, in essence, similar
to that for Proposition 4. The second mutual information term
in (13) is “discrete”. We lower boundI(anR; bn) by the
generalized capacity of thelossy coding channel, which is
lower bounded byRI(p,D). In proving (13), we establish the
duality between a generalized-channel coding and lossy source
coding which is the most interesting part of the technical proof.

A. Proof of (11)

This can be done by a fairly straightforward information
theoretic argument. The output of the encoderanR ∈ {0, 1}nR,
so the entropy of the random variable is upper bounded by

H(anR) ≤ nR (14)

Notice thatanR is a a function ofxn, i.e. a function ofsn

andbn, so

H(anR) = H(anR)−H(anR|sn, bn) (15)

Combining (14) and (15), and notice thatbn⊥sn, we have:

nR ≥ H(anR)−H(anR|sn, bn)
= I(anR; sn, bn)
= I(anR; bn) + I(anR; sn|bn) (16)

where (16) is true by the chain rule for mutual information [5].

B. Proof of (12)

In [4], we managed to prove a stronger inequality:

I(anR; sn|bn)
n

≥ pR(D − (1− p)E[x̂2|b = 0], N(0, p)).

But here we only give the proof for the weaker inequality
in (12). The idea is quite similar to the proof of the lower
bound in Proposition 4. Suppose that a genie reveals thedigital
part of the source,bn, to the decoder. So for the zero part of
the source, the decoder can recover them exactly. But for the

non-zero part of the source, the decoder still needs to keep
the total distortion undernD. Typically, there are roughlynp
non-zero entries. We denote the non zero part bys̃M , the

corresponding reconstructions bŷ̃sM
, whereM ∼ np, hence

I(s̃M ; anR) ≤ I(anR; sn|bn). So now we have the following

Markov Chain:̃sM → sn → anR → x̂n → ̂̃sM
, hence by data

processing inequality:

I(s̃M ; ̂̃sM
) ≤ I(s̃M ; anR) ≤ I(anR; sn|bn). (17)

Note that the non-zero part̃sM is of roughly M ∼ np i.i.d.
N(0, 1) random variables, and the total distortion betweens̃M

and ̂̃sM
is within nD, hence from the rate distortion theory

for Gaussian random variables, we know thatI(s̃M ; ̂̃sM
) ≥

MR(D
p , N(0, 1)) = MR(D, N(0, p)) ∼ npR(D, N(0, p)).

Combining this with (17), we get the desired inequality.

C. Proof of (13)

Inspired by [1], we lower bound the mutual information
betweenbn and anR, I(anR; bn), by a generalized capacity
of an imaginary with-memory channel as shown in Fig. 4.
Comparing this figure with Fig. 1, we see that the Bernoulli
sequencebn is replaced by a channel input to the “lossy
coding channel”. So the constraint on the channel encoder
Fn is that the codewordscm obey the Berounlli-p distribution
for m that is uniformly distributed on{1, 2, ...2nR̃}. Now we
sendcm to be multiplied by the Gaussian sequencesn and send
the resulted Gaussian Bernoulli sequence to the lossy coding
system. There are two things we can do with the outputanR.
First, the lossy source decoder can reconstructx̂n where the
distortion D constraint is satisfied in both the average and
strong senses. Secondly, a channel decoder can try to recover
the messagem. This can only be done if the rate of the channel
codebookR̃ is not higher than the “lossy channel capacity”.

There are two steps left for lower boundingI(anR; bn).
First we prove that the lossy channel capacity is indeed upper
bounded byI(anR; bn) and secondly we givea lower bound
on the channel capacity. The result is inequality (13) where
RI(p,D) is defined in Theorem 1. Due to page limit, we leave
the details in [4].

IV. CONCLUSIONS ANDFUTURE WORK

In this paper we study the rate distortion function for
Bernoulli-Gaussian sequences which is a reasonable proba-
bilistic model for sparse signals. The main result is a non trivial
lower bound on the rate distortion function. The improvement
over the trivial lower bound is∼ p log2

1
p in the low distortion

regime. We also show that the gap between the trivial lower
bound and an upper bound is at mostH(p). This is significant
since H(p) and p log2

1
p are roughly equal for smallp. To

derive this new lower bound, we develop a new technique
to lower bound part of the rate distortion function through a
randomized lossy coding channel. To further narrow the gap
between the lower bound and the upper bounds, we need to
develop a more sophisticated upper bounding scheme. This is
left for future work.
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APPENDIX

A. Proof of Proposition 5

Notice that

RI(D, p) = max
L≥0

{ min
U≥L,r∈[0,1−p]:T (L,U,r)≤D

h(L,U, r)},

so for all L ≥ 0, we define the feasible region for(U, r) as
{(U, r)|U ≥ L, r ∈ [0, 1− p], T (L,U, r) ≤ D}. This feasible
region is bigger for largerD, hence the minimum ofh(L,U, r)
is smaller for largerD (bigger feasible region). This is true
for all L ≤ 0, henceRI(D, p) is decreasing withD. ¤

B. Proof of Proposition 6

Same as in the proof of Proposition 5, forL > 0, we define
a feasible region for(U, r) as:{(U, r)|U ≥ L ≥ 0, r ∈ [0, 1−
p], T (L,U, r) ≤ D}.

We first show that asD → 0, for a properly chosenL,
the feasible region for(U, r) converges (shrinks) to a single
point (0, 0). Details as follows, we pick a positiveL ¿ 1,
but L2 À D, sayL = D0.3. By the definition ofT (L,U, r)
in (10) and the fact thatT (L, U, r) ≤ D for any point(U, r)
in the feasible region, it is obvious thatrL2 ≤ D, hence
r ≤ D

L2 = D0.4. Sor converges to zero asD goes to zero. We
now show that asD andL = D0.4 go to zero, for any feasible
point (U, r), U converges to zero. In light of the distortion
constraint and thatL is picked to beD0.3, also the obvious
inequality that−2sL ≥ − s2

4 − 4L2 for all s andL:

D

2p
≥

∫ U

L

(s− L)2
e−

s2
2√

2π
ds ≥

∫ U

L

(
3s2

4
− 3L2)

e−
s2
2√

2π
ds

=
∫ U

D0.3
(
3s2

4
− 3D0.6)

e−
s2
2√

2π
ds

Then by moving terms around we get:
∫ U

D0.3

3s2

4
e−

s2
2√

2π
ds ≤ D

2p
+

∫ U

D0.3
3D0.6 e−

s2
2√

2π
ds

≤ D

2p
+ 3D0.6

The last inequality is true because the integral of a Gaussian
pdf is upper bounded by1. Now let D → 0 on both sides,
the right hand side is obviously0, the left hand side is zero if
and only if U → 0 asD goes to zero. Hence we just proved
that if we pickL = D0.3 together withD → 0, then bothU
andr goes to zero ifT (L,U, r) ≤ D. This means that:

limD→0 RI(D, p)

≥ lim
r,U→0

(p× Pr(|s| > U) + r)D(
p× Pr(|s| > U)

p× Pr(|s| > U) + r
‖p)

= pD(1‖p) = p log2
1
p ¤


