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Abstract—We study the rate distortion function of the andb is a Bernoullip random variablePr(b =0) =1 —p
Bernoulli-Gaussian random variable which can be used to model gnd Pr(b=1)=p, pel0,1].
sparse signals. Both lower and upper bounds on the rate
distortion function are given. We show that the bounds are almost This random variable is a mixture of a continuous and a

tight in the low distortion regime for sparse signals. Interestingly, giscrete random variable. A continuous pdf is not well defined
a naive coding scheme is near-optimal in this scenario. as the point probability ab is not zero. This adds to the
difficulties to the study of the rate distortion functions as the
famous Shannon lower bound does not apply. The main result

Consider a sequence real numbers;, x, ....x,, Wherex;  of this paper is a lower bound and an upper bound on the
is either exactly zero or an arbitrary non-zero real numbefgate distortion functions of a sequence of independent random
In the signal processing literature, the sequexitas called yariables with distributiorE(p, o2). First, we review some of

sparse if most of the entries are zero. In their seminal Wofke results in rate distortion theory in both the average sense
on compressive sensing [3] and [6], CasdTao and Donoho gnd more importantly, the strong sense.

show that, tolosslesslyreconstruct the sparse sequnce,

only a fraction of then measurements are needed. Here B Review of rate distortion theory

measurement is a linear projection of on the real line

R. Furthermore, the reconstruction can be done by a linearn the standard setup of rate distortion theory, the encoder
programming based efficient algorithm. In the compressdd Maps a length» sequence™ € X™, x ~ py, into n.R bits
sensing literature, the non-zero part of the sparse sign@Rd the decodey, reconstruct a lossy version of the original
are, in general, arbitrary real numbers without any statisticgfquence:

distripution assigned to them. F_urthermore the compressed Foi X" = {0,13"% and g, : {0,1}"F — xn

sensing system is to recover the signdidosslesslyA natural

question to ask is what if t.he'slource statistjcs are known 104 the distortion is defined Bd(a", i) = L 2": d(z;, &)

the coding system? More significantly, what if the goal of the ) ) o = )
sensing system is only to recover the original sequence witﬁ'i-ﬁe rate c_ilstortlon function in the average sense, defined in [5],
a certain distortion? In the recent work by Fletcher etc. [8f the infimum of rateR, such that a lossy source coding
[7], [9], the authors studied the compressive sensing probl&¥Stem(/fn, g») of that rate exist with

for sparse Gagssmn S|gn_als. What is lacking in these papers lim E (d(x", gu(fa(x™)))) < D 1)

is an information theoretic study of the bounds on the rate n—oo

distortion functions of the sparse signals. In this paper, weThe rate distortion function in the strong sense is defined

I. INTRODUCTION

attempt to answer these questions. similarly with the following criteria for the coding system: for
allo >0
A. Bernoulli-Gaussian random variabE(p, 02)
The information theoretic model of the “sparse Gaussian” nh~>nolo Pr(d(x", gn(fn(x")) 2 D +0) =0 (2)
signals is captured in the following what we call a Bernoulli- 1 tyrns out that the rate distortions function for both the
Gaussian random variable. average distortion and the strong distortion are the same for

discrete random variables as detailed in Chapter 13.6 [5]. This
result can be generalized to continuous and mixed random
variables, like Gaussian Bernoulli, whose variance is finite
and whose pdf satisfies some regularity conditions [4]. The

This work was done when the author was with Hewlett-Packard Labs, P4§00f can be carried out by quantizing the probability density
Alto.

lWe usex, y, u for random variables and, y, v for the realization of 2In this paper, the distortion is the squared error distortiond{€?, ™) =
the random variables. We denote k$ the sequence, x2, ...x,. We use Z": (s — )2
v L) -

Definition 1: A random variablex is Bernoulli-Gaussian,
denoted by=(p,0?), if x = b x s, wheres is a Gaussian
random variable with meat and variancer?, s ~ N(0,02),

bit andlog, in this paper. n
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Fig. 1. A lossy source coding system for Bernoulli-Gaussian sequefce b™ x s”, a”% € {0,1}*2

function and then by using the proof for discrete random First we explain why we only need to stud(D,=(p, 1)).
variables in Chapter 13.6 [5]. A good lossy coding systeiVe will simply write R(D,Z(p,1)) asR(D,p) in the rest of
in the strong sense is natecessarilygood in the average the paper and investigat®(D, p).

_distortion sense. However, given a g_o_od lossy coding Sys_te_”broposition 1: R(D,Z(p, 0?)) = R(Z,Z(p, 1)).

in the strong sense, we can modify it in a way such that it is ) i i 7

good in both senses if the mean and variance of the randogh 0™ this point on, we only investigaté(D, p). Now we
variable are finite [4]. The following lemma characterizes th&"V® three somewhat obvious bounds.

average sense and the strong sense.

D
R(D,p) < H(p) erR(?’
pR(D,N(0,p)) + H(p) (6)
where R(D, N(0,1)) is the Gaussian rate distortion function
where the expectation is taken over the joint distributiofler N (0, 1), defined in (4).

Lemma 1:Rate distortion theorem [10]: N(0,1))

R(D,px) = min I(x;%). 3
(D, px) Pr|x: B (d(x,%)) <D (%) ®)

Px(2)pxix(2]2). Proposition 3: Upper bound Il onR(D, p):
It is usually difficult to evaluate (3), however, for Gaussian R(D,p) < R(D,N(0,p)) (7)
random variables the rate distortion functions can be eas'lyproposition 4: A lower bound onR(D, p):
evaluated:
D
1 a2 2 R(D >pR(—,N(0,1)) =pR(D,N(0 8
R(D, N(0,0%)) = { 210%2 o ogDD;Ug, @) (D,p) 2 pR(~7, N(0,1)) = pR(D, N(0,p)) (8)

The above propositions are fairly straightforward. Propo-
It is known that for the squared error distortion, with thgijtion 1 is due to the squared error distortion. To prove
same variance, Gaussian random variable has the highest Fthosition 2, we construct a very simple coding system that
distortion function [5] [2]. And for the squared error distortionfirst losslessly describe the locations of the non-zero elements
the rate distortion function is lower bounded by the Shann@ x” ~ =(p, 1) with roughlynH (p) bits, then lossily describe
lower bound [5]. Hence the rate distortion functi®{D, px) the non zero part of the sequence, of roughly length(p),
for continuous distributiop, with variances can be bounded ysing a Gaussian lossy coder with roughlyR(D, N (0,p))
by: bits. We prove Proposition 3 by using the well known fact that
D under squared error distortion, for continuous random vari-
h(px) — 5 log(2me) < R(D, px) < R(D, N(0,6%)  (5) ables with the same variance, Gaussian sequences require the
highest rate. The difficulty is th&(p, 1) is not a continuous
where R(D, N(0,0?)) is given in (4) andh(p) is the con- random variable. We approximat&(p, 1) by a sequence of
tinuous entropy 0. continuous random variables whose rate distortion functions
The obvious limitation of the above Shannon lower boungbnverge to that 0E(p,1). In the proof of Proposition 4, we
is that the continuous entropy is not well defined for nomyse a genie-based proof by by letting the decoder know the
continuous random variables. For the Bernoulli-Gaussian r'afbn-zero |oca‘[ionsd’7') for free and derivea lower bound of
dom variableZ(p, %), the conditional entropy is, roughly r(D,p) by the Gaussian rate distortion function for the non-

speaking;—oo, due to the fact that th®(x = 0) > 0. And itis  zero part ofx™. Due to the page limit, we leave the details of
not known how the Shannon lower bound can be generalizedf@ proofs in the tech report [4].

non-continuous random variables such as Bernoulli-Gaussian.Among the three bounds described in Proposition 2, 3

and 4, we find the lower bound in Proposition 4 the most

unsatisfactory. Shannon lower bound (5) does not apply to
A lossy source coding system for Bernoulli-Gaussian sthe Bernoulli-Gaussian randoB(p, 1) variables because the

qguences is shown in Fig. 1. We aim to derive an upper addferential entropy of=(p, 1) is, roughly speaking, negative

a lower bound on the rate distortion functiét{ D, =(p,c?)). infinity. In next several sections, we aim to improve the lower

We summarize some properties and bound&@P, Z(p,0?)) bound in Proposition 4. As a simple corollary of this new

in the following four propositions. lower bound, we give a closed form lower bound on the

C. Rate distortion function foE(p, o2)



rate distortion function that improves the previous bound by the gap between the lower bound in Proposition 4 and the
plog, 1 in the low distortion regime ) < 1). Notice that upper bound in Proposition 2, This tells us that in this regime
the gap between the lower bound in Propo§ition 4 the uppep < 1 and D « 1), the upper bound in Proposition 2 and
bound in Proposition 2 i (p), and hrn p;%;)p — 1. Hence the lower bound in Theorem 1 together with Proposition 6 are
uite tight.
we close the gap between the upper and lower bound for spaqs% summary, we have the following lower and upper bounds
signals f < 1) in low distortion regime [ < 1). that are almost identical in the low distortioP (< 1) regime:
[I. MAIN RESULT: A NEW LOWER BOUND ONR(D, p) Upper bound(Proposition 2)pR(D, N(0,p)) + H(p).

The main result of this paper is an improved lower bourlgPWer bound(Proposition 6):pR(D, N(0,p)) + plog, .
on the rate distortion function for Bernoulli-Gaussian random The gap between these two bounds is at nf@gt) which
variable=(p, 1), summarized in the following theorem. is o(H (p)) for smallp < 1.

i . An example
Theorem 1:A improved lower bound on the rate distor- . .
tion function R(D, p) for Bernoulli-Gaussian random variable, We plot the bounds in Propositions 2, 3, 4 and Theorem 1

in Figure 2 forp = 0.1, i.e. bounds for the rate distortion
=(p,1) under distortion constrainb. function for random variabl&(0.1,1). As shown in Figure 2.
R(D,p) > pR(D,N(0,p)) + Rr(D,p). (9) As predicted in Proposition 5, the improveme®t(D, p) on
the lower bound is bigger for smalldp.

where R;(D, p) = max min h(L,U,r)}
L>0 "'U>L,r€[0,1—p|:T(L,U,r)<D o8
++++ Upperl R(D, N(0,p))
il - =+ Upper2 H(p)+pR(D,N(0,p))
U 1 .2 ~ o I\ﬁ\;g/reor\}emov[)ver p£331 N(0.p)+R(D.p)
andT(L,U,r) =rL? + 2p/ (s — L)? e~ zds, (10) ool e b |
L V 27T » T

o5t B T T 1

Pr(|s|>U
(p x Pr(|s| > U) + ) DTS p),

i Pr(|s|>U
L) = { R 2
pXPr >
0, if pxXPr(|s|>U)+r <

@ o4t
03F o

wheres ~ N(0,1) and D(p1||p2) is the KL divergence B

between the Bernoulliy and Bernoullip, distributions. Tee
We defer the sketch of the proof to the next section. It is 0

hard to see the significance of Theorem 1 in its current form. D

Comparing (9) with the lower bound in (6) in Proposition 4,

we see thal; (D, p) is the improvement over the known lowerrig. 2. Lower and upper bounds @D, p) for p = 0.1 at high distortion

bound in Proposition 4. So how much is the improvement? Thgels, the distortionD runs from0.005 to 0.1

following proposition tells us that the improvement is bigger

for small distortionD, i.e. the high resolution regime. Next we illustrate the asymptotic behavior of the improve-
Proposition 5: R;(D, p) is monotonically decreasing with ment R;(D, p) as D — 0. As predicted in Proposition 6, the

D, i.e. for Dy > Dy, R;(D1,p) < R;(D2,p). improvementR; (D, p) converges t(golog2 asD — 0. This

is shown in Figure 3 fop = 0.1.

The improvement cannot excedd(p) because the gap
between the upper bound in Proposition 2 and the lower bound

in Proposition 4 isH(p). In the low distortion regime, i.e. [1l. PROOF OFTHEOREM1
D « 1, the next proposmon tells us that the improvement Due to page limit, we only sketch our proof in this paper.
Ri(D,p) is close toplog, ; Details are in Tech Report [4].
Proposition 6: Asymptotic behavior o?; (D, p) inthe low ~_ For & lossy source coding system fef = b" x s" ~
distortion regime: for any > 0 =(p, 1) as shown in F|g._ 1_, the_ output of the encoden’ig'.
1 If the distortion D is satisfied in both the average sense and
lim R;(D,p) > plog, — the strong sense, the ratecan be lower bounded as follows:
D—0 p
R I(anf; s b™) + I(a™%; b™) 1
This is a very interesting result as we know that]ﬁor—> 0 = n (11)
1 1 ( nR; bn)
H(p) =p10g2(;)) + (1= p)logy(g 7p) plogg( )+ 0(p) 2 pR(D,N(0,p)) + = (12)
> pR(D,N(0,p)) + Ri(p, D) (13)

As logz( ) > 1 for p < 1, so the ratio of the improvement,
R (p,D) over H(p) converges tal asp — 0. WhereH(p) where the RHS of (13) is the final form in Theorem 1.
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T non-zero part of the source, the decoder still needs to keep
] the total distortion undemD. Typically, there are roughlyp

o non-zero entries. We denote the non zero partsby, the

] corresponding reconstructions Ef/w, where M ~ np, hence

o ] I(3M; a8y < I(a™f;s"|b™). So now we have the following
Markov Chain:s — s" — an® . 3m 3" hence by data

° ] processing inequality:

o
o I o
N 5 P
T
o
o

Improvement Rl(D,p)
o

D | 1GM;3Y) < 1M a"R) < I(a"R; s7|b"). 17)
. ] Note that the non-zero pagt" is of roughly M ~ np i.i.d.

S S N (O,A}\z random variables, and the total distortion betwg#n
log,,(p/D) ands is within nD, hence from the rate distortion theory
for Gaussian random variables, we know th M;§M) >
Fig. 3. The improvemenk; (D, p) for p = 0.1 at low distortion levels. As MR(%7 N(0,1)) = MR(D,N(0,p)) ~ npR(D,N(0,p)).
proved in Proposition 6R;(D,p) — plogy 5 asD — 0 Combining this with (17), we get the desired inequality.

C. Proof of (13)

First in (11), we lower bound the number of biisR Inspired by [1], we lower bound the mutual information
by the sum of two mutual information terms. The first ibetweenb™ and a"%, I(a"F; b"), by a generalized capacity
a “continuous” mutual information term in (12). We lowerof an imaginary with-memory channel as shown in Fig. 4.
boundI(a"%; s"|b™) by using an argument, in essence, similaComparing this figure with Fig. 1, we see that the Bernoulli
to that for Proposition 4. The second mutual information tergequenceb™ is replaced by a channel input to the “lossy
in (13) is “discrete”. We lower bound (a"#;b") by the coding channel”. So the constraint on the channel encoder
generalized capacity of thissy coding channglwhich is F, is that the codewords,, obey the Berounllp distribution
lower bounded byR;(p, D). In proving (13), we establish thefor m that is uniformly distributed o1, 2,...2"%}. Now we
duality between a generalized-channel coding and lossy souse@dc,, to be multiplied by the Gaussian sequesteand send
coding which is the most interesting part of the technical proahe resulted Gaussian Bernoulli sequence to the lossy coding

system. There are two things we can do with the outpd.

A P.roof of (11) . . . _ First, the lossy source decoder can reconstkictvhere the
This can be done by a fairly straightforward informatioyistortion D constraint is satisfied in both the average and
theoretic argument. The output of the encoalef € {0,1}",  gyrong senses. Secondly, a channel decoder can try to recover
so the entropy of the random variable is upper bounded byne messagen. This can only be done if the rate of the channel

H(a"?) <nR (14) codebookR is not higher than the “lossy char_mel capacity”.
There are two steps left for lower boundinga™%; b").
Notice thata"" is a a function ofx™, i.e. a function ofs”  First we prove that the lossy channel capacity is indeed upper

andb", so bounded byl (a"%#; b™) and secondly we giva lower bound
H(a"RY = H(a"R) — H(a"E|s", b") (15) ©On the channe_l capacity. The result is inequallity. (13) where
R;(p, D) is defined in Theorem 1. Due to page limit, we leave
Combining (14) and (15), and notice thait | s, we have:  the details in [4].
nR > H(a"")— H(a""|s", b") IV. CONCLUSIONS ANDFUTURE WORK
= I(a"s", b In this paper we study the rate distortion function for
I(a™% ") + I(a"%;s™|b™) (16) Bernoulli-Gaussian sequences which is a reasonable proba-

bilistic model for sparse signals. The main result is a non trivial
fower bound on the rate distortion function. The improvement
B. Proof of (12) over the trivial lower bound is- plog, 2 in the low distortion
regime. We also show that the gap between the trivial lower
bound and an upper bound is at mé&tp). This is significant
> pR(D — (1 — p)E[&2|b = 0], N(0,p)). singe H(p) and plog, % are roughly equal for smalb. To.
derive this new lower bound, we develop a new technique
But here we only give the proof for the weaker inequalityo lower bound part of the rate distortion function through a
in (12). The idea is quite similar to the proof of the lowerandomized lossy coding channel. To further narrow the gap
bound in Proposition 4. Suppose that a genie revealdigi@l between the lower bound and the upper bounds, we need to
part of the sourceb™, to the decoder. So for the zero part oflevelop a more sophisticated upper bounding scheme. This is
the source, the decoder can recover them exactly. But for tleé for future work.

where (16) is true by the chain rule for mutual information [5]

In [4], we managed to prove a stronger inequality:

I(a”R; " ‘ bn)
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Fig. 4. A “lossy coding” channel derived from the lossy coding system for Bernoulli-Gaussian seqiered™ x s™,
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