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_Abstract—The traditional view of source coding with For point-to-point fixed-rate lossless source-coding,
side information is in the block coding context in which all - [5] shows that the reliability function with fixed delay is
the source symbols are known in advance by the encoder. i, ,ch petter than the reliability with fixed block-length

We instead consider a sequential setting in which source d beh | to ch | codi ith feedback
symbols are revealed to the encoder in real time and need and behaves analogous fo channel coding with feedback.

to be reconstructed at the decoder within a certain fixed Furthermore, this can be asymptotically achieved by
delay. We derive an upper bound on the reliability function using a fixed-to-variable length code and smoothing the

with delay th:.‘it considers the errors induceq by atypica!ly rate through a queue. An example given in [5], [6]

strange su_d’c’e-nnformatl_onl. It is shown to be tight for certain ) strated how sometimes even an extremely simple and

symmetric” sources In low rate regime. clearly suboptimal nonblock code can dramatically out-
. INTRODUCTION perform the best possible fixed-length block-code when

Ever since Shannon, block-coding has been the cc_)n3|der|ng the tradeoff with fixed delay. In addition,

i . e errors are dominated by events involving theest
vored paradigm for studymg codes. Th_e block—lengt typicality of the source. The future does not matter.
serves as a proxy for both implementation complexity
and end-to-end delay in systems and the corresponding
error exponents (or reliability functions) are used to
study the tradeoffs involved. The story is particularly['n
attractive when upper and lower bounds agree, as th
do for both lossless source coding and for point-to-poi

channel coding in the high-rate regime [1], [2].

These results suggest that a more systematic exam-
ation of the tradeoff between delay and probability
¥ error is needed in other contexts as well. The main
Psult in this paper is an upper bound on the error
. _ xponents with delay for lossless source coding with
Recently, it has become cle:_ir that f|xe(_:l block—le_ng de-information known only at the decoder. While the
heed not be a good proxy for fixed-delay in all Setinggyors could in general be caused by atypical behavior

In [3], we show that despite the block channel codingf the joint source in both the past and the future, this

Le.“ﬁb'“tty funcpons tEOt CT.aE%.'tng fwnht'feedb'{ahck in th aper’s bound captures only the impact of the unknown
\gh rate regime, he refiabiliity tunction With reSpect,,, - ncontrollable future — the potentially atypical

to fixed-delay can in fact improve dramatically Withbehavior of future side-information symbols
feedback In addition, the nature of the dominant error '

events changes. Without feedback, errors are usually
caused byfuture? channel atypicality. When feedback is

present, it is a&ombination of past and futu@ypicality of
that forces errors.

The problem turns out to be analogous to the case
channel coding without feedback, and the strategy
used parallels the one used in [3] for that problem. We

Uit had long been known that the reliability function with respect t@ISO quote the lower bound (achievability results) on the
averageblock-length can improve, but there was a mistaken assertifixed-delay error exponents for which the proofs can be

by Pinsker in [4] that the fixed-delay exponents do not improve wit\aound in [6] [7] The upper and lower bounds agree in
feedback. ' )

2past and future are considered relative to the time that the symﬁble low-rate r_eglme for ;ources W|th_a u_nlform marglnal
in question enters the encoder. and symmetric connections to the side-information.
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Fig. 2. Lossless source coding with side-information

A. Review of source coding with side information

As shown in Figure 2, the sources are iid random
variablesx, y7 3 from a finite alphabe®’ x ). Without
loss of generalityp,(x) > 0, Vo € X. «% is the source

B. Sequential Source Coding

Rather than being known in advance, the source
symbols enter the encoder in a real-time fashion. We
assume that the sourc® generates a pair of source
symbols(x, y) per second from the finite alphab&tx ).

The j'th source symbok; is not known at the encoder
until time j and similarly fory; at the decoder. Rat&
operation means that the encoder sehdsnary bit to
the decoder every,% seconds. For obvious reasons, we
focus on cases witlhl, |, < R < log, |X].

Definition 1: A sequential encoder-decoder p&irD
are sequence of mapgs;},j =1,2,... and{D,},j =
1,2,.... The outputs of; are the outputs of the encoder
£ from time j — 1 to j.

& Xi— {0, 1}LJRJ*L(J'*1)RJ

&i(x]) = b2y
The outputs ofD; are the decoding decisions of all the
arrived source symbols by timgbased on the received
binary bits up to timej as well as the side-information.

D; : {0,1}UR) x yi s x
iR j ~
D; (0™ 4]) = T

known to the encoder ang is the side-information Wherez,_, is the estimation ok;_, and thus has end-

known only to the decoder. A rat block source coding to-end delay ofd seconds. A rateR = 1

5 sequential

system forn source symbols consists of a encodewource coding system is illustrated in Figure 1.

decoder pai(&,, D,,). Where

En: X" — {0, 1} R] En(x) = bl
D, : {071}|_nRj x P X7L7Dn(b1LnRJ y?) — i,’il
The error probability isPr(xj" # XJ') = Pr(x]* #

D, (En(x7))). The exponentEr,(R) is achievable if3
a family of {(£,,D,)}, s.t?

lim . log, Pr(x{" # X1') = Erp(R) 1)

n—oo N

For sequential source coding, it is important to study
the symbol by symbol decoding error probability instead
of the block coding error probability.

Definition 2: A family of rate R sequential source
codes{ (&%, D¥)} are said to achieve delay-reliability
E(R) if and only if: Vi

-1

dli»n;o d

Il. LOWER BOUND ON ACHIEVABLE ERROR
EXPONENTS WITH DELAY

We state the relevant lower bound (achievability) re-

logy P(x; # Xi(i +d)) < Es(R)

The relevant results of [2], [8] are summarized intQyits without proof. More general results and the details

the following theorem.
Theorem 1:E\"(R) < Ery(R) < E'” (R) where

EM(R) =

E(Q) : D N 9
b (1) qu:Hr(rng&)zR{ (@ llPxy) }

of the proof can be found in [6], [7].
Theorem 2:Sequential random source coding theo-
rem: Using a random sequential coding scheme and the

Tfllxiyn{D((ny||ny) + max{0, R — H(qx,)}} ML decoding rule using side-information:

PrlRora(n) # x,] < K27 AF(R) 2

As shown in [2], the two bounds are the same in lowhere K is a constant, and2"(R) = E'"(R) as

rate regime.

3|n this paperx andy are random variables; andy are realizations

of the random variables.
4We use bits andog, in this paper.

defined in Theorem 1.

The random sequential coding scheme can be realized
using an infinite constraint-length time-varying random
convolutional code and ML decoding at the receiver.



I11. UPPER BOUND ON ERROR EXPONENTS WITH  Using this feed-forward decoder:

S B+ A) = DIRGUTII 1 i ()
Factor the joint probability to treat the source as a ! .
random variablex and consider the side-informatign Lemma 1:For any rate R encoder¢, the optimal

as the output of a discrete memoryless channel (DM@play A rate R decoderD># with feed-forward only

Pyjx With x as input. This model is shown in Figure 3.needs to depend V™ 474 43—
Proof: The source and side-informatigr;, y;) is an
X1, X2, ... Decodelr_, X1, Xa, ... iid random process and the encoded lbﬁt@+A?RJ are
functions ofzJ** so obeys the Markov chaini ' —
DMC (le"l,bw“A)RJ,yg*A) z]*2. Conditioned on

the past source symbols, the past side-information is
Y1 Y2y oo completely irrelevant for estimation. O
Write the error sequence of the feed-forward decoder
as 7; = x; — =;. Then we have the following property
. . . for the feed-forward decoders.
Theorem 3:For the source coding with side- . .
g Lemma 2:Given a rateR encoder&, the optimal de-

information problem in Figure 3, if the source is iid AR
~ py, from a finite alphabet, then the error exponentlké?gl ?Orsltj]r?eizcsog)eipeng'gfjefg)';?rgfli f;;,s%/ m-
1 J1 y ]

o : )

v%wgr%g with fixed delay must satisfy”, (1) < Es™(R), _ P':(r)]Of: Proceed t_)y induction. Itbhloldz fof = lth -

2 - 1 since there are no prior source symbols. Suppose that i
ES '(R) = mm{mf‘?xy’“21:H(1‘1_X\(§)>(”°‘)R{5D(quHpXY)}’ holds for allj < k and considey = k. By the induction
infy,, 1>020:0(g.,)>(1+a) R175" D (ax]|px) + hypothesis, the action of all the prior decodgrsan be
D(ayllpxy) simulated using(btV ™ i+A F-1) giving 25

The theorem is proved using a variation of the boundchis in turmn allows the recovery ofy ™" since we also
ing technique used in [3] (and originating in [4]) forknow Z}~'. Thus the decoder is equivalent. O
the fixed-delay channel coding problem. Lemmas 1-6 We call the feed-forward decoders in Lemmas 1 and
are the source coding counterparts to Lemmas 4.1-£3ype | and Il delayA rate R feed-forward decoders
in [3]. The idea of the proof is to first build a feed-respectively. Lemma 1 and 2 tell us that feed-forward
forward sequential source decoder which has accessdgroders can be thought in three ways: having access to
the previous source symbols in addition to the encod@ encoded bits, all side information and all past source
bits and the side-information. The second step is &ymbols, (bLU T +& 7=1) “having access to all
construct a block source-coding scheme from the optimaihcoded bits, a recent window of side information and all
feed-forward sequential decoder and showing that past source Symbol(sb%(”mm,y§+A,x{_1),or having
the side-information behaves atypically enough, then tiagcess to all encoded bits, all side information and all
decoding error probability will be large for at least ongpast decoding errori"eblL(”A)RJ,y{JrA, #h.
of the source symbols. The next step is to prove that the )
atypicality of the side-information before that particulaP- €onstructing a block code
source symbol does not cause the error because of thdo encode a block of. source symbols, just run the
feed-forward information. Thus, cause of the decodingite R encoderf and terminate with the encoder run
error for that particular symbol is the atypical behaviogising some random source symbols drawn according to
of the future side-information only. The last step is tehe distribution ofp, with matching side-information on
lower bound the probability of the atypical behavior an¢he other side. To decode the block, just use the delay
upper bound the error exponents. The proof spans it rate R decoderD?:® with feed-forward, and then

Fig. 3. Lossless source coding with side-information

the next several subsections. use the fedforward error signals to correct any mistakes
that might have occurred. As a block coding system, this
A. Feed-forward decoders hypothetical system never makes an error from end to

end. As shown in Figure 4, the data processing inequality

Definition 3: A delay A rate R decoderD”% with ="'
implies:

feed-forward is a decodeP™ ' that also has access to

i1 "
the pLaES.ii?ngce Symboﬁ In aFidItI_C_){]AtO the encoded S5For any finite| X'|, we can always define agrouf) x| on X, where
bits b7 and side-informatiory] " ~. the operators- and+ are indeed—, + mod |X|



Causal b \ Delay A &
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Feed-forward| = feed-forward > —
delay decoderl z
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Fig. 4. A cutset illustration of the Markov Chaikj* — (X7, bIWH'A)RJ ,y"2) —  xn. Decoderl and decodee are type I and II

delay A rate R feed-forward decoder respectively. They are equivalent.

Lemma 3:1f n is the block-length, the block rate isprobabilitys or aboves satisfies® hs+d log, (|X|—1) =
R(1+2), then 3(H(ayy) — "t R).
Proof: Lemma 3 implies:

H(x(') 2 —=(n+ A)R +nH(x|y) (4) n
Broof: SHE) > HE) > —(n+ AR+ nH (g I5)
nH(x) =, H(KX)=I(x3;x7) The average entropy per source symbol foris at
y I b\_(n-l—A)RJ Lyrta) least H(g,,) — “t2R. Now suppose that{(x;) >
L L;A A L(H(gyy) — ”*AR) for A positions. By noticing that
=c I(X1 7)/1 )+ I(Xl X H(x;) <log,|X|, we have

I 1 n
~ 1 n+ A
S n[(x,y) + H(~n) 4 H(bL(n+A)RJ) Z H(Xl) S Alog2 |X‘ + (n — A)i(H(ley) — n R)
< nH(x) —nH(xly) + HE) " _ _
With Egn. 5, we derive the desired result:
+(n+ A)R A
. L. . A (H(QXIy) - n: R) 6
(a) is true because the source is i.i.@h) is true = Sloe- | X — (H EEN (6)
. e 0gy |X| = (H(gxy) — "5=R)
because of the data processing inequality considering the
following Markov chain:xj' — (xp, by yp) — Where2log, | X| — (H(qx,) — "2 R) > 2log, | X| —
x" and the fact thatI(x;x!) = H(x!) > H(gxy)>2log,|X|—log,[X]>0

I3, b ATy t2) (e) is the chain rule for ~Now for A positionsl < ji < j» < ... < ja <7
mutual information. Other inequalities are obvious) ~ the individual entropyH (x;) > 5(H(qx),) — "12R) .
By the property of the binary entropy functionP(x; #

C. Lower bound the symbol-wise error probability z0) = P(x; #%;) = 0. .
We can pickj* = jA by the previous lemma, we knot
Now suppose this block-code were to be run with the (H(qu,)— "2 R)

distribution g, s.t. H(qy,) > (1 + £)R, from time 1 thatmin{;*,n — j*} > 3 2 Zlog, X |~ (H(gy,)— 25 R) v SO

to n, and were to be run with the dlstrlbutlcmy from if we fix 2 and letn go to infinity, thenmin{;*, n—j*}

time n + 1 to n + A. Write the hybrid distribution as goes to mﬂmty as well.

Q. Then the block coding scheme constructed in the At this point, Lemma 1 and 4 together imply that

previous section will with probabilityt make a block even if the source and side-information only behaves

error. Moreover, many individual symbols will also bdike it came from the hybrid distributio®,, from time

in error often: j* to j* + A and the source behaves like it came
Lemma 4:If the source and side-information is com{from a distributiong, from time 1 to j* — 1, the same

ing from ¢, then there exists @ > 0 so that for minimum error probabilityy still holds. Now define the

n large enough, the feed-forward decoder will make

n+A
at least Hlax,)— 2~ R n symbol errors with

2log, | X|—(H(gxy)— 52 R)

bWrite hs = —8logy § — (1 — 6) logy (1 — 8)
“xq is the zero element in the finite grouf) x|-




“bad sequence” sef;- as the set of source and side- Lemma 7:Ve < min, ,{p,, (z,y)}, and largeA, n:
information sequence pairs so the type | defayate R s
decoder makes an decoding errorjat Formally? Dy (Ej=) > 32 (J=3"+1) D@y lIpwy) = (0"~ 1) Dlaxllpx) ~ I Ge
S o= AR o/~ a
By = {9z # DRR(ER)y) T2, 7)) By
Lemma 4,Q,,(E;-) > 4. Notice that E;- does not

Proof: Combining Lemma 5 and 6.
depend on the distribution of the source but only on g

the encoder-decoder palr Defide= min{n, j* + A}, Dy (Eje) = oy (B N AG ()
and z = xj*, y = y .Now we write the strongly > ¢ (Ej- mAfj(qu))2—(J—j*+1)D(qupry)—(j*—1)D(qx\|px)—JGe
typical sef A° (qu) —{(m,y)\V(x7y),s.t.qu(x,y) > 5 . .
—(J— 1) D(qxy||pxy)— —1)D(qx||px)—JGe
O : 'I"f 7(33 y) c (qu(x7y) — € qu(x y) + Z -2 ( Jj+ ) (q y”P y) (J ) (g Hp ) |:|

e),V(x,y) stgy(r,y) = 0 rzg(2y) = Now we are finally ready to prove Theorem 3. Notice
’ f:rimzxé%x)(;(qﬁ(?ez 6,EI)X(;B);fE)}Iar en and that as long adi(g.,) > 5> R, we know > 0 by
N B2 A J\y)) = 3 gen letting e go to 0, A andn go to infinity proportionally.
Proof: Fix %, let n go to infinity, thenmin{;j*, n— \I/(V(;_Pf_\/ﬁ;lj;f[pﬁ;([fpxy)t(jA*)—n#D(qj;x]) = Po(Ep) 2
4%} goes to infinity. By the definition of/, min{;*, .J Notice that D(qy |[py) > D(q.||p ) and J =
j*} goes to infinity as while. By Lemma 13.6.1 in [9]’min{n §* + A} thxén fxgr aITpossit;(Ieji € [1,n], we
we know thatve > 0, if J— j* andj* are large enough, have: %orn > A’ o
thenQ,y (A5 (gx)¢) < §. By Lemma 4,Q,, (E;+) > 6. ' -

So (J = 3" + 1)D(axy llpxy) + (5 — 1) D(gx|Ipx)

. . 1 < (A4 1)D(gyl|lpxy) + (n — A — qx||px
Qu By 1145 (0)) > Quy (Bj-)~ Qo (A5(0)) > 5 (& F 1) Dlgy ) + (0~ A~ 1)D(ax)
. ~ A(D(ax lIPxy) + —x—Dlax]lpx))

Lemma 6: Ve < MiNg gy (,)>01Px (T, )} Forn < A
V(Z,y) € A5(gxy), o "

(:3) € 45(6) (J =+ DDy ) + (7 = D Daxllps)
pXY((x y)) 9= (J=3"+1) D(qx[IPxy) = (" = 1) D(gxlpx) = I Ge < D (guy||Dxy)
Qx z,y n

' )

where G = max{|X||Y| +

y (2,Y) x(m) i _ A
D by (2,9) >0 logQ(%Jrl),\XHZw logy (55 + Write a = 2, then the upper bound on the error
exponent is the minimum of the above error exponents
Proof: For (7,7) € A5(gx,), by definition of the overalla >0, i.e:
strong typical set, it can be easily shown by algebra:

= = = 1
Dirs ) < Dlal) + Ge and DO < gy —wing it (Lol
axllpx) + Ge . Gy >1:H (q1,)>(1+a) R QY
By Eqgn. 12.60 in [9], we have: ., {1 — Daxllpe) + D(aw oo}
111 qx||Px Axy || Pxy
= _ = A A >a>0:
( ) pxy( )pxy(x .17) (37?]:1 7y?]+*1 ) Uy 12a20:H (g, )>(1+a)R - &
Qw (Z,7) qu( ) 4y (Z,7) py (x?]+iA7y?]+tA) REFERENCES
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