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Abstract— The traditional view of source coding with
side information is in the block coding context in which all
the source symbols are known in advance by the encoder.
We instead consider a sequential setting in which source
symbols are revealed to the encoder in real time and need
to be reconstructed at the decoder within a certain fixed
delay. We derive an upper bound on the reliability function
with delay that considers the errors induced by atypically
strange side-information. It is shown to be tight for certain
“symmetric” sources in low rate regime.

I. I NTRODUCTION

Ever since Shannon, block-coding has been the fa-
vored paradigm for studying codes. The block-length
serves as a proxy for both implementation complexity
and end-to-end delay in systems and the corresponding
error exponents (or reliability functions) are used to
study the tradeoffs involved. The story is particularly
attractive when upper and lower bounds agree, as they
do for both lossless source coding and for point-to-point
channel coding in the high-rate regime [1], [2].

Recently, it has become clear that fixed block-length
need not be a good proxy for fixed-delay in all settings.
In [3], we show that despite the block channel coding
reliability functions not changing with feedback in the
high rate regime, the reliability function with respect
to fixed-delay can in fact improve dramatically with
feedback.1 In addition, the nature of the dominant error
events changes. Without feedback, errors are usually
caused byfuture2 channel atypicality. When feedback is
present, it is acombination of past and futureatypicality
that forces errors.

1It had long been known that the reliability function with respect to
averageblock-length can improve, but there was a mistaken assertion
by Pinsker in [4] that the fixed-delay exponents do not improve with
feedback.

2Past and future are considered relative to the time that the symbol
in question enters the encoder.

For point-to-point fixed-rate lossless source-coding,
[5] shows that the reliability function with fixed delay is
much better than the reliability with fixed block-length
and behaves analogous to channel coding with feedback.
Furthermore, this can be asymptotically achieved by
using a fixed-to-variable length code and smoothing the
rate through a queue. An example given in [5], [6]
illustrated how sometimes even an extremely simple and
clearly suboptimal nonblock code can dramatically out-
perform the best possible fixed-length block-code when
considering the tradeoff with fixed delay. In addition,
the errors are dominated by events involving thepast
atypicality of the source. The future does not matter.

These results suggest that a more systematic exam-
ination of the tradeoff between delay and probability
of error is needed in other contexts as well. The main
result in this paper is an upper bound on the error
exponents with delay for lossless source coding with
side-information known only at the decoder. While the
errors could in general be caused by atypical behavior
of the joint source in both the past and the future, this
paper’s bound captures only the impact of the unknown
and uncontrollable future — the potentially atypical
behavior of future side-information symbols.

The problem turns out to be analogous to the case
of channel coding without feedback, and the strategy
used parallels the one used in [3] for that problem. We
also quote the lower bound (achievability results) on the
fixed-delay error exponents for which the proofs can be
found in [6], [7]. The upper and lower bounds agree in
the low-rate regime for sources with a uniform marginal
and symmetric connections to the side-information.
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Fig. 2. Lossless source coding with side-information

A. Review of source coding with side information

As shown in Figure 2, the sources are iid random
variablesxn

1 , yn
1

3 from a finite alphabetX ×Y. Without
loss of generality,px(x) > 0, ∀x ∈ X . xn

1 is the source
known to the encoder andyn

1 is the side-information
known only to the decoder. A rateR block source coding
system for n source symbols consists of a encoder-
decoder pair(En,Dn). Where

En : Xn → {0, 1}bnRc, En(xn
1 ) = b

bnRc
1

Dn : {0, 1}bnRc × Yn → Xn,Dn(bbnRc
1 , yn

1 ) = x̂n
1

The error probability isPr(xn
1 6= x̂n

1 ) = Pr(xn
1 6=

Dn(En(xn
1 ))). The exponentErb(R) is achievable if∃

a family of {(En,Dn)}, s.t.4

lim
n→∞

− 1
n

log2 Pr(xn
1 6= x̂n

1 ) = Erb(R) (1)

The relevant results of [2], [8] are summarized into
the following theorem.

Theorem 1:E(1)
b (R) ≤ Erb(R) ≤ E

(2)
b (R) where

E
(1)
b (R) = min

qxy

{D(qxy‖pxy ) + max{0, R−H(qx|y )}}

E
(2)
b (R) = min

qxy :H(qx|y )≥R
{D(qxy‖pxy )}

As shown in [2], the two bounds are the same in low
rate regime.

3In this paper,x andy are random variables,x andy are realizations
of the random variables.

4We use bits andlog2 in this paper.

B. Sequential Source Coding

Rather than being known in advance, the source
symbols enter the encoder in a real-time fashion. We
assume that the sourceS generates a pair of source
symbols(x , y) per second from the finite alphabetX×Y.
The j’th source symbolxj is not known at the encoder
until time j and similarly foryj at the decoder. RateR
operation means that the encoder sends1 binary bit to
the decoder every1R seconds. For obvious reasons, we
focus on cases withHx|y < R < log2 |X |.

Definition 1: A sequential encoder-decoder pairE ,D
are sequence of maps.{Ej}, j = 1, 2, ... and{Dj}, j =
1, 2, .... The outputs ofEj are the outputs of the encoder
E from time j − 1 to j.

Ej : X j −→ {0, 1}bjRc−b(j−1)Rc

Ej(x
j
1) = b

bjRc
b(j−1)Rc+1

The outputs ofDj are the decoding decisions of all the
arrived source symbols by timej based on the received
binary bits up to timej as well as the side-information.

Dj : {0, 1}bjRc × Yj −→ X
Dj(b

bjRc
1 , yj

1) = x̂j−d

Wherex̂j−d is the estimation ofxj−d and thus has end-
to-end delay ofd seconds. A rateR = 1

2 sequential
source coding system is illustrated in Figure 1.

For sequential source coding, it is important to study
the symbol by symbol decoding error probability instead
of the block coding error probability.

Definition 2: A family of rate R sequential source
codes{(Ed, Dd)} are said to achieve delay-reliability
Es(R) if and only if: ∀i

lim
d→∞

−1
d

log2 P (xi 6= x̂i(i + d)) ≤ Es(R)

II. L OWER BOUND ON ACHIEVABLE ERROR

EXPONENTS WITH DELAY

We state the relevant lower bound (achievability) re-
sults without proof. More general results and the details
of the proof can be found in [6], [7].

Theorem 2:Sequential random source coding theo-
rem: Using a random sequential coding scheme and the
ML decoding rule using side-information:

Pr[x̂n+∆(n) 6= xn] ≤ K2−∆E(1)
s (R) (2)

Where K is a constant, andE(1)
s (R) = E

(1)
b (R) as

defined in Theorem 1.

The random sequential coding scheme can be realized
using an infinite constraint-length time-varying random
convolutional code and ML decoding at the receiver.
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III. U PPER BOUND ON ERROR EXPONENTS WITH

FIXED DELAY

Factor the joint probability to treat the source as a
random variablex and consider the side-informationy
as the output of a discrete memoryless channel (DMC)
py |x with x as input. This model is shown in Figure 3.
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Fig. 3. Lossless source coding with side-information

Theorem 3:For the source coding with side-
information problem in Figure 3, if the source is iid
∼ pxy from a finite alphabet, then the error exponents
Es(R) with fixed delay must satisfyEs(R) ≤ E

(2)
s (R),

where
E

(2)
s (R) = min{infqxy ,α≥1:H(qx|y )>(1+α)R{ 1

αD(qxy‖pxy )},
infqxy ,1≥α≥0:H(qx|y )>(1+α)R{1−α

α D(qx‖px) +
D(qxy‖pxy )}}

The theorem is proved using a variation of the bound-
ing technique used in [3] (and originating in [4]) for
the fixed-delay channel coding problem. Lemmas 1-6
are the source coding counterparts to Lemmas 4.1-4.5
in [3]. The idea of the proof is to first build a feed-
forward sequential source decoder which has access to
the previous source symbols in addition to the encoded
bits and the side-information. The second step is to
construct a block source-coding scheme from the optimal
feed-forward sequential decoder and showing that if
the side-information behaves atypically enough, then the
decoding error probability will be large for at least one
of the source symbols. The next step is to prove that the
atypicality of the side-information before that particular
source symbol does not cause the error because of the
feed-forward information. Thus, cause of the decoding
error for that particular symbol is the atypical behavior
of the future side-information only. The last step is to
lower bound the probability of the atypical behavior and
upper bound the error exponents. The proof spans into
the next several subsections.

A. Feed-forward decoders

Definition 3: A delay ∆ rate R decoderD∆,R with
feed-forward is a decoderD∆,R

j that also has access to
the past source symbolsxj−1

1 in addition to the encoded
bits b

b(j+∆)Rc
1 and side-informationyj+∆

1 .

Using this feed-forward decoder:

x̂j(j + ∆) = D∆,R
j (bb(j+∆)Rc

1 , yj+∆
1 , xj−1

1 ) (3)

Lemma 1:For any rateR encoderE , the optimal
delay ∆ rate R decoderD∆,R with feed-forward only
needs to depend onbb(j+∆)Rc

1 , yj+∆
j , xj−1

1

Proof: The source and side-information(xi, yi) is an
iid random process and the encoded bitsb

b(j+∆)Rc
1 are

functions ofxj+∆
1 so obeys the Markov chain:yj−1

1 −
(xj−1

1 , b
b(j+∆)Rc
1 , yj+∆

j ) − xj+∆
j . Conditioned on

the past source symbols, the past side-information is
completely irrelevant for estimation. ¤

Write the error sequence of the feed-forward decoder
as5 x̃i = xi − x̂i. Then we have the following property
for the feed-forward decoders.

Lemma 2:Given a rateR encoderE , the optimal de-
lay ∆ rateR decoderD∆,R with feed-forward for sym-
bol j only needs to depend onbb(j+∆)Rc

1 , yj+∆
1 , x̃j−1

1

Proof: Proceed by induction. It holds forj = 1
since there are no prior source symbols. Suppose that it
holds for allj < k and considerj = k. By the induction
hypothesis, the action of all the prior decodersj can be
simulated using(bb(j+∆)Rc

1 , yj+∆
1 , x̃j−1

1 ) giving x̂k−1
1 .

This in turn allows the recovery ofxk−1
1 since we also

know x̃k−1
1 . Thus the decoder is equivalent. ¤

We call the feed-forward decoders in Lemmas 1 and
2 type I and II delay∆ rate R feed-forward decoders
respectively. Lemma 1 and 2 tell us that feed-forward
decoders can be thought in three ways: having access to
all encoded bits, all side information and all past source
symbols,(bb(j+∆)Rc

1 , yj+∆
1 , xj−1

1 ), having access to all
encoded bits, a recent window of side information and all
past source symbols,(bb(j+∆)Rc

1 , yj+∆
j , xj−1

1 ), or having
access to all encoded bits, all side information and all
past decoding errors,(bb(j+∆)Rc

1 , yj+∆
1 , x̃j−1

1 ).

B. Constructing a block code

To encode a block ofn source symbols, just run the
rate R encoderE and terminate with the encoder run
using some random source symbols drawn according to
the distribution ofpx with matching side-information on
the other side. To decode the block, just use the delay
∆ rate R decoderD∆,R with feed-forward, and then
use the fedforward error signals to correct any mistakes
that might have occurred. As a block coding system, this
hypothetical system never makes an error from end to
end. As shown in Figure 4, the data processing inequality
implies:

5For any finite|X |, we can always define a groupZ|X| onX , where
the operators− and+ are indeed−, + mod |X |
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Lemma 3: If n is the block-length, the block rate is
R(1 + ∆

n ), then

H(x̃n
1 ) ≥ −(n + ∆)R + nH(x |y) (4)

Proof:

nH(x) =a H(xn
1 ) = I(xn

1 ; xn
1 )

=b I(xn
1 ; x̃n

1 , b
b(n+∆)Rc
1 , yn+∆

1 )
=c I(xn

1 ; yn+∆
1 ) + I(xn

1 ; x̃n
1 |yn+∆

1 )

+I(xn
1 ; bb(n+∆)Rc

1 |yn+∆
1 , x̃n

1 )

≤ nI(x , y) + H(x̃n
1 ) + H(bb(n+∆)Rc

1 )
≤ nH(x)− nH(x |y) + H(x̃n

1 )
+(n + ∆)R

(a) is true because the source is i.i.d.(b) is true
because of the data processing inequality considering the
following Markov chain:xn

1 − (x̃n
1 , b

b(n+∆)Rc
1 , yn

1 ) −
xn
1 and the fact that I(xn

1 ; xn
1 ) = H(xn

1 ) ≥
I(xn

1 ; x̃n
1 , b

b(n+∆)Rc
1 , yn+∆

1 ). (c) is the chain rule for
mutual information. Other inequalities are obvious.¤

C. Lower bound the symbol-wise error probability

Now suppose this block-code were to be run with the
distribution qxy , s.t. H(qx|y ) > (1 + ∆

n )R, from time 1
to n, and were to be run with the distributionpxy from
time n + 1 to n + ∆. Write the hybrid distribution as
Qxy . Then the block coding scheme constructed in the
previous section will with probability1 make a block
error. Moreover, many individual symbols will also be
in error often:

Lemma 4: If the source and side-information is com-
ing from qxy , then there exists aδ > 0 so that for
n large enough, the feed-forward decoder will make

at least
H(qx|y )−n+∆

n R

2 log2 |X |−(H(qx|y )−n+∆
n R)

n symbol errors with

probabilityδ or above.δ satisfies6 hδ+δ log2(|X |−1) =
1
2 (H(qx|y )− n+∆

n R).
Proof: Lemma 3 implies:

n∑

i=1

H(x̃i) ≥ H(x̃n
1 ) ≥ −(n + ∆)R + nH(qx|y )(5)

The average entropy per source symbol forx̃ is at
least H(qx|y ) − n+∆

n R. Now suppose thatH(x̃i) ≥
1
2 (H(qx|y ) − n+∆

n R) for A positions. By noticing that
H(x̃i) ≤ log2 |X |, we have

n∑

i=1

H(x̃i) ≤ A log2 |X |+ (n−A)
1
2
(H(qx|y )−

n + ∆
n

R)

With Eqn. 5, we derive the desired result:

A ≥ (H(qx|y )− n+∆
n R)

2 log2 |X | − (H(qx|y )− n+∆
n R)

n (6)

Where2 log2 |X | − (H(qx|y ) − n+∆
n R) ≥ 2 log2 |X | −

H(qx|y ) ≥ 2 log2 |X | − log2 |X | > 0
Now for A positions1 ≤ j1 < j2 < ... < jA ≤ n

the individual entropyH(x̃j) ≥ 1
2 (H(qx|y ) − n+∆

n R) .
By the property of the binary entropy function7, P (x̃j 6=
x0) = P (xj 6= x̂j) ≥ δ. ¤

We can pickj∗ = jA
2

, by the previous lemma, we knot

that min{j∗, n− j∗} ≥ 1
2

(H(qx|y )−n+∆
n R)

2 log2 |X |−(H(qx|y )−n+∆
n R)

n, so

if we fix ∆
n and letn go to infinity, thenmin{j∗, n−j∗}

goes to infinity as well.
At this point, Lemma 1 and 4 together imply that

even if the source and side-information only behaves
like it came from the hybrid distributionQxy from time
j∗ to j∗ + ∆ and the source behaves like it came
from a distributionqx from time 1 to j∗ − 1, the same
minimum error probabilityδ still holds. Now define the

6Write hδ = −δ log2 δ − (1− δ) log2(1− δ)
7x0 is the zero element in the finite groupZ|X|.
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“bad sequence” setEj∗ as the set of source and side-
information sequence pairs so the type I delay∆ rateR
decoder makes an decoding error atj∗. Formally8

Ej∗ = {(~x, ¯̄y)|xj∗ 6= D∆,R
j∗ (E(~x), yj∗+∆

j , x̄)}. By
Lemma 4,Qxy (Ej∗) ≥ δ. Notice thatEj∗ does not
depend on the distribution of the source but only on
the encoder-decoder pair. DefineJ = min{n, j∗ + ∆},
and ¯̄̄x = xJ

j∗ , ¯̄̄y = yJ
j∗ .Now we write the strongly

typical set9 Aε
J(qxy ) ={(~x, ¯̄y)|∀(x, y), s.t.qxy (x, y) >

0 : r ¯̄̄x, ¯̄̄y(x, y) ∈ (qxy (x, y) − ε, qxy (x, y) +
ε),∀(x, y), s.t.qxy (x, y) = 0 : r ¯̄̄x, ¯̄̄y(x, y) =
0 and ∀x, rx̄(x) ∈ (qx(x)− ε, qx(x) + ε)}

Lemma 5:Qxy (Ej∗ ∩ Aε
J (qxy )) ≥ δ

2 for large n and
∆.

Proof: Fix ∆
n , let n go to infinity, thenmin{j∗, n−

j∗} goes to infinity. By the definition ofJ , min{j∗, J−
j∗} goes to infinity as while. By Lemma 13.6.1 in [9],
we know that∀ε > 0, if J− j∗ andj∗ are large enough,
thenQxy (Aε

J (qxy )C) ≤ δ
2 . By Lemma 4,Qxy (Ej∗) ≥ δ.

So

Qxy (Ej∗∩Aε
J (qxy )) ≥ Qxy (Ej∗)−Qxy (Aε

J(qxy )C) ≥ δ

2
¤

Lemma 6:∀ε < minx,y:pxy (x,y)>0{pxy (x, y)},
∀(~x, ¯̄y) ∈ Aε

J(qxy ),

pxy (~x, ¯̄y)
Qxy (~x, ¯̄y)

≥ 2−(J−j∗+1)D(qxy‖pxy )−(j∗−1)D(qx‖px )−JGε

where G = max{|X ||Y| +∑
x,y:pxy (x,y)>0 log2(

qxy (x,y)
pxy (x,y) +1), |X |+∑

x log2(
qx (x)
px (x) +

1)}
Proof: For (~x, ¯̄y) ∈ Aε

J(qxy ), by definition of the
strong typical set, it can be easily shown by algebra:
D(r ¯̄̄x, ¯̄̄y‖pxy ) ≤ D(qxy‖pxy ) + Gε and D(rx̄‖px) ≤
D(qx‖px) + Gε .

By Eqn. 12.60 in [9], we have:

pxy (~x, ¯̄y)
Qxy (~x, ¯̄y)

=
pxy (x̄)
qxy (x̄)

pxy (¯̄̄x, ¯̄̄x)
qxy (¯̄x, ¯̄y)

pxy (x
j∗+∆
J+1 , yj∗+∆

J+1 )

pxy (x
j∗+∆
J+1 , yj∗+∆

J+1 )

=
2−(J−j∗+1)(D(r ¯̄̄x, ¯̄̄y‖pxy )+H(r ¯̄̄x, ¯̄̄y))

2−(J−j∗+1)(D(r ¯̄̄x, ¯̄̄y‖qxy )+H(r ¯̄̄x, ¯̄̄y))

2−(j∗−1)(D(rx̄‖px )+H(rx̄))

2−(j∗−1)(D(rx̄‖qx )+H(rx̄))

≥ 2−(J−j∗+1)(D(qxy‖pxy )+Gε)−(j∗−1)(D(qx‖px )+Gε)

= 2−(J−j∗+1)D(qxy‖pxy )−(j∗−1)D(qx‖px )−JGε¤

8To simplify the notation, write:~x = xj∗+∆
1 , x̄ = xj∗−1

1 , ¯̄x =

xj∗+∆
j∗ , ¯̄y = yj∗+∆

j∗
9Write the empirical distribution of(¯̄x, ¯̄y) as r¯̄x, ¯̄y(x, y) =

nx,y(¯̄x, ¯̄y)

∆+1
. Write the empirical distribution of̄x asrx̄(x) =

nx(x̄)
j∗−1

.

Lemma 7:∀ε < minx,y{pxy (x, y)}, and large∆, n:

pxy (Ej∗) ≥ δ

2
2−(J−j∗+1)D(qxy‖pxy )−(j∗−1)D(qx‖px )−JGε

,
Proof: Combining Lemma 5 and 6.

pxy (Ej∗) ≥ pxy (Ej∗ ∩Aε
J(qxy ))

≥ qxy (Ej∗ ∩Aε
J(qxy ))2−(J−j∗+1)D(qxy‖pxy )−(j∗−1)D(qx‖px )−JGε

≥ δ

2
2−(J−j∗+1)D(qxy‖pxy )−(j∗−1)D(qx‖px )−JGε¤

Now we are finally ready to prove Theorem 3. Notice
that as long asH(qx|y ) > n+∆

n R, we know δ > 0 by
letting ε go to 0, ∆ andn go to infinity proportionally.
We have: Pr[x̂j∗(j∗ + ∆) 6= xj∗ ] = pxy (Ej∗) ≥
K2−(J−j∗+1)D(qxy‖pxy )−(j∗−1)D(qx‖px ).

Notice that D(qxy‖pxy ) ≥ D(qx‖px) and J =
min{n, j∗ + ∆}, then for all possiblej∗ ∈ [1, n], we
have: forn ≥ ∆

(J − j∗ + 1)D(qxy‖pxy ) + (j∗ − 1)D(qx‖px)
≤ (∆ + 1)D(qxy‖pxy ) + (n−∆− 1)D(qx‖px)

≈ ∆(D(qxy‖pxy ) +
n−∆

∆
D(qx‖px))

For n < ∆

(J − j∗ + 1)D(qxy‖pxy ) + (j∗ − 1)D(qx‖px)
≤ nD(qxy‖pxy )

= ∆(
n

∆
D(qxy‖pxy ))

Write α = ∆
n , then the upper bound on the error

exponent is the minimum of the above error exponents
over all α > 0, i.e:

E(2)
s (R) = min{ inf

qxy ,α≥1:H(qx|y )>(1+α)R
{ 1
α

D(qxy‖pxy )},

inf
qxy ,1≥α≥0:H(qx|y )>(1+α)R

{1− α

α
D(qx‖px) + D(qxy‖pxy )}}

REFERENCES

[1] R. G. Gallager,Information Theory and Reliable Communication.
New York, NY: John Wiley, 1971.
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