Upper Bound on Error Exponents with Delay
for Lossless Source Coding with
Side-Information

Cheng Chang Anant Sahai
Wireless Foundations, Dept. of EECS Wireless Foundations, Dept. of EECS
University of California at Berkeley University of California at Berkeley
Email: cchang@eecs.berkeley.edu Email: sahai@eecs.berkeley.edu

_Abstract—The traditional view of source coding with For point-to-point fixed-rate lossless source-coding,
side information is in the block coding context in which all - [5] shows that the reliability function with fixed delay is
the source symbols are known in advance by the encoder. i, ,ch petter than the reliability with fixed block-length

We instead consider a sequential setting in which source d beh | to ch | codi ith feedback
symbols are revealed to the encoder in real time and need and behaves analogous fo channel coding with feedback.

to be reconstructed at the decoder within a certain fixed Furthermore, this can be asymptotically achieved by
delay. We derive an upper bound on the reliability function using a fixed-to-variable length code and smoothing the

with delay th:.‘it considers the errors induceq by atypica!ly rate through a queue. An example given in [5], [6]

strange su_d’c’e-nnformatl_onl. It is shown to be tight for certain ) strated how sometimes even an extremely simple and

symmetric” sources In low rate regime. clearly suboptimal nonblock code can dramatically out-
. INTRODUCTION perform the best possible fixed-length block-code when

Ever since Shannon, block-coding has been the cc_)n3|der|ng the tradeoff with fixed delay. In addition,

i . e errors are dominated by events involving theest
vored paradigm for studymg codes. Th_e block—lengt typicality of the source. The future does not matter.
serves as a proxy for both implementation complexity
and end-to-end delay in systems and the corresponding
error exponents (or reliability functions) are used to
study the tradeoffs involved. The story is particularly['n
attractive when upper and lower bounds agree, as th
do for both lossless source coding and for point-to-poi

channel coding in the high-rate regime [1], [2].

These results suggest that a more systematic exam-
ation of the tradeoff between delay and probability
¥ error is needed in other contexts as well. The main
Psult in this paper is an upper bound on the error
. _ xponents with delay for lossless source coding with
Recently, it has become cle:_ir that f|xe(_:l block—le_ng de-information known only at the decoder. While the
heed not be a good proxy for fixed-delay in all Setinggyors could in general be caused by atypical behavior

In [3], we show that despite the block channel codingf the joint source in both the past and the future, this

Le.“ﬁb'“tty funcpons tEOt CT.aE%.'tng fwnht'feedb'{ahck in th aper’s bound captures only the impact of the unknown
\gh rate regime, he refiabiliity tunction With reSpect,,, - ncontrollable future — the potentially atypical

to fixed-delay can in fact improve dramatically Withbehavior of future side-information symbols
feedback In addition, the nature of the dominant error '

events changes. Without feedback, errors are usually
caused byfuture? channel atypicality. When feedback is

present, it is a&ombination of past and futu@ypicality of
that forces errors.

The problem turns out to be analogous to the case
channel coding without feedback, and the strategy
used parallels the one used in [3] for that problem. We

Uit had long been known that the reliability function with respect t@ISO quote the lower bound (achievability results) on the
averageblock-length can improve, but there was a mistaken assertifixed-delay error exponents for which the proofs can be

by Pinsker in [4] that the fixed-delay exponents do not improve wit\aound in [6] [7] The upper and lower bounds agree in
feedback. ' )

2past and future are considered relative to the time that the symﬁble low-rate r_eglme for ;ources W|th_a u_nlform marglnal
in question enters the encoder. and symmetric connections to the side-information.
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Fig. 2. Lossless source coding with side-information

A. Review of source coding with side information

As shown in Figure 2, the sources are iid random
variablesx, y7 3 from a finite alphabe®’ x ). Without
loss of generalityp,(x) > 0, Vo € X. «% is the source

B. Sequential Source Coding

Rather than being known in advance, the source
symbols enter the encoder in a real-time fashion. We
assume that the sourc® generates a pair of source
symbols(x, y) per second from the finite alphab&tx ).

The j'th source symbok; is not known at the encoder
until time j and similarly fory; at the decoder. Rat&
operation means that the encoder sehdsnary bit to
the decoder every,% seconds. For obvious reasons, we
focus on cases witlhl, |, < R < log, |X].

Definition 1: A sequential encoder-decoder p&irD
are sequence of mapgs;},j =1,2,... and{D,},j =
1,2,.... The outputs of; are the outputs of the encoder
£ from time j — 1 to j.

& Xi— {0, 1}LJRJ*L(J'*1)RJ

&i(x]) = b2y
The outputs ofD; are the decoding decisions of all the
arrived source symbols by timgbased on the received
binary bits up to timej as well as the side-information.

D; : {0,1}UR) x yi s x
iR j ~
D; (0™ 4]) = T

known to the encoder ang is the side-information Wherez,_, is the estimation ok;_, and thus has end-

known only to the decoder. A rat block source coding to-end delay ofd seconds. A rateR = 1

5 sequential

system forn source symbols consists of a encodewource coding system is illustrated in Figure 1.

decoder pai(&,, D,,). Where

En: X" — {0, 1} R] En(x) = bl
D, : {071}|_nRj x P X7L7Dn(b1LnRJ y?) — i,’il
The error probability isPr(xj" # XJ') = Pr(x]* #

D, (En(x7))). The exponentEr,(R) is achievable if3
a family of {(£,,D,)}, s.t?

lim . log, Pr(x{" # X1') = Erp(R) 1)

n—oo N

For sequential source coding, it is important to study
the symbol by symbol decoding error probability instead
of the block coding error probability.

Definition 2: A family of rate R sequential source
codes{ (&%, D¥)} are said to achieve delay-reliability
E(R) if and only if: Vi

-1

dli»n;o d

Il. LOWER BOUND ON ACHIEVABLE ERROR
EXPONENTS WITH DELAY

We state the relevant lower bound (achievability) re-

logy P(x; # Xi(i +d)) < Es(R)

The relevant results of [2], [8] are summarized intQyits without proof. More general results and the details

the following theorem.
Theorem 1:E\"(R) < Ery(R) < E'” (R) where

EM(R) =

E(Q) : D N 9
b (1) qu:Hr(rng&)zR{ (@ llPxy) }

of the proof can be found in [6], [7].
Theorem 2:Sequential random source coding theo-
rem: Using a random sequential coding scheme and the

Tfllxiyn{D((ny||ny) + max{0, R — H(qx,)}} ML decoding rule using side-information:

PrlRora(n) # x,] < K27 AF(R) 2

As shown in [2], the two bounds are the same in lowhere K is a constant, and2"(R) = E'"(R) as

rate regime.

3|n this paperx andy are random variables; andy are realizations

of the random variables.
4We use bits andog, in this paper.

defined in Theorem 1.

The random sequential coding scheme can be realized
using an infinite constraint-length time-varying random
convolutional code and ML decoding at the receiver.



I11. UPPER BOUND ON ERROR EXPONENTS WITH Lemma 1:For any rateR encoderé&, the optimal
FIXED DELAY delay A rate R decoderD”® with feed-forward only
.. - i+A)R i+A i—1
Factor the joint probability to treat the source as Beeds to depend ot J_,y;_ ;] _ _
random variablex and consider the side-informatign Proof: The source and S'de‘lnfOFmatlQﬁir,Ay)il)ﬂIS an
as the output of a discrete memoryless channel (DM@l random process and the encoded bits ™™ are

Py|x With x as input. This model is shown in Figure 3.functions ofz]"* so obeys the Markov chain] ' —

(] 71 pfITRL yatay 374 Conditioned on
X1, X2, ... Decoder_, X1, %2, ... the past source symbols, the past side-information is
completely irrelevant for estimation. |
DMC Write the error sequence of the feed-forward decoder
as 7; = x; — 7;. Then we have the following property
Y1 Y25 oo for the feed-forward decoders.

Lemma 2:Given a rateR encoder€, the optimal de-

lay A rate R decoderD?% with feed-forward for sym-
: ' ith side-bol j only needs to depend a5 a4 Fi-1
Theorem 3:For the source coding with side-POl 7 only p Y12

information problem in Figure 3, if the source is iid ~ Proof: Proceed by induction. It holds fof = 1
~ py, from a finite alphabet, then the error exponentsnce there are no prior source symbols. Suppose that it

E,(R) with fixed delay must satisfyz, (R) < E(§2)(R), holds for _61||j <k and considey = k By the induction
hypothesis, the action of all the prior decodgrsan be

Fig. 3. Lossless source coding with side-information

) . simulated using(btV T i+A F-1) giving 251
EF(R) = (e H){Rq . {D(gxyllpxy) } (3 This in turn allows the recovery af*~! since we also
A know z¥~1. Thus the decoder is equivalent. O

The theorem is proved using a variation of the bound- \we call the feed-forward decoders in Lemmas 1 and
ing technique used in [3] (and originating in [4]) forp type | and Il delayA rate R feed-forward decoders
the fixed-delay channel coding problem. Lemmas 14@spectively. Lemma 1 and 2 tell us that feed-forward
are the source coding counterparts to Lemmas 4.1-48coders can be thought in three ways: having access to
in [3]. The idea of the proof is to first build a feed-z)| encoded bits, all side information and all past source
forward sequential source decoder which has aCCGSSS%’]bOlS,(b%(jJFA)RJ,y{+A,m{_1), having access to all

the previous source symbols in addition to the encodecoded bits, a recent window of side information and all

bits and the side-information. The second step is it source symbolgytV )% 47+ 471y or having
1dg ) ’

construct a block source-coding scheme from the optimgécess to all encoded bits, all side information and all
feed-forward sequential decoder and showing that pbfast decoding errors{blL(j*A)RJ7y{+A,E{*1).
the side-information behaves atypically enough, then the

decoding error probability will be large for at least ond8. Constructing a block code

of the source symbols. The next step is to prove that thety encode a block of, source symbols, just run the
atypicality of the side-information before that particulafate R encodere and terminate with the, encoder run
source symbol does not cause the error because of {6y some random source symbols drawn according to
feed-forward information. Thus, cause of the decodinge gistribution ofp, with matching side-information on
error for that particular symbol is the atypical behaviofhe other side. To decode the block, just use the delay
of the future side-information only. The last step is t\ rate R decoderD®® with feed-forward. and then
lower bound the probability of the atypical behavior andse the fedforward error signals to correct any mistakes
upper bound the error exponents. The proof spans iffoy might have occurred. As a block coding system, this

the next several subsections. hypothetical system never makes an error from end to
A. Feed-forward decoders end. As shown in Figure 4, the data processing inequality
implies:

Definition 3: A delay A rate R decoderD?% with . .
feed-forward is a decodep™ % that also has access to Lemma 3:If n is the block-length, the block rate is
1 i 14+ 2), th
the past source symboiﬁ_f in addition to the encoded R(1L+ 5), then
bits 5LV and side-information/ ™. H(X') > —1— (n+ AR+ nH(x|y) (5)
Using this feed-forward decoder:

. . . SFor any finite| X'|, we can always define a grouf) x| on X, where
zi(j+A) = DjA’R(bIL(]JFA)RJ , y{"_A, ac]l_l) (4) the operators- and+ are indeed—, + mod |X|
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Fig. 4. A cutset illustration of the Markov Chaikj* — (X7, blL(”"'A)RJ ,y"2)  —  xn. Decoderl and decode are type I and II
delay A rate R feed-forward decoder respectively. They are equivalent.

Proof: The average entropy per source symbol is at least
. . H(gy,)—R—12E > 0. Since the above analysis holds
nH(x) =. H(x')=1(x";x7") Vn, A, by lettingn go to infinity, it is clear that at least
=, I(x X, T AIRL one error symbolja must have an individual entropy
o T(xPsy A IRy H(x;,) > H(qX%,) — R . By the property of the binary
entropy function, P(x; x0) = P(x; Xi) > 4.
I LTI A gy o py (Xja # o) (Xja # Xja) =
< nl(x,y)+H(KP) + H(blL("J“A)RJ) At this point, Lemma 1 and 4 together imply that even
< nH(x) —nH(x|y) + HE") if the side-information only behaves like it came from
i+ A)R 41 a distributiong,, from time ja to ja + A, the same

minimum error probabilityy still holds. Now define the
(a) is true because the source is iih) is true “bad sequence” sek’;, as the set of source and side-

because of the data processing inequality considering f’(?éorrgation iequen((:je pa(ijr_s so the 'tytpli ' det‘ﬁ)yﬁateR
: o p L+ AR] ecoder makes an decoding errorjat Forma
following Markov chain:x] —(xl,blu 8 J7)/1) - B, = {(7 )|, # DAg’R(E(Z)g Ja+A Gy B
x and the fact thatI(x};x}') = H(}) > . Ja —4 x’%xm> 5 {\IA i Qf[h’ytjE 7(;3 . yt
I3, bRyt A) () s the chain rule for emma 4, g, (E;,) > 6. Notice thatE;, does no

. . . - . depend on the distribution of the source but only on
mutual information. Other inequalities are obvioud.] . .
the encoder-decoder pair. Now we write the strongly

C. Lower bound the symbol-wise error probability ~ YPical set A%, 1(g0) ={(7,9)¥(2,y), s-t.qx (2, y) >
_ _ 0:75.5(x,Y) € (@y — € @y +€),¥(2,y),5.t.0(,y) =

Now suppose this block-code were to be run with thg. rz5(x,y) = 0}
distribution .y, S.t.ax = px and H(qy,) > (1+ )R Lemma 5:q, (E;, N A%, (qy)) > 3 for large A,
then the block coding scheme constructed in the previous  Proof: By Lemma 13.6.1 in [9], we know thate >
section will with probability 1 make a block error. ¢, if A is large enough, the%y(AZ+l(qu)C) < g By
Moreover, many individual symbols will also be in erron.emma 4,4, (E;,) > 6. So
often:

Lemma 4:If the source and side-information is com-gxy (Ej. NAX 11 (@xy)) = Gy (Ejn )=y (A 11 (2x)€) >
ing from g, then there exists &> 0 so that forn large 0
enough, the feed-forward decoder will make a symbol }
error on at least one symbol far with probability 6 or V() € A%, () '
above.s satisfies® h; + 6 log, (|X'| — 1) = H(gy,) — R WS Ay,

[NCRIES)

Lemma 6:Ve < MiNg gy (2,)>01Px (T, Y)

Proof: Lemma 3 implies: Py (7, 7) > 9~ (A+1)(D(gy[Ipy)+Ge)
. Py (7,9)
Z H(}z) > H(}{L) >—1- (” + A>R + ”H(%dy) Tz is the zero element in the finite groug x|
i=1 8To simplify the notation, write:t = AT g = ATl g =
= —1—-(n+A)R+nH(qy) xii*A ::yﬁ*é. o B
9Wr:|tg the empirical distribution of(Z,3) as 7z z(z,y) =
SWrite hs = —8logy & — (1 — 0) logy(1 — &) Roylf D)



whereG = [ X[V + X, ., ()50 1082 (242 +1)

Proof: py = gx S0 g, (Z) = px, (Z). And (Z,7) €

source withp,, (0,0) = p,(1,1) = 0.25, p,,(0,2) =
DPxy(1,2) = 0.25, H(x|y) = 0.5. It is clear that the

AS 11 (g% ), by definition of the strong typical set,erasure case would generalize to larger alphabets as long

it can be easily shown by algebrdd(rs ;||py) <

D(gxyllpxy) + Ge.
By Eqgn. 12.60 in [9], we have:

Py(Z9) _ Po(®) Py (T,9) _ Py(T,7)

Gy (T,9) Gy (T) 0 (T,9) a0y (7, 7)
92— (A+1)(D(rz,5llpy)+H(rz,5))

T 9 (At D)D(rz s la) +H(rz 7))

> 9~ (AFD(D (g llpo) +Ge)

SRSl

O

Lemma 7:pxy(E7’A) > 32—(A+1)(D(‘1xy”17xy)+06),
Ve < ming ,{gx (2, y), px (z,y)}, and largeA.
Proof: Combining Lemma 5 and 6.

pxy(EjA) > pxy(EjA N AEAJrl(qu))
Z qXY(E.jA N AEAJrl(qu))2_(A+1)(D(QXYHPX)/)+G€)

< 09— (A+1)(D(ay lIps)+Ge)
2

as the source stayed uniform.
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Fig. 5.  Upper bound and lower bound

V. CONCLUSIONS ANDFUTURE WORK

We studied sequential lossless source coding with
side-information known at the receiver and defined the
error exponents with delay. By applying a variation of
the feed-forward channel coding analysis in [3], we
derived an upper bound on error exponents with delay for

Now we are f|na||y ready to prove Theorem 3. Noticyssless COding with side-information. The upper bound

that as long agi(qy|,) > R, we knows > 0 by lettinge

is tight in the low rate regime for uniform symmetric

go to0 and A go to infinity in the proper way. We have; sources. One future direction is to generalize the current

Pr[QjA (]A + A) # XjA] = pxy(EjA> > K92—AD(axylpy)

results to general Slepian-Wolf source coding problem

By the assumptions Oql(yr the upper bound on the errorWith multlple encoders. A lower bound is derived in [7]

exponents is

inf
@y H (qx)y) > R,qx=px

{D (g lIPxy)}

D. Discussion

In general the upper bound on the error exponents

with delayEﬁQ)(R) is not the same as the lower bound _ _ o
e[1] R. G. Gallager/nformation Theory and Reliable Communication

Eﬁl)(R). But for uniform symmetric sources wher

px(x) = ﬁ andp, |, is a symmetric channel as definedz] 1.

in [1], the upper bound can be rewritten as

E®(R) = B (R) {D(gx Py}

= min

but the general upper bound is still unknown.

Stepping back, this work in conjunction with [5]
shows that ignoring the fact that side-information is
present at the encoder may have a significant and funda-
mental delay-penalty even though it has no rate penalty.
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