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Abstract— 1 The localization problem is fundamentally impor-
tant for sensor networks. This paper studies the Craḿer-Rao
lower bound (CRB) for two kinds of localization based on noisy
range measurements. The first is Anchored Localization in which
the estimated positions of at least 3 nodes are known in global
coordinates. We show some basic invariances of the CRB in this
case and derive lower and upper bounds on the CRB which
can be computed using only local information. The second is
Anchor-free Localization where no absolute positions are known.
Although the Fisher Information Matrix is singular, a CRB-like
bound exists on the total estimation variance. Finally, for both
cases we discuss how the bounds scale to large networks under
different models of wireless signal propagation.

Index Terms— Cramér-Rao bound, localization, estimation
bounds, ranging information, sensor networks.

I. I NTRODUCTION

In wireless sensor networks, the positions of the sensors
play a vital role. Position information can be exploited within
the network stack at all levels from improved physical layer
communication[2] to routing[3] and on to the application
level where positions are needed to meaningfully interpret any
physical measurements the sensors may take. Because it is
so important, this problem of localization has been studied
extensively. Most of these studies assume the existence of a
group of “anchor nodes” that havea-priori known positions.
There are three major categories of localization schemes that
differ in what kind of geometric information they use to
estimate locations. Many, such as those of [4], [5], [6], [7], [8],
use only the connectivity information reflecting whether node
i can directly communicate with nodej, or anchork. Such
approaches are attractive because connectivity information is
accessible at the network layer due to its use in multi-hop
routing.

The second category uses both ranging and angular infor-
mation for localization. Such schemes are studied in [9], [10],
[11]. These are useful when there is a line of sight and antenna
arrays are available at the sensor nodes so that beamforming
is possible to determine the angles.

The third category is localization based solely on ranging
measurements among nodes and between nodes and anchors.
In [12], [13], the schemes for estimating ranges are discussed.
[14], [15] estimate the positions directly based on such node to
anchor ranging estimates. In contrast, [16], [17] first estimate
positions in an anchor-free coordinate system and then embed
it into the coordinate system defined by the anchors. In this

1Based on ”Estimation Bounds for localization” [1] by Cheng Chang and
Anant Sahai which appeared in the First IEEE Communications Society
Conference on Sensor and Ad Hoc Communications and Networks, 2004
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paper we also focus on localization using ranging information
alone.

The Craḿer-Rao lower bound (CRB) [18] is widely used to
evaluate the fundamental hardness of an estimation problem.
The CRB for anchored localization using ranging information
has been studied in [19], [20], [21]. The expression for the
CRB was derived in [19]. In [21], a comparison of the CRB
with the simpler Bayesian Bound has been studied. In [20],
simulation is used to study the impact of the density of the
anchors and the size of the sensor network on the CRB.

As far as anchored localization goes, our additional con-
tribution is giving a geometric interpretation of the CRB
and deriving local lower and upper bounds on the CRB.
The lower bounds imply that local geometry is critical for
localization accuracy. The corresponding upper bounds show
through simulation that the errors are not a lot worse if only
the nearby anchors or nodes are involved in the position
estimation of a particularly node. These results show that
distributed localization schemes are promising.

For anchor-free localization, as mentioned in [10], the Fisher
Information Matrix (FIM) is singular and so the standard CRB
analysis fails[22]. The CRB on anchor-free localization has not
been thoroughly studied. In this paper, we give a geometric
interpretation on a modified CRB and derive some properties
of it. Furthermore, we show by example that anchor-free
localization sometimes has a lower total estimation variance
bound than anchored localization.

A. Outline of the paper

After reviewing some basics in this introduction, Section II
studies bounds for anchored localization. Assuming the rang-
ing errors are iid Gaussian, we give an explicit expression for
the FIM solely based on the geometry of the sensor network
and show that the CRB is essentialy invariant under zooming,
translation, and rotation. Using matrix theory, we give a lower
bound on the CRB that is determined by only local geometry.
This converges to the CRB as the local area is expanded. We
also give a corresponding local upper bound on the localization
CRB. Finally we study the wireless situation in which the
noise variance on the range measurements depends on the
inter-sensor distance. Simulation results validate our intuition
that the faster the signal decays, the less the CRB benefits
from faraway information. A heuristic argument reveals the
basic scaling laws involved.

Section III studies the bound for anchor-free localization.
The rank of the FIM forM nodes is shown to be at most
2M − 3. The corresponding modified CRB is interpreted as a
bound on the sum of the estimation variances. We observe that
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the per node bound in simulations appears to be proportional
to the average number of neighbors and conjecture that the
total estimation variance scales with the total received signal
energy.

B. Craḿer-Rao bound on ranging

Since range is our basic input, we first review the CRB
for wireless ranging. The distance between two nodes isctd,
wherec is the speed of light andtd is the time of arrival (TOA).
TOA estimation is extensively studied in the radar literature. If
T is the observation duration,A(t) is the pulse2, andN0 is the
noise power spectral density, then for any unbiased estimate
of td [23]:

E[(t̂d − td)2] ≥ N0∫ T

0
[∂A(t)

∂t ]2dt

Notice that
∫ T

0
(∂A(t)

∂t )2dt is proportional to the energy in
the signal with the proportionality constant depending on the
pulse shape. Because of the derivative, we know that having
a pulse with a wide bandwidth is beneficial. Calling that
proportionalityτ2

r we have:

E[(t̂d − td)2] ≥ τ2
r

SNR
(1)

The CRB on ranging is a fundamental bound coming only
from the Gaussian thermal noise in the received signal. In
reality, there are other sources of small ranging errors in-
cluding interference, multipath spreading, unpredictable clock
drifts, operating system latencies, etc. These can cause the
ranging error to be non-Gaussian even near the mean. More
significantly, these ranging errors do not scale with SNR. We
ignore all these other sources of error in this paper.

C. Models of localization

We idealize the localization problem by assuming all the
sensors are fixed on a 2-D plane. We have a setS of M
sensors with unknown positions, together with a setF of N
sensors (anchors) with known positions. Because the size of
each sensor is assumed to be very small, it is treated as a
point.

Each sensor generates limited-energy wireless signals that
enable nodei to measure the distance to some nearby sensors
in the setadj(i). We assumej ∈ adj(i) iff i ∈ adj(j) for
symmetry. Throughout, we also assume high SNR3 and so
are free to assume that the distance measurements are only
corrupted by independent zero mean Gaussian errors.

2Notice that ranging estimates can be obtained from any pulse whose shape
is known at the receiver. This includes data carrying packets that have been
successfully decoded as long as we know the time they were supposed to have
been transmitted. In a wireless sensor network, we are thus not restricted to
use a dedicated radio for ranging.

3Suppose that we are estimating the propagation time by looking for a peak
in a matched filter. By high SNR we mean that the peak we find is in the
near neighborhood of the true peak. At low SNR, it is possible to become
confused due to false peaks arising entirely from the noise.

1) Anchored localization:If there are at least three nodes
with positions known in global coordinates (|F | ≥ 3), then it
is possible to estimate such global coordinates for each node
using observationsD and position knowledgePF .

D = {d̂i,j |i ∈ S ∪ F, j ∈ adj(i)} (2)

PF = {(xi, yi)T |i ∈ F} (3)

Our goal is to estimate the set

PS = {(x̂i, ŷi)T |i ∈ S} (4)

(xi, yi) is the position of sensori. The measured distance
between sensori andj is d̂i,j =

√
(xi − xj)2 + (yi − yj)2 +

εi,j , whereεi,j ’s are modeled as independent Gaussian errors
∼ N(0, σ2

ij).

visibleR

Fig. 1. A sensor network, solid dots are anchors, circles are nodes with
unknown positions. The rangêdi,j is estimated for sensor pairsi, j s.t.di,j ≤
Rvisible.

2) Anchor-free localization:If |F | = 0, no nodes have
known positions. This is an appropriate model whenever either
we do not care about absolute positions, or if whatever global
positions we do have are far more imprecise than the quality of
measurements available within the sensor network. However,
local coordinates are not unique. IfPS = {(x̂i, ŷi)T |i ∈ S} is
a position estimate, thenP ′S = {R(α)(±x̂i, ŷi)T +(a, b)T |i ∈
S} is equivalent toPS where the± represents reflecting the
entire network about they axis andR(α) is a rotation matrix:

R(α) =
(

cos(α) − sin(α)
sin(α) cos(α)

)
(5)

Thus, the performance measure for anchor-free localization
should not be

∑
i(xi− x̂i)2+(yi− ŷi)2. The distance between

equivalence classes should be used instead. Since the FIM for
anchor-free localization is singular [10], the bound will be
developed using the tools provided in [22].

II. ESTIMATION BOUNDS FOR ANCHORED LOCALIZATION

The Craḿer-Rao bound (CRB) can be derived from the FIM.
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A. The anchored localization FIM

In [19], [20], [21], expressions for the localization FIM were
derived. The derivations are repeated below for completeness
and furthermore, we observe that the FIM for localization
is a function of the angles between nodes and anchors. As
illustrated in Fig.2, the angleαij ∈ [0, 2π) from nodei to j
is defined as:

cos(αij) =
xj − xi√

(xj − xi)2 + (yj − yi)2
=

xj − xi

dij

sin(αij) =
yj − yi√

(xj − xi)2 + (yj − yi)2
=

yj − yi

dij
(6)
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Fig. 2. αij illustrated

Let xi, yi be the 2i − 1’th and 2i’th parameters to be
estimated respectively,i = 1, 2, . . . , M . The FIM isJ2M×2M .

Theorem 1:(FIM for Anchored Localization) ∀i =
1, . . . ,M

J2i−1,2i−1 =
∑

j∈adj(i)

cos2(αij)
σ2

ij

(7)

J2i,2i =
∑

j∈adj(i)

sin2(αij)
σ2

ij

(8)

J2i−1,2i = J2i,2i−1 =
∑

j∈adj(i)

cos(αij) sin(αij)
σ2

ij

(9)

For nondiagonal entriesj 6= i, if j ∈ adj(i):

J2i−1,2j−1 = J2j−1,2i−1 = − 1
σ2

ij

cos2(αij) (10)

J2i,2j = J2j,2i = − 1
σ2

ij

sin2(αij) (11)

J2i−1,2j = J2j,2i−1 = J2i,2j−1 = J2j−1,2i

= − 1
σ2

ij

sin(αij) cos(αij) = − 1
2σ2

ij

sin(2αij)

If j /∈ adj(i), the entries are all zero.
Proof: : We have the conditional pdf4:

p(~d|xM
1 , yM

1 ) =
∏

i<j,j∈adj(i)

e

−(d̂ij−dij)2

2σ2
ij

√
2πσ2

ij

4~d = {d̂i,j |i < j, j ∈ adj(i)} is the observation vector.
xM
1 = (x1, x2, ..., xM ), similarly for yM

1 .

The Log-likelihood is ln(p(~d|xM
1 , yM

1 )) = C −∑
i<j,j∈adj(i)

(d̂i,j−di,j)
2

2σ2
ij

and so:

J2i−1,2i−1 = E(
∂2 ln(p(~d|xM

1 , yM
1 ))

∂x2
i

)

=
∑

j∈adj(i)

1
σ2

ij

(
xj − xi√

(xj − xi)2 + (yj − yi)2
)2

=
∑

j∈adj(i)

cos2(αij)
σ2

ij

and similarly for other entries ofJ . ¤

B. Properties of the anchored localization CRB

Given the FIM, the CRB for any unbiased estimator is5:

E((x̂i − xi)2) ≥ J−1
2i−1,2i−1

E((ŷi − yi)2) ≥ J−1
2i,2i

Corollary 1: (The FIM is invariant under zooming and
translation)J({(xi, yi)}) = J({(axi +c, ayi +d)}) for a 6= 0.

Proof: : The anglesαij and noiseσij are unchanged and
so the result follows immediately. ¤

Corollary 2: The CRB for a single node is invariant un-
der rotation and reflection: LetA = J({(xi, yi)}), B =
J({R(xi, yi)}), where R is a 2 × 2 matrix, with RRT =
I2×2. ThenA−1

2i−1,2i−1 + A−1
2i,2i = B−1

2i−1,2i−1 + B−1
2i,2i, ∀i =

1, 2 . . . ,M .
Proof: : Going through the derivation of the FIM, we find

that B = QAQT , whereQ is a 2M × 2M matrix with the
following form:

(
Q2i−1,2i−1 Q2i−1,2i

Q2i,2i−1 Q2i,2i

)
= R (12)

with all other entries ofQ being0. ObviouslyQT Q = QQT =
I2M×2M and soB−1 = QA−1QT . Write

A(i) =
(

A−1
2i−1,2i−1 A−1

2i−1,2i

A−1
2i,2i−1 A−1

2i,2i

)
(13)

and similarly for B(i). Then B(i) = RA(i)RT . Since
Tr(XY ) = Tr(Y X), we have: B−1

2i−1,2i−1 + B−1
2i,2i =

Tr(B(i)) = Tr(RA(i)RT ) = Tr(RT RA(i)) = Tr(A(i)) =
A−1

2i−1,2i−1 + A−1
2i,2i. ¤

C. A lower bound to the anchored localization CRB

In order to invert the FIM and thereby evaluate the CRB,
we need to take the geometry of the whole sensor network
into account. In this section, we derive a performance bound
for nodel that depends only on the local geometry around it.
This has the potential to be valuable to “local” algorithms that
try to do localization without performing all the computations
in one center.

First we review a lemma for estimation variance:

5We write (A−1)i,j asA−1
i,j for a non-singular matrixA.
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Lemma 1: (Submatrix bound) Let the row vectorθ =
(θ1, θ2, . . . , θN ) ∈ RN , ∀M, 1 ≤ M < N , write θ∗ =
(θN−M+1, . . . , θN ), then for any unbiased estimator forθ,

E((θ∗ − θ̂∗)T (θ∗ − θ̂∗)) ≥ C−1 (14)

WhereC is the (N −M)× (N −M) matrix :

J(θ) =
(

A B
BT C

)
(15)

where J(θ) is the non-singular, and hence positive definite,
FIM for θ.

Proof: : Write the inverse ofJ(θ) as :

J(θ)−1 =
(

A′ B′

B′T C ′

)
(16)

J(θ) is positive definite, then Theorem 5 in the appendix
guarantees:

C ′ ≥ C−1 (17)

The CRB theorem then givesE((θ∗ − θ̂∗)T (θ∗ − θ̂∗)) ≥
C ′ ≥ C−1. ¤

Notice that for any subset ofM nodes, we can always
reorder them to get indicesN −M + 1, . . . , N . By directly
applying Lemma 1 we get:

Theorem 2:(A lower bound on the CRB)
Write θl = (xl, yl)T and write

Jl =
1
σ2

(
J(θ)2l−1,2l−1 J(θ)2l−1,2l

J(θ)2l,2l−1 J(θ)2l,2l

)
(18)

Then for any unbiased estimatorθ̂. E((θ̂l − θl)(θ̂l − θl)T ) ≥
J−1

l .
This means we can give a bound on the estimation of(xl, yl)
using only the local geometry around sensorl

Corollary 3: Jl only depends on(xl, yl) and (xi, yi), i ∈
adj(l)

Proof: : Jl in Eqn.7 only depends on(αlj , σlj), j ∈
adj(l). These only depend on(xl, yl) and (xi, yi). ¤

Assume that the ranging errors are iid Gaussian with zero
mean and common varianceσ2 and define the normalized
FIM K = σ2J . This is similar to the Geometric Dilution
of Precision (GDOP) in radar[24] sinceK is dimensionless
and only depends on the anglesαij ’s. Let W = |adj(l)|
with sensors∈ adj(l) being l(1), . . . , l(k), . . . , l(W ). Using
elementary trigonometry and writingαk = αl,l(k):

Jl =
1
σ2

(
W
2 +

∑W
k=1 cos(2αk)

2

∑W
k=1 sin(2αk)

2∑W
k=1 sin(2αk)

2
W
2 −

∑W
k=1 cos(2αk)

2

)

The sum of the estimation variance

E((xl − x̂i)2 + (yl − ŷi)2) ≥ J−1
l 11

+ J−1
l 22

=
4Wσ2

W 2 − (
∑W

k=1 cos(2αk))2 − (
∑W

k=1 sin(2αk))2
≥ 4σ2

W

(19)

with equality when
∑W

k=1 sin(2αk) = 0,
∑W

k=1 cos(2αk) =
0. This happens if the centroid of the unit vectors

(cos(2αk), sin(2αk)) is the origin. A special case is when the
angles2αk ’s are uniformly distributed in[0, 2π).

Above, we usedone-hop geometric information around
node i to get a lower bound on the CRB. This bound can
be interpreted as the CRB given perfect knowledge of the
positions ofall other nodes6. We can use more information to
tighten the bound. The lower bound using 2-hop information
is the CRB given the positions ofall nodesj, j /∈ adj(i),
and similarly for multiple-hops. The larger the local region
we use to calculate the CRB, the tighter it is. We define the
CRB on such an estimation problem as theN − hop bound
for that particular node. Obviously, theN−hop bound is non-
decreasing withN , and the∞ − hop bound is the same as
the CRB for the original estimation problem.

In our simulation, we have200 nodes and10 anchors all
uniformly randomly distributed inside the unit circle,j ∈
adj(i), if and only if di.j ≤ 0.3. In Figure. 3, we plot the
bounds for20 randomly chosen nodes.
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Fig. 3. Dot: CRB, Cross: 2-hop, Square: 1-hop, Curve:4
adj(l)

The nodes are indexed with decreasingadj(i)

D. An upper bound to the anchored localization CRB

The CRB in Theorem 1 gives us the best performance an
unbiased estimator can achieve givenall information from the
sensor network, including the positions of all anchors and
all the available ranging information̂di,j . This bounds the
performance of a centralized localization algorithm where a
central computer first collects all the information and then
estimate the positions of the nodes.

In a sensor network, distributed localization is often pre-
ferred. In this “local” estimation problem only a subset of the
anchorsFl ⊆ F and a neighborhood of the nodesl ∈ Sl ⊆ S
may be taken into account. The CRBV (xl) and V (yl) of
this local estimation problem computed from the2|Sl|×2|Sl|
FIM is an upper bound on the CRB for the original problem
because strictly less information is used for estimation.7 In
this section, the two bounds are compared through simulation.

6It’s equivalent to know the positions of all the neighbors.
7In [19], a rigorous proof is given for the equivalent proposition that the

localization CRB for a node is non-increasing as more nodes or anchors are
introduced into the sensor network.
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The wireless sensor network is shown in Fig.4. Anchors
are on the integer lattice points in a7×7 square region. There
are 20 nodes with unknown positions uniformly randomly
distributed inside each grid square. Sensorsi and j can see
each other only if they are separated by a distance less than
0.5.
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Fig. 4. The setup of the sensor network
Anchors are shown as squares, nodes are shown as dots, nodes inside the
central grid are shown as black dots.

We compute the normalized CRBs (Vi = V x
i + V y

i , i =
1, 2, . . . , 20) for localization of the nodes inside the central
grid A1A2A3A4 in 4 different cases corresponding to in-
formation from within the squares:A1A2A3A4, B1B2B3B4,
C1C2C3C4, and the whole sensor network. As shown in Fig.5,
Vi(A) ≥ Vi(B) ≥ Vi(C) ≥ Vi(ALL), i = 1, 2, . . . , 20. We
observe thatVi(C) (squares in Fig.5) is extremely close to
Vi(ALL) (the curve in Fig.5). More surprisingly, we observe
that Vi(B) is much smaller thanVi(A).

To explore further, we gradually increase the size of the
square region and compute the average CRB forA1A2A3A4.
As shown in Fig.6, the average CRB decreases as the network
size increases. After first dropping significantly, the upper
bound levels off once we have included all the nodes directly
adjacent to our neighborhood. This bodes well for doing
distributed localization — distant anchors and ranging infor-
mation do not significantly improve the estimation accuracy.

E. CRB under different propagation models

In the previous discussion, the ranging information was
assumed to be corrupted by iid Gaussian errors. The ranging
CRB, Eqn.1, implies that the varianceσ2

i,j of the additive
noise on the distance measurement should depend on the
distancedi,j between two nodesi, j, because the received
wireless signalA(t) attenuates as a function ofd. We assume
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Fig. 5. Craḿer-Rao bounds
Circle: estimation bounds using the information insideA1A2A3A4.
Dot: estimation bounds using the information insideB1B2B3B4.
Square: estimation bounds using the information insideC1C2C3C4.
Curve: estimation bounds using all the information.
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Fig. 6. Circle: CRB using information from local network.
Line: CRB using whole network.

σ2
i,j = σ2da

i,j , whereσ2 is the noise variance whend = 1.8

Furthermore, we assume a range estimate is available between
all sensors, though it may be bad if they are far apart.
Interference is ignored. This is reasonable only when there
is no bandwidth constraint for the system as a whole, or if the
data rates of communication are so low that all nodes can use
signaling orthogonal to each other.

DefineK = σ2J to be the normalized FIM. Just as in the
case wherea = 0, translations of the whole sensor network
do not change the FIM. Rotation does not change the CRB on
any nodeK−1

2i−1,2i−1 + K−1
2i,2i. However, zooming does have

an effect on the FIM.
Corollary 4: (The normalized FIM K is scaled under

zooming) If the propagation model isda, a ≥ 0,and the
whole sensor network is zoomed by a zooming factorc > 0.
K({c(xi, yi)}) = 1

ca K({(xi, yi)}), c 6= 0.
Proof: : Zooming does not change the anglesαi,j be-

tween sensors. If the zooming factor isc, then the decaying

8Earlier, we had a hybrid model witha = 0 locally and a = ∞ at a
great distance since the range is only available for sensor pairi, j, if di,j <
Rvisible.
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factor changes to(cdi,j)a = cada
i,j , Substitute the new

decaying factors into the FIM as in Theorem 1, we get:
K({c(xi, yi)}) = 1

ca K({(xi, yi)}). ¤
The CRBσ2K−1

i,i changes proportional toca, if the whole
sensor network is zoomed up by a factorc.

Next, we have a simulation in which we fix the node density
and examine the average CRB for differenta’s as we vary the
size of the sensor network. The sensor network is the same as
in Fig.4 and the sizes are taken at1 × 1, 3 × 3, . . . , 13 × 13.
We calculate the average CRB inside the central square and
plot the average estimation bound in10 log10 scale in Fig.7.

The average CRB decreases as the size of the sensor
network increases. This is expected since there is more infor-
mation available and no interference by assumption. Asymp-
totically, the CRB decreases at a faster rate for smallera since
the noise variance increases more slowly with range.
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Fig. 7. Average CRB in the central grid for differenta
Circle: a = 1, Dot: a = 2, Cross:a = 3

Heuristically, the localization accuracy for nodei is mainly
determined by the total energy received by it. Suppose that the
distance between nodes is≥ rm, and the nodes are uniformly
distributed. We approximate the total received energyPR

coming from sensors within distanceR as:

PR = β

∫ 2π

0

∫ R

rm

ρ−aρdρdθ = 2βπ

∫ R

rm

ρ1−adρ

=
{

2βπ
2−a (R2−a − r2−a

m ) if a 6= 2
2βπ(ln(R)− ln(rm)) if a = 2.

Whena < 2, PR behaves likeR2−a which grows unboundedly
as the network grows and similarly fora = 2 where PR

behaves likeln(R). In such non-physical cases, it would be
possible to save each node’s transmitter power by going to a
larger network and then turning down the transmit power in
such a way as to keep the position accuracy fixed.But in the
physically relevant case ofa > 2, PR converges to2βπ

a−2r2−a
m

and local measurements should be good enough.This heuristic
explanation is a qualitative fit with simulations as illustrated
in Fig.7.

III. E STIMATION BOUNDS FORANCHOR-FREE

LOCALIZATION

For anchor-free localization, only the inter-node distance
measurements are available. The nature of anchor-free local-
ization is very different from anchored localization, in that the
absolute positions of the nodes cannot be determined. We first
review the singularity of the FIM using the treatment from
[18].

Lemma 2: (Rank of the FIM) Let ~d be the observation
vector, andθ be then dimensional parameter to be estimated.
Write the log likelihood function asl(~d|θ) = ln(p(~d|θ)). The
rank of the FIMJ is n−k, k ≥ 0, if and only if the expectation
of the square of directional derivative ofl(~d|θ) at θ is zero for
k independent vectorsb1, . . . , bk ∈ Rn.

Proof: : The directional derivative ofl(~d|θ) at θ, along
directionbi is : τ(bi) = (∂l/∂θ1, ∂l/∂θ2, . . . , ∂l/∂θn)bi.

E(τ(bi)2)
= E(bT

i (∂l/∂θ1, . . . , ∂l/∂θn)T (∂l/∂θ1, . . . , ∂l/∂θn)bi)
= bT

i Jbi (20)

If k independent vectorsb1, . . . , bk makebT
i Jbi = 0, the rank

of J is n− k, sinceJ is ann× n symmetric matrix. ¤
The FIM for anchor-free localization is given in Theorem

1, just with no anchors. With the above lemma, we can prove
that the rank of this FIM is deficient by at least3. This is
intuitively clear since there are3 degrees of freedom coming
from rotation and translation.

Theorem 3:For the anchor-free localization problem, with
M nodes, the FIMJ(θ) is of rank2M − 3

Proof: : The log-likelihood function of this estimation
problem is :

l(~d|θ)
= ln(p({d̂i,j , 1 ≤ i, j ≤ M, j ∈ adj(i)}
|{

√
(xi − xj)2 + (yi − yj)2, 1 ≤ i, j ≤ M, j ∈ adj(i)})

=
∑

1≤i,j≤M,j∈adj(i)

ln(p(d̂i,j |
√

(xi − xj)2 + (yi − yj)2))

The last equality comes from the independence of the mea-
surement errors. The directional derivative of each term
in the sum is 0 along the vectors~b1,~b2,~b3 ∈ R2M .
~b1 = (1, 0, 1, 0, . . . , 1, 0)T ,~b2 = (0, 1, 0, 1, . . . , 0, 1)T ,~b3 =
(y1,−x1, y2,−x2, . . . , yM ,−xM )T where~b1 and~b2 span the
2-D space inR2M corresponding to translations and~b3 is
the instantaneous direction when the whole sensor networks
rotates. ¤

Since the FIM is not full rank, we cannot apply the standard
CRB argument becauseJ−1 does not exist. Instead, the CRB
is the Moore-Penrose pseudo-inverseJ†.[22]

A. What doesJ† mean: the total estimation bound

When the FIM is singular, we cannot properly define
the parameter estimation problem inRn. However, we can
estimate the parameters in the local subspace spanned by
all k orthonormal eigenvectors~v1, . . . , ~vk corresponding non-
zero eigenvalues ofJ . In that subspace, the FIMQ is full
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rank. Write V = (v1, . . . , vk), V is an n × k matrix and
V T V = Ik, thenQ = V T JV , andQ−1 = V T J†V , thusJ†

is the intrinsic CRB matrix for the estimation problem. The
total estimation bound for the estimation problem in thek
dimensional subspace isTr(Q−1), and Tr(Q−1) = Tr(J†)
by elementary matrix theory.

Unlike the anchored case, we cannot claim the estimation
accuracy of a single node to be bounded by:

E((x̂i − xi)2) + E((ŷi − yi)2) ≥ J†2i−1,2i−1 + J†2i,2i (21)

since there always exists a translation of the entire network to
make the estimation of nodei perfectly accurate. However, the
total estimation bound contrains the performance of anchor-
free localization since the trace is invariant.9

Definition 1: Total estimation boundVtotal(J) on anchor-
free localization10

Vtotal(J) =
∑M

i=1(J
†
2i−1,2i−1 + J†2i,2i) = Tr(J†)

By the definition we know thatVtotal(K) is invariant under
rotation, translation and zooming.

Theorem 4:(Total estimation boundVtotal(J) on an
anchor-free localization problem)
Vtotal(J) =

∑2M−3
i=1

1
λi

, whereλi’s are non-zero eigenvalues
of J

Proof: The correctness follows the fact that the eigenval-
ues of J† are 1

λ1
, 1

λ2
, . . . , 1

λ2M−3
, 0, 0, 0. And so Tr(J†) =∑2M−3

i=1
1
λi

. ¤
1) Total estimation bound on 3 nodes anchor-free localiza-

tion: Using Theorem 4, we can give the total lower bound
on any geometric setup of an anchor-free localization. The
simplest nontrivial case is when there are only3 points. We
fix two points at(0, 0), (0, 1). We plot the contour of the total
estimation bound as a function of the position of the3rd node
∈ [0, 1]× [0, 1].

The result shows that the total estimation bound is related
to the biggest angle of the triangle. The larger that angle is,
the larger the total estimation bound is. From Fig.8, we find
that the minimum total estimation bound is achieved when the
triangle is equilateral, where the 3rd node is at(0.5,

√
3

2 ). Fig.9
(b) shows what is happening around the minimum.

2) Total estimation bound for different network shapes:
The shape of the sensor network effects the total estimation
bound. We illustrate this by a simulation withM sensors
randomly and uniformly distributed in a region with all the
pairwise distances measured. We plot the average normalized
total estimation bound of50 independent experiments.

Fig.10 reflects a rectangular region with dimensionL1 ×
L2, L1 ≥ L2. Since the zooming does not change the total
estimation bound, only the ratioR = L1

L2
matters and it turns

out that the normalized CRB increases asR increases, or as the

9A geometric interpretation of this total estimation is as follows. Imagine
that the estimation is done in the2n − 3 dimensional subspace which
is orthogonal to the3 dimensional space spanned by~b1,~b2,~b3. Then the
expectation of the square of the error vector will be upper bounded byTr(J†).

10For anchored localization,J is non-singular. ThusJ−1 = J†. It’s
immediate from the definition of the CRB that

∑
i E((x̂i − xi)

2 + (ŷi −
yi)

2) ≤ Tr(J−1) = Tr(J†).
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Fig. 8. The contour shows the total estimation bound in10 log10 scale for
the 3rd node at(x, y).
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Fig. 9. The total estimation bound, the 3rd node is at(0.5, y) along the
dotted line in Fig.8.

rectangle becomes less and less square.11 However, once the
number of nodes had gotten large enough, the total estimation
error bound did not change with more nodes. The error was
reduced per-node in a way that simply distributed the same
total error over a larger number of nodes.

B. Why not set a node at(0, 0) and another node on the x
axis

It is tempting to eliminate the singularity of the
FIM by just setting some parameters. If we fix node
1 at position (x1, y1), node 2 with y-coordinate 0,
it is equivalent to doing the estimation in the sub-
space through point(x1, y1, . . . , xM , yM ) perpendicular to

11In [25], we also studied the total estimation bound for an annular region.
Let R = rinner

router
be the ratio of the radius of the inner circle over the radius

of the outer circle, we observe that the total estimation bound decreases as
R increases and again the total estimation bound is roughly constant with
respect to the number of nodes. The best case is having the nodes along the
circumference of a circle!
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~c1 = (1, 0, 0, 0, . . . , 0)T , c2 = (0, 1, 0, 0, . . . , 0)T ,~c3 =
(0, 0, 1, 0, . . . , 0)T . In general, the subspace generated by
~c1,~c2,~c3 is not the same as that generated by~b1,~b2,~b3 and
so the choice of which nodes we choose to fix can impact the
bounds!

C. Comparison of anchored and anchor-free localization

Sometimes a bad geometric setup of anchors results in bad
anchored estimation, while the anchor-free estimation is still
good! As such, it is not useful to view the anchor-free case as
an information-limited version of the anchored case. After all,
in the anchored case, we also have a more challenging goal: to
get the absolute positions correct, not just up to equivalency. In
Fig.11, we have a sensor network with3 anchors very close to
each other, the total estimation bound for anchored localization
is 195.20, meanwhile the total estimation bound for anchor-
free localization is4.26. 12
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Fig. 11. A bad setup of anchors. square: anchors, dot: nodes

12As a result, we suggest algorithm designers avoid fixing the global
coordinate system unless they are confident on the setup of the anchors.

D. Total estimation bound under different propagation models

It can be easily seen that just as in the anchored localization,
J is invariant under translation andVtotal(J) is invariant under
rotation as well. Just as in anchored localization, the total
estimation boundVtotal(J) changes proportional toca, if the
whole sensor network is zoomed up by a factorc.

In simulation, we study the affect of the size of the sensor
network on the average estimation bound in different propa-
gation models, i.e. for differenta’s using the same setup as
Fig.4.
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Fig. 12. The average normalized total estimation lower boundV S size of
the sensor network for differenta.
Circle: a = 1, Dot: a = 2, Cross:a = 3

As shown in Fig.12, we observe that the average estimation
bound decreases as the size of the sensor network increases
with fixed node density. Just as in the anchored case shown
in Fig.7, the estimation accuracy is mainly determined by
the received power and so the heuristic explanation for the
anchored case also fits the simulation results we have for the
anchor-free case.

IV. CONCLUSIONS ANDFUTURE WORK

In this paper, we studied the CRB for both anchored
and anchor-free localization and gave a method to compute
the CRB in terms of the geometry of the sensor network.
For anchored localization, we derived both lower and upper
bounds on the CRB which are determined by only local
geometry. These showed that we can use local geometry
to predict the accuracy of the position estimation and that
bodes well for distributed algorithms. The implications of
our results on sensor network design is that accurate position
estimation requires good local geometry of the sensor network.
For anchor-free localization, the singularity of the FIM was
overcome by computing the total estimation bound instead.
Finally, we considered the implications of wireless signal
propagations and found that if the signals propagate very well,
then there are potentially significant gains by using larger
networks and doing estimation in a manner that uses this
information. However, such path-loss models are unphysical
and so practical schemes should work fine with only local
information.
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So far, we have only computed the CRB. For the design
of algorithms, it would also be good to know thesensitivity
of the bound to individual observations. It might be very
helpful to localization if one can identify the bottlenecks of
the problem. i.e. figure out which distance measurement could
help to increase the localization accuracy the most. With the
knowledge of the bottlenecks, it may be possible to allocate the
energy or computation in a smart way to improve localization
accuracy. Finally we don’t know if we can approach the bound
with distributed or centralized localization.13
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APPENDIX

A. Proof of Eqn.17 The lemmas and the theorem in
the appendix can be treated as corollaries of the results in
[26]. We prove all the lemmas and the theorem here for self
completeness.

Theorem 5:For a positive definiteN ×N matrix J .

J =
(

A B
BT C

)
(22)

WhereA is anM ×M symmetric matrix,C is anN −M ×
N −M symmetric matrix andB is anM ×N −M matrix.
If we write

J−1 =
(

A′ B′

B′T C ′

)
(23)

WhereA andA′ have the same size,B andB′ have the same
size, so doC andC ′. C ′ − C−1 is positive semi-definite
First we need several lemmas.

Lemma 3:A is positive definite.
Proof: ∀~x ∈ RM , x 6= 0. Let ~y = (~x,~0)T , where~0 is the
1× (N −M) all 0 vector,~y is anN dimensional vector. Then
~xT A~x = ~yT J~y > 0.

The last inequality is true becauseJ is positive definite,and
~y 6= 0. ~x is arbitrary, soA is positive definite. ¤

Similarly C is positive definite, and thusA,C are nonsin-
gular.

Lemma 4:A−BC−1BT is positive definite.
Proof: First notice that for a positive definite matrixJ , J can
be written asJT

HJH , whereJH is an N × N non-singular
matrix. Write JH = (S R), whereS is anN ×M , R is an
N × (N −M) matrix. Then

A = ST S; B = ST R; C = RT R (24)

C is nonsingular, soR has full rankN−M . The singular value
decomposition ofR is R = UΛV , whereU is an N × N
matrix, UT U = UUT = I,V is an (N − M) × (N − M)
matrix, V T V = V V T = I, andΛ is anN× (N−M) matrix.

Λ =
(

diag(λ1, ...λN−M )
0M×(N−M)

)
(25)

λi > 0 becauseR has full rankN −M . Now:

A−BC−1BT

= ST S − ST R(RT R)−1RT S (26)

= ST (I −R(RT R)−1RT )S
= ST (I − (UΛV )((UΛV )T (UΛV ))−1(UΛV )T )S
= ST (I − UΛV (V T ΛT ΛV )−1V T ΛT UT )S
= ST (I − UΛV V T (ΛT Λ)−1V T V ΛT UT )S
= ST (I − UΛ(ΛT Λ)−1ΛT UT )S
= ST U(I − Λ(ΛT Λ)−1ΛT )UT S = ST U∆UT S (27)
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Where∆ = diag(δ1, δ2, ...δN ), whereδi = 0, i = 1, 2, ..., N−
M and δi = 1, N − M < i ≤ N . Obviously A −
BC−1BT is positive semi-definite. Suppose∃~x ∈ RM , ~x 6=
0, but ~xT ST U∆UT S~x = 0. Then we haveUT S~x =
(y1, y2, ..., yN )T = ~y andyN−M+1, ...yN all equal to0. Now
S~x = U~y and from the fact thatyN−M+1, ...yN all equal to
0, we have:
Λ(ΛT Λ)−1ΛT ~y = ~y. Write ~z = V T (ΛT Λ)−1ΛT ~y, then
S~x = U~y = UΛV ~z = R~z,where~x 6= 0. This contradicts
to the fact that(S R) is full rank. ¤.

Similarly C −BT A−1B is positive definite, and thus both
are full rank.

Lemma 5:(C − BT A−1B)−1 = C−1BT (A −
BC−1BT )−1BC−1 + C−1

Proof: : Notice that bothA and(A−BC−1BT ) are full
rank, then,

(C−1BT (A−BC−1BT )−1BC−1 + C−1)(C −BT A−1B)
= I + C−1BT (A−BC−1BT )−1B − C−1BT A−1B

−C−1BT (A−BC−1BT )−1BC−1BT A−1B

= I + C−1BT ((A−BC−1BT )−1 −A−1

−(A−BC−1BT )−1BC−1BT A−1)B
= I

+C−1BT ((A−BC−1BT )−1(A−BC−1BT )A−1 −A−1)B
= I

¤
Lemma 6:J−1 If we write

J =
(

A B
BT C

)
andJ−1 =

(
A′ B′

B′T C ′

)

ThenC ′ = (C −BT A−1B)−1

Proof: : Given the form of J−1, we have BT B′ +
CC ′ = I(N−M)×(N−M) andAB′+BC ′ = 0. From the latter
equation, we getB′ = −A−1BC ′. Substitute into the first
equation to get:−BT A−1BC ′ + CC ′ = I(N−M)×(N−M).
Since the dimensions of the matrices all match, we get the
desired result. ¤

Now we can give the proof of Theorem 5.
Proof: : C ′ = (C − BT A−1B)−1 following Lemma 6.

Then from Lemma 5, we know
(C−BT A−1B)−1 = C−1BT (A−BC−1BT )−1BC−1+C−1.
Thus
C ′ − C−1 = C−1BT (A − BC−1BT )−1BC−1 =
C−1T

BT (A − BC−1BT )−1BC−1 The second equality fol-
lows sinceCT = C. Finally, (A − BC−1BT )−1 is positive
definite by Lemma 4. ¤

Definition 2: Upper-left submatrix
1 ≤ n ≤ m, the upper-leftn × n submatrix of anm × m
matrix A is an n × n matrix B, s.t. B(i, j) = A(i, j),∀1 ≤
i ≤ n, 1 ≤ j ≤ n.

Corollary 5: Monotonically increasing matrices
For a positive definiteN ×N matrix matrixJ . Let 1 ≤ n1 ≤
n2 ≤ ... ≤ nM = N , let A be the upper-leftni×ni submatrix
of A. Let,Bi be the upper-leftn1×n1 submatrix ofA−1

i . Then

we have:

A−1
i = B1 ≤ B2 ≤ B3 ≤ ... ≤ BM (28)

Proof: : Notice that an upper-left submatrix of a positive
definite matrix is still positive definite as shown in Lemma 3.
Repeatedly applying Theorem 5 gives the desired result.¤

B. A case study of a localization algorithm
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Fig. 13. Setup of the sensor networkM = 20.

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

2

2.5

3
x 10

−3

Index of Nodes

S
qu

ar
e 

E
rr

or

Fig. 14. Comparison of CRB and estimation variance of a simple localization
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The CRB only applies for unbiased estimators. To see why
this is important, consider the simple localization scheme
based on laceration and averaging that was proposed in [25].
To compare the CRB with the average estimation variance
of our localization algorithm, we setup the sensor network as
follows. All the sensors are located inside the unit circle.3
anchors are located at(0, 1), (

√
3

2 ,− 1
2 ), (−

√
3

2 ,− 1
2 ). 20 nodes

with unknown positions are uniformly distributed inside the
unit circle as shown in Fig.13.

Fig.14 compares the CRB on the estimation variance with
the estimation variance for our simple localization scheme.
Rvisible = 2 and the additive Gaussian errors haveσ = 0.05.
The estimation variance for some nodes is smaller than the
CRB for unbiased estimators because our localization scheme
is biased.


