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Abstract— We consider object tracking by a UWB sen-
sor network using multi-path measurements in different
scenarios: single Tx with single Rx, multiple Tx with single
Rx, and multiple Tx with multiple Rx. For each scenario,
we examine the Cramér-Rao lower bound (CRLB) for
the high-SNR case where multi-path measurements are
corrupted by iid Gaussians. We focus on the dense net-
work asymptotics and show how the CRLB is inversely
proportional to the number of measurements available
to the network as a whole, even when the individual
measurements are taken from different locations. An
order-optimal semi-linear algorithm is given.

I. INTRODUCTION

Rather than putting tags or localizers on the objects
of interest, we envision using physical layer information
from a wireless network to track the positions of objects
in the environment.[5] While the positions of objects
may be useful information for its own sake, the wireless
communication channel is also largely determined by the
objects in the sensor network field. Collectively tracking
the position of the objects could in turn help the channel
estimation problem, which has the potential to benefit
the sensor network’s communication system.

This problem is related to multi-static radar. Position
estimation using TOA (time of arrival) or TDOA (time
difference of Arrival) in a radar network has been studied
in [1] and [2], and the accuracy is discussed in [3].
The Cramér-Rao lower bound (CRLB) of the position
estimation is also studied in [1]. The CRLB for unbiased
estimation of Td (TOA) is studied in [4]:

δ2
Td ≥

N0
∫ T

0 [∂A(t)
∂t

]2dt
(1)

Where A(t) is the received signal, T is the observation
interval, N0 is the noise power spectral density, δ2

Td is
the estimation variance of Td. The important thing to
observe is that the CRLB is inversely proportional to
the received signal energy. This energy can increase by

either using more powerful pulses or by using longer
durations and taking averages over time.

Multistatic radar systems are usually expensive and
sparsely deployed. As such, their asymptotic behavior
is not extensively studied. In contrast, sensors or per-
sonal wireless devices may be both cheap and densely
deployed in the field, and thus the asymptotic behavior
of the CRLB is interesting. Throughout, we denote the
CRLB of x as V (x). The key question is whether “spatial
averaging” (by taking independent measurements from
different locations) improves accuracy in the same way
that “time averaging” does (by taking independent mea-
surements from the same location).

In this paper we focus on a two dimensional UWB
network where transmitters and receivers have known
locations on the plane. In a UWB sensor network, trans-
mitters can send out signals with very high bandwidth.
We assume a specular reflection model for the wireless
environment in which signals are simply delayed, phase-
shifted, and attenuated by the objects they encounter. If
the A/D converters have very high sampling rates, it is
possible to estimate the path-lengths of the reflections
from the channel response. We focus on the high SNR
regime in which the channel response is known well and
so the multi-path distance measurements are assumed to
be corrupted by small iid Gaussian noises.1

First we study the single transmitter single receiver
case. We show that this is impractical since the normal-
ized Cramér-Rao lower bound of the estimation problem
is very large even with a motion model. Sensor pairs are
not enough to track objects.

With more sensors, an object can be tracked. We
study the dense network asymptotics of the CRLB while
each transmitter/receiver pair maintains the same SNR.

1As such, we are also implicitly assuming that we can separate the
channel response into a “foreground” relating to the objects of interest
and a “background” that is coming from aspects of the environment
that are not changing or uninteresting for other reasons.



With uniformly distributed sensor nodes, the asymptotic
CRLB is inversely proportional to the total number of
measurements available. With N transmitters and M
receivers, this corresponds to O( 1

NM
) for centralized

processing. For processing done only at a single receiver,
the CRLB behaves like O( 1

N
). In addition to the lower

bounds, we give an order-optimal semi-linear algorithm
that operates by nonlinearly transforming the problem of
position-estimation into a linear least-squares problem.

Finally, we explore the case of multiple objects. The
challenge is to sort the multi-paths between different
sensor pairs into sets corresponding to a single physical
object. We propose a two step heuristic centralized
algorithm. The first step is inspired by the Hough
Transform[7] and it coarsely estimates object positions
and associates multi-path measurements with objects.
The semi-linear algorithm then refines the position esti-
mates using the associated measurements.

II. SINGLE OBJECT TRACKING

A. Single Transmitter Single Receiver Network

With only a single multi-path length d (the distance
from Tx to the object plus the distance from the object to
the Rx) available, it is impossible to estimate the position
of the object. Suppose only Tx 3 was available in Fig.2. d
simply specifies an ellipse d2(p, Tx3) + d2(p, Rx) = d,
where d2 is the Euclidean distance. In bi-static radar,
this ellipsoidal ambiguity is resolved by using Doppler
or angle of arrival information.[1] Such information is
not likely to be available in a sensor network scenario.

It is possible to estimate the position of the ob-
ject up to the natural 4-fold symmetry if we have a
very good motion model. We parameterize the mo-
tion as (x0, y0, xN , yN ) and assume constant veloc-
ity between the two endpoints. In [6], we gave an
algorithm which can consistently estimate the mo-
tion in principle. However, this problem is practi-
cally unsolvable since the CRLB is huge. Fig.1 il-
lustrates this for motion toward the origin and shows
N max(V (x0), V (y0), V (xN ), V (yN )) on a logarithmic
scale. To achieve decent performance would require
taking prohibitively many measurements N .

B. Large Sensor Networks

Fig.2 illustrates the situation in a large sensor network
from the perspective of a single receiver. If we can
simultaneously measure all the multi-path distances, then
ellipse laceration can give us the object’s position.

Fig. 1. Normalized CRLB bound
log10(N max(V (x0), V (y0), V (yN ), V (yN ))) when
(x0, y0, xN , yN ) = (x, y, x(1 −

1
√

x2+y2
), y(1 −

1
√

x2+y2
))

Tx, Rx are at (-1,0) and (1,0) respectively

Fig. 2. Multiple sensors and a single object. Ellipse laceration gives
position.

1) Cramér-Rao Bound: Consider a sensor net-
work with N transmitters with known positions
(xi, yi), i = 1, ...N and M receivers with known po-
sitions (x

′

j , y
′

j), j = 1, ...M . Let (x, y) denote the un-
known position of the object. The observation vector
−→
l = (l11, l12, ...lij , ..., lNM ), consists of the multi-

path measurements. Assume the observations are cor-
rupted by iid Gaussian noises ∼ N(0, σ2) , then lij =
√

(x − xi)2 + (y − yi)2+
√

(x − x
′

j)
2 + (y − y

′

j)
2+εij .

From this, we can derive the Fisher Information Matrix
J2×2 corresponding to estimating (x, y). The Cramér-
Rao lower bounds are V (x) = J−1

11 , V (y) = J−1
22 . In

our model, J is a random matrix where the randomness
comes from the random placement of the sensors.



We are interested in the asymptotic behavior of the
CRLB as the sensor network gets dense. In [6], we
showed that the CRLB converges in probability. In this
short paper, we simply state the results for six different
scenarios. The first three (a) correspond to centralized
processing with the sensor nodes uniformly distributed
inside a circle of radius r. The last three (b) correspond
to decentralized processing at a single receiver. These
results capture the geometry of the problem.

a.1 Object at the origin:

lim
N→∞,M→∞

(V (x)+V (y))NM = 2σ2 in probability

We write the above equation in shorthand as

V (x) + V (y) ≈ 2σ2

NM
.

a.2 Distant object away from the sensors at a distance of

L, L >> r. This gives V (x) + V (y) ≈ σ2

NM
2L2

r2 .
The CRLB goes to infinity as the object gets distant.

a.3 Same setup as (a.2) but in polar coordinates (ρ, θ),
where (x, y) = (ρcos(θ), ρsin(θ)). This gives

V (ρ) ≈ σ2

4NM
, V (θ) ≈ 2σ2

NMr2 .
b.1 Object within sensor field with transmitters

angularly uniformly distributed around (x, y):

V (x) + V (y) ≈ 8σ2

3N
.

b.2 Distant object like in (a.2) except with processing

at a single receiver yields: V (x) + V (y) ≈ σ2

N
4L2

r2 .
b.3 Same same setup as (b.2), except in polar coordi-

nates: V (ρ) ≈ σ2

4N
, V (θ) ≈ 4σ2

Nr2 .

The non-asymptotic behavior can be seen through
simulations of the CRLB placing the receiver at the
origin and the transmitters at regular spacings on the unit
circle. We plot the normalized CRLB N(V (x) + V (y)
that corresponds to scaling down the transmit power so
that the total received SNR is constant. As can be seen by
comparing Fig.3 and Fig.4, the CRLB is indeed inversely
proportional to the total number of the measurements.

2) A semi-linear algorithm: To complement the
CRLB, we give a semi-linear object tracking algo-
rithm illustrated in Fig.5. Consider a single transmitter-
receiver pair: Tx = (ai, bi), Rx = (uj , vj). Write lti =
√

(x − ai)2 + (y − bi)2, the distance from the object to
the i-th transmitter and lrj =

√

(x − uj)2 + (y − vj)2,
the distance from the object to the j-th receiver. If the
multi-path distance is dij , it satisfies:

dij =
√

(x − ai)2 + (y − bi)2 +
√

(x − uj)2 + (y − vj)2

Fig. 3. Normalized Cramér-Rao bound, N = 6

Fig. 4. Normalized Cramér-Rao bound, N = 30

which implies:

(uj − ai)x + (vj − bi)y − dij

√

(x − ai)2 + (y − bi)2

=
u2

j + v2
j − a2

i − b2
i − d2

ij

2
(uj − ai)x + (vj − bi)y − dijlti =

u2
j + v2

j − a2
i − b2

i − d2
ij

2
(2)

Positions of the Sensors (a i,bi) (uj,vj)
Multi-path measures d ij

Matrix A
Vector g

Least Square
solution of Az=g

The first 2 entries of z is the
Estimation of (x,y)

Fig. 5. Flowchart of the semi-linear algorithm



Similarly, we have :

(ai − uj)x + (bi − vj)y − dijlrj =

a2
i + b2

i − u2
j − v2

j − d2
ij

2
(3)

We have 2NM linear equations of N +M +2 unknowns
~z = (x, y, lt1, lt2, ...ltN , lr1, ...lrM )T . Assume N + M ≥

4 and write them as:

A~z = ~g (4)

where the 2((i − 1)M + j) − 1 entry of the 2NM

dimensional vector ~g is
u2

j+v2

j−a2

i−b2

i−d2

ij

2 , and the 2((i−

1)M + j) entry is
a2

i +b2

i−u2

j−v2

j−d2

ij

2 . The A matrix is
similarly defined by (2) and (3). The least-squares ~z is:

~z = (AT A)−1AT~g (5)

In [6], we proved that the estimation variance of
the above algorithm is order-optimal when the sensors
are all both transmitters and receivers. The estimation
variances for x and y in that case are ≈

28σ2

3N2 , where
N is the number of sensors. In Fig.6, we show some
simulation results of the semi-linear algorithm in the
decentralized case when it is used by a single receiver
with 30 transmitters. In Fig.7, we plot the squared error
and the CRLB together — this illustrates how the semi-
linear algorithm achieves the same O(1/N).

Fig. 6. Squared Error (x̂−x)2 +(ŷ− y)2 for N = 30,σ2 = 10−4.
50 Monte-Carlo trials per point were used to simulate.

III. MULTIPLE OBJECTS IN A SENSOR NETWORK

In a sensor network with N transmitters, M receivers
and L objects, each transmitter-receiver pair has L paths
that it sees. In order to estimate the positions of the ob-
jects, we need to first associate each multi-path distance
measure with an object. There are (L!)NM−1 different

Fig. 7. Blue curve on top: Squared Error (x̂ − x)2 + (ŷ − y)2

Decentralized semi-linear algorithm. 5000 trials per point.
Red curve on bottom: CRLB V (x) + V (y) for (x, y) =
(0.5, 0.5),σ2 = 10−4

associations making exhaustive search impractical. We
propose the following heuristic centralized algorithm
which is inspired by the Hough Transform[7].

First, we discretize the region of interest and then use
the measured distances to assign scores to grid points.
The score function for point (x, y) is defined as:

Definition 1 (Score function S(x, y) of (x,y)):

S(x, y) =
∑

i,j

max(1 −
Si,j(x, y)

K
, 0) (6)

where K is a tunable parameter and
Si,j(x, y) = mink(

√

(x − ai)2 + (y − bi)2 +
√

(x − aj)2 + (y − bj)2 − dk(i, j))
2 for all transmitter-

receiver pairs (i, j) and all multipaths k measured
between i and j. The minimizing k for each (i, j) is
associated to the point (x, y).

After assigning a score to each grid point, we search
for points with high scores. Finally we can use the linear
algorithm for single object to estimate the positions of
the objects using the associated distance measurements.
A simulation is illustrated in Fig.8 and Fig.9.

IV. CONCLUSIONS AND FUTURE WORK

In this paper, we studied object tracking in a sensor
network. We argued that a single transmitter, single
receiver network can not accurately estimate the position
of an object since the Cramér-Rao lower bound is very
big even with a severe constraint on the motion. If the
object moves in a smooth way, then it is impossible to
track its motion in a single transmitter, single receiver
network because two different smooth motions can yield
the same multi-path measurements.[6]



Fig. 8. 5 objects are located at black boxes, red and blue dots are
transmitter and receivers respectively

Fig. 9. Scores S(x, y) on (x, y)

For a dense sensor network, we computed the CRLB
in different scenarios and analyzed the asymptotic behav-
ior of the CRLB as the number of sensors goes to infinity.
It turns out that the estimation accuracy is proportional to
the total number of measurements available. The interest-
ing result here is that the quality of the bound depends
on the coordinates that we use. For objects within the
sensor field, it makes sense to use Euclidean coordinates.
For distant objects, polar coordinates give a better sense
of the asymptotic performance. In addition to the lower
bounds, we gave a semi-linear algorithm which is order
optimal and can work in both the decentralized and
centralized estimation scenarios. Finally, we examined
the case of multiple objects in the sensor field and
presented a heuristic algorithm for that case that works
well in simulations.

In our paper, we always assume that the object sizes
are small and so we considered them as points on

the plane. In practice, objects are not negligibly small,
especially in the context of a dense sensor network. How
to take the sizes of the objects into account needs to be
studied. In an indoor environment, the structural objects
(walls, floors, ceilings, etc.) also present a challenge.
These could be on the same scale as the entire sensor
network. In the same vein, the specular reflection based
model here is a bit dubious. Experimental work needs
to be done to see how well it fits. Even so, we believe
that the basic lesson of the paper is sound — that dense
UWB-based networks can combine multipath informa-
tion from different pairs of transmitters and receivers to
do estimation of the environment.

We also restricted attention to the high SNR regime
where the multi-path distance measurements are accu-
rate. In the low SNR regime, the path lengths cannot be
extracted from a single channel estimate. We conjecture
that the estimation accuracy will depend primarily on
the total signal energy available. It may be possible
to work directly with score functions in the style of
Fig.9 and calculate scores based directly on the multipath
responses rather than the extracted distances.

In a dense wireless network, the pairwise channels
are not independent. With accurate object position infor-
mation, we might estimate motion and thereby jointly
predict the communication channels much better than
is possible using only a single channel response. This
brings up interesting theoretical questions regarding the
nature of coherence time in UWB networks and raises
the possibility of a deeper relationship between capacity
and tracking accuracy.
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