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Abstract—In this paper, we study the upper and the lower
bounds on the joint source-channel coding error exponent with
decoder side-information. The results in the paper are non-trivial (
extensions of the Csisar's classical paper [6]. Unlike the joint
source-channel coding result in [6], it is not obvious whether the
lower bound and the upper bound are equivalent even if the
channel coding error exponent is known. For a class of channels,
including the symmetric channels, we apply a game-theoretic Fig. 1. Source coding with decoder side-information
result to establish the existence of a saddle point and hence prove
that the lower and upper bounds are the same if the channel
coding error exponent is known. More interestingly, we show that
encoder side-information does not increase the error exponents in

this case. of the type covering lemma [7], also known as the Johnson-
Stein-Lowasz theorem [5]. With this duality result, we know
I. INTRODUCTION that the error exponent of channel coding of chaniigl x
) ) ) _with channel code compositio®x is essentially the same
~ In Shannon’s very first paper on information theory [12], ityroplem as the error exponent of source coding with decoder
is established that separate coding is optimal for memorylesS$yea_information where the joint distribution @x x Wy x.
source channel pairs. Reliable communication is possible [fjance a natural question is what if we put these two dual

and only if the entropy of the source is lower than they opiems together, what is the error exponent of joint source-
capacity of the channel. However, the story is different Whe'&hannel coding with decoder side-information?

error exponent is considered. It is shown that joint source-
channel coding achieves strictly better error exponent than The more general case, wheféy| x is a noisy channel, is
separatk coding [6]. The key technical component of [6] is arecently studied [16], [15]. It is shown that, not surprisingly,
channel coding scheme to protect different message sets wifte reliable reconstruction of* is possible if and only if the
different channel coding error exponents. In this paper, wehannel capacity of the channel is larger than the conditional
are concerned with the joint source-channel coding with sidentropy of the source. A suboptimal error exponent based on a
information problem as shown in Figure 1. For a special setuftixture scheme of separate coding and the joint source channel
of Figure 1, where the discrete memoryless channel (DMC) igoding first developed in [6] is achieved. In this paper, we
a noiseless channel with capaditf, i.e. the source coding follow Csiszr’s idea in [6] and develop a new coding scheme
with side-information problem, the reliable reconstruction offor joint source channel coding with decoder side-information.
2™ at the decoder is possible if and only i is larger than For a class of channels, including the symmetric channels, the
the conditional entropy? (P4, z) [14]. The error exponents of resulted lower and upper bounds have the same property as
this problem is also studied in [9], [7] and more importantlythe joint source-channel coding error exponeiithout side-
in [1]. information in [6]: they match if the channel coding error
The duality between source coding with decoder side€XPonentis known at a critical rate. We use a game theoretic
information and channel coding is established in the 80's [1]2PProach to interpret this result.
This is an important result th_at all the channel coding eITor The outline of the paper is as follows. We review the
exponent bounds can be easily applied to source coding Willyoblem setup and classical error exponent results in Section Il.
side-information error exponent. The result is a consequenégen in Section Ill, we present the error exponent result for
joint source-channel coding with both decoder and encoder
This work was done when r_]e was a postdoctoral researcher witfide information which provides a simple upper bound to
the Hewlett-Packard Laboratories, Palo Alto, CA. the error exponent investigated in the paper. This is a simple

1in [6], Csiszr hand-wavily shows that the obvious separate codin . . .
scheme is suboptimal in terms achieving the best error exponent. %grollary of Theorem 5 in [6]. The main result of this paper

rather obvious result is rigidly proved in [15]. is presented in Section IV. Some implications of these bounds
2In this paper, we use bits andg,, and R is always non-negative. are given in Section V.

QL

n 4 Encodelt_> ’ DMC WYPJ(_,{ Decode#_> 3"

aj, b;) ~ Pap

—

o




Il. REVIEW OF SOURCE AND CHANNEL DOING ERROR bounded by the sphere packing error exponent.

EXPONENTS
_ _ E.(R,Wy|x) < E(R,Wy|x) < Esp(R, Wy x) 3)
In this paper random variables are denotedatgnd b, the

realizations of the random variables are denoted:tands. ~ Where E.(R, Wy x)

A. System model of joint source-channel coding with decoder = max Vlgl‘fx D(Vy x[[Wyx[Sx) +

side-information (Ve 1x: Sx) — R
As shown in Figure 1, the source and side-information, _
a" and b" respectively, are random variables i.i.d from dis- - R Er(R, 5x, Wy x) @
tribution P4 on a finite alphabetd x B. The channel is and B., (R, Wy|x)
memoryless with input/output probability transitidivy |y,
where the input/output alphabels and ) are finite. Without = max inf D(Vyx ||[Wyx|5x)
loss of generality, we assume that the number of source Sx Vypxl (Vv xs8x) <R
symbols and the number of channel uses are equal, i.e. the = "X Esp(R, Sx, Wy |x) ©)
encoder observes® and sends a codeword’ (a™) of length
n to the channel, the decoder observes the channel oytput
and side-information™ which is not available to the encoder,
the estimate i&" (b", y™).
The error probability is the expectation of the decoding erro
average over all channel and source behaviors.

Here Sx is the input composition (type) of the code words.
E.(R,Wy|x) = Es (R, Wy |x) in the high rate regime that

> R.r whereR,. is defined in [10] as the minimum rate for
yvhich the sphere packing.,(R, Wy x) and random coding
error exponentsk.,. (R, Wy |x) match for channelWy x.
There are tighter bounds on the channel coding error exponents

Pr(a” £3"(b",y™)) = Z Pap(a™,b") Z E.(R,Wy|x) in the low rate regime foRR < R.,, known as
an ,bn yn straight-line lower bounds and expurgation upper bounds [10].
Wy x (y" 2" (a™))1(a™ #a" (0", y")). (1) However, in this paper, we focus on the basic random coding

_ _ ] ~and sphere packing bounds, as the main message can be
The error exponent, for the optimal coding scheme, is definegkfectively carried out.

as E(Pas, Wy|x) = It is well known [10] that both the random coding and the
o 1 . sphere-packing bounds are decreasing vidtand are convex
lim inf n log Pr(a™ #a" (b", y")). (2)  in R. And they are both positive if and only it < C(Wyx),

The main result of this paper is to establish both upper anyhereC(Wyx) is the capacity of the channéy .

lower bounds onE(Pap, Wy |x) and show the tightness of  2) Source coding with decoder side-information error ex-
these bounds. ponents: This is also a special case of the general setup in
Figure 1. This time the channél’y|x is a noiseless channel
with input-output alphabef’ = ¥ and |X| = 2%. Again, we

% We review some classical results on channel codingan reasonably assume tidt is an integer.
error exponents and source coding with side-information error The source coding with side-information error expofient
exponents. These bounds are investigated in [10], [7], [9] ané(R, P45) can be bounded as follows:
[8].

1) Channel coding error exponenfs.(R, Wy|x): Chan- eL(R, Pap) < e(R, Pap) < ev(R, Pap), )
nel coding is a special case of joint source-channel codingnere
with side-information: the source and the side-information
b are independent, i.P45 = P4 x Py, anda is a uniform er(R,Pap) = inf D(Qag|Pap)+|R— H(Qap)|"
distributed random variable ofl, 2, ..., 2%}. For the sake of Qas
simplicity, we assume tha2”® is an integer. This is not a andey (R, Pag) = inf D(Qag||Pas).

CoR . . Qap:H(QaB)>R

problem if2” is not an integer since we can luni symbols
together and approxima®<® by an integer for somé, this The duality between channel coding and source coding with
is not a problem becaus}e{lim +log,([2"%]) = R. With  decoder side information had been well understood [1]. We
this interpretation of channel coding, the definitions of errogive the following duality results on error exponents.
probability in (1) and error exponent in (2) still holds. _

The channel coding error exponeht (R, Wy |x) is lower e(R, Qa, Ppia) = Bo(H(Qa) = B, Qa, Ppia),
bounded by the random coding error exponent and upper equivalently:

B. Classical error exponent results

3In this paper, we write the error exponents (both channel coding e(H(Qa) — R,Qa, PB\A) = Ec(R, Qa, PBIA)
and source coding) in the style of Csis3 method of types, equivalent
Gallager style error exponents can be derived through the Fenchel®In this paper, if R > log, |.A| for source coding with side-
duality. information error exponents, we let the error exponentbe



whereE.(R,Qa, Pg|4) is the channel coding error exponent characterization of the joint source channel coding error expo-
for channelPg 4 at rateR and the codebook composition is nent:

A. e(R,Qa, Pp|4) is the source coding with side informa- . .
?on er(rorcé?xpone‘nt)at ratB with source s%quences uniformly E(Pa, Wy x) = e(R", Pa) + Ex(R", Wy|x). (10)
distributed in type) 4 and the side information is the output of The goal of this paper is to derive a similar result for
channelPp 4 with input sequence of typ@.. So obviously,  g(p,; Wy x) defined in (2) as that for the joint source
we have: channel coding in (9) and (10).

Ec(R, Ppja) = %ﬁX{Ec(R Qa, Ppia)} 4) A recite of Theorem 5 in [6]:Given a sequence of
. itive integerg{m., } with £ logm,, — 0 andm,, message

R,Pap) = D(Qa||Pa) + (R, Qa, P, pos! VIR )
el 45) %i\n{ (QallPa) + (R, Qa, Paa)} setsAy, .... A, each with sizé.A;| = 2%, Then there exists

. ' channel codé€fo, ¢o), where the encodef, : "7 A; —
Th I lish h I ’ . =0
ese results are established by the type covering lemma [%n where fo(a) = 2" (a) € Sk for a € A; and the decoder

on the operational level, i.e. a complete characterizations o Mo g i " ™) st f
of the source coding with side information error exponent™® - Hjjmtﬁ Zj wr(lj_e o(y") asa(y") st. for any
e(R,Qa, Pg|4) implies a complete characterizations of theMessage € A, the decoding error

channel coding error exponetti.(H(Qa) — R,Qa, Pp|a) pela) = ZWY|x(y"|JJ"(a))1(a £a(y™)
and vice versa. on
From these duality results, it is well known that both the < on(Er(Ri,Sk Wy |x)—en)

lower and the upper bounds are increasing withand are

convex in R. And they are both positive if and only if for every channeWy x, ande, — 0. In particular, if the
R > H(Pap). The special case of the source coding withchannelWy x is known to the encoder, eadt can be picked
decoder side information problem is that the side informationo maximize £, (R;, S%, Wy |x), hence for each € A;:

is independent of the source, i.Pap = Pa X Pg. In this

n(E,(R;,W- —€n
case, the error exponent is completely characterized [7], pe(a) < 2" BrBeypo)=cn),

e(R, Py) = inf D(Qa||Pa) @ This channel coding theorem as Cséisput it, the “main result

QA:H(Qa)>R . . . . .
of this paper” in [6]. We use this theorem directly in the proof

3) Joint source-channel coding error exponents [6n :L(;Cvetllwogvli :Nté?ubnodu:::j Tgofﬁsg::rrl]lland further modify it to

his seminal paper [6], the joint source-channel coding error
exponents is studied. This is yet another special case of th§j|. jo/NT SOURCECHANNEL CODING ERROR EXPONENT

general setup in Figure 1. Whenand b are independent, i.e.  \yTH BOTH DECODER AND ENCODER SIDEINFORMATION
Pap = Pa x Pp, we can drop all thé terms in (1). Hence

the error probability is defined a®r(a™ # 3" (y")) = As a warmup to the more interesting scenario where the

side-information is not known to the encoder, we present the
Z Pa(a™) Z Wy x (y"|z"(@")1(a" #a"(y™).  (8) upper/lower bounds when both the encoder and the decoder
an on know the side-information. This setup is shown in Figure 2.

Write the error exponent of (8) a&(Pa, Wy x). The lower

and upper bounds of the error exponents are derived in [6]. It 2" —{Encodet , [DMC Wy 4 ,|Decodef , a"
is shown that: T
(317 bz) ~ PAB
min{e(R, Pa) + Esp (R, Wy|x)} < E(Pa, Wy x) |
bn
< m}%n{e(R7 Pa)+ E.(R, Wy |x)} 9)

Fig. 2. Source coding with both decodand encoder side-
The upper bound is derived by using standard method of typésformation

argument. The lower bound is a direct consequence of the

channel coding Theorem 5 in [6]. The error probability of the coding system is, similar to (1):
The difference between the lower and upper bounds is iRr(a"™ # 3" (b",y")) = 3 4n yn Pas(a”,b")

the channel coding error exponent. The joint source chan- ™

nel coding error exponent is “almost” completely charac- ZWYIX(yn\mn(anvbn))l(an a”(b",y")). (11)

terized because the only possible improvement is to de- ¥"

termine the channel coding error exponent which is stillThe error exponent of this setup is denoted by

not completely characterized in the low rate regime wher&y,:»(Pas, Wy x) which is defined in the same way

R < R... However, letR* be the rate that minimizes as E(Pap, Wy |x) in (2). The difference is that the encoder

{e(R,Pa) + E.(R,Wy|x)}, if R > R., or equivalently observes both sourcg” and the side-information™, hence

E,.(R",Wy|x) = Esp(R*, Wy|x), then we have a complete the output of the encoder is a function of bot: (a™,b™).



So obviously, Epoin(Pas, Wy x) is not smaller than and (2), we have the following lower and upper bounds:
E(Pap, Wy |x). . .
. . E(P, >
Comparing (11) and (8), we can see the connections between (Pag, Wy x) 2 HQHAH sin(%);) QB\T}‘I}YU(
joint source-channel coding with both decoder and encoder  D(Qag||Pap) + D(Vy x |[Wy x|Sx (Qa)) +
side information and joint source-channel coding. Knowing the
J J 9 I(Sx(Qa); Vyrix) — H(Qa5)| "}
(

side informationb™, the joint source channel coding with both
encoder and decoder side information problem is essentially E
a channel coding problem with messages distributed4dn

Pap,Wy|x) < min max
 Wrix) Qa Sx(Qa)

. - PUE min D(Qagl||Pas

with a distribution P4 5 (a"|b"). Hence we can extend the QB\AvVY\X5I(SX(QA)3VY|X><H<QA\B){ ( I )
results for joint source-channel coding error exponent [6]. We +D(Vy | x [[Wy x|Sx(Qa))}

summarize the bounds diy,:» (Pas, Wy |x) in the following ) ) ]

proposition. Proof: The main technical tool used here is the method of

types. For the lower bound we propose a joint coding scheme
Proposition 1: Lower and upper bound on for the joint source channel coding with side information

Eyotn(PaB, Wy |x) problem. This scheme is a modification of the coding scheme

first proposed in [6]. However, we cannot directly use the
Evotn(Pag, Wy |x) < m}%n{eU(R, PaB) + Esp(R,Wy|x)}  channel coding Theorem 5 in [6] because of the presence

of the side information. In essence, we have to study a

more complicated case using the method of types. Details see

Appendix B in [3]. ]
Evoth(Pap, Wy|z) > m}%n{eu(R, Pap) + E-(R, Wy x)} To simplify the expressions of the lower and upper bounds

and later give a sufficient condition for these two bounds to
Not explicitly stated, but it should be clear that the range ofmatch, we introduce the “digital interface® and have the
Ris (0,log, |A). following corollary.

Proof: see Appendix A in [3]. Because Corollary 1: upper and lower bounds of(Pag, Wy |x)
Eyotn(Pag, Wy |x) is no smaller thanE(Pag, Wy |x), With “digital interface” R
so the lower bound ofE(Pap, Wy x) in Theorem 1 is

_ < mi .
also a lower bound fofse:n(Pas, Wy |x). However, in the E(Pap, Wy|x) < in max | m}%n{ (12)
appendix in [3], we give a simple proof of the lower bound ev(R, Pag,Qa) + Esp(R, Sx(Qa), Wy |x)}

on Eyon(Pas, Wy|x) which is a corollary of Theorem 5 E(Pap, Wy|z) > min_max min{ (13)
in [6]. O ’ T Qa 5x(Qa) R

. ev(R, Pap,Qa) + E-(R,Sx(Qa), Wy|x)}
Comparing the lower and the upper bounds for the case
with both encoder and decoder side-information, we can easilyhere Er-(R, Sx(Qa), Wy|x) is the standard random cod-
see that ifR* minimizes{ev (R, Pas) + E-(R, Wy |x)} and  ing error exponent for channé¥’y x at rate R with input
Esp(R*, Wy |x) = E-(R*, Wy|x), then the upper bound and distribution Sx(Q.1) defined in (4), whileey (R, Par, Q4)

the lower bound match. Hence, is a peculiar source coding with side-information error expo-
nent for sourceP4p at rate R, where the empirical source
Eorn(Pan, Wy x) = ev(R*, Pag) + Ex(R*, Wy |x). distribution is fixed atQ 4. That is forQ a
. . R, Pag, = i D P

In this caseEvotn(Pas, Wy |x) is completely character- cv (R, Pag, Qa) QB‘A;Hrl;léI;‘B)ZR (Qap|Pas)
ized. Proof: The proof is in AppendixC in [3]. |

IV. JOINT SOURCECHANNEL ERROR EXPONENTS WITH With the simplified expression of the lower and upper

ONLY DECODER SIDE INFORMATION bounds in Corollary 1, we can give a game theoretic inter-

pretation of the bounds. And more importantly, we present

We study the more interesting problem where only decodesome sufficient conditions for the two bounds to match.
knows the side-information in this section. We first give a, game theoretic interpretation of the bounds
lower and an upper bound on the error exponent of joint ] ]
source-channel coding with decoder only side-information. The lower and upper bounds established in Corollary 1
The result is summarized in the following Theorem. clearly have a game theoretic interpretation. This is a two
player zero sum game. The first player is “nature”, the second

Theorem 1:Lower and upper bound on the joint sourceplayer is the coding system, the payoff from “nature” to
channel coding with decoder side-information only, as setuthe coding system is the bounds on the error exponents in
in Figure 1, error exponent: For the error probability(a™ #  Corollary 1. “Nature” chooses the marginal of the sou@ze
a"(b", y™)) and error exponen (Pag, Wy |x) defined in (1)  (observable to the coding system) aRdwhich is essentially



the side informationQ 34 and the channel behavidry | x error exponent is constant for all rate, hence the inner
(non-observable to the coding system). The coding systemax min{-} is equal tomin max{-}, i.e.

chooseSx (Q.) after observing) 4. Hence in this game, the E(Pap, Wy |x)

"nature” has two moves, the first move @4 and the last

move onR which is essentiallyQz 4 and Vy-|x, while the z Ig;“ Sg}gﬁ)mgﬂ{ev@ Pap,Qa) +
coding system has the middle move S8R (Q4). Er(R, Sx(Qa), Wy x)}

Comparing Corollary 1 for joint source-channel coding with
decoder side information and the classical joint source-channel
coding error exponent [6] in (9), it is desirable to have a E.(R,Sx(Qa), Wy x)}
sufficient condition that the lower bound and the upper bound _ rgin m}%n{eU(R, Pap,Qa) + E-(R, Wy x)} (16)

A

match, i.e. the complete characterization as that in (10). It
is simpler for the case in (9) since all is needed is that the mén{%in{eU(R, Pap,Qa)} + E.(R, Wy x)}
A
= m}%n{eU(R, Pap) + E.(R, Wy x)} 17

= minmin max {ev(R, Pag, +
Qa R SX(QA){ vl A5: Q)

sphere backing bound and the random coding bound to match
at the critical rateR™ as discussed in Section 1I-B.3. However,
for tr_u_e o bounds in Corollary 1, it is not clear what the, oo (16) follows the definition of random coding bound
conditions are such that these two bounds match. Suppome(s) and (17) follows the obvious equality:
that the solution of the game (12) (€%, Sx (Qa), R*) and '
solution of the game (13) i6Q%, Sk (Q4), R'). An obvious min ey (R, Pap,Qa) =
sufficient condition for the two bounds match is as follows: Qa .

min RD(QABHPAB):GU(R,PAB).

QaB:H(QaB)2

(Q%4, 5% (Qa), R') = (Q4, S%(Qa), R*) and The upper bound in 14 is trivial by noticing that
U QU U Qu in{-} < i . y .
Er (R, 5%(Qa), Wy x) = Eep(R", 5% (Qa), Wy |x). max min{-} < minmax{-} [2], hence
E(Pap,Wy|x)
This condition is hard to verify foanysource channel pairs. In ) )
the next section, we try to simplify the condition under which ~ < 3D Sx(@a) min{ev (R, Pap, Qa) +
these two bounds match for a class of channels. Eop(R, Sx(Qa), Wy x)}
B. A sufficient condition to reduceiin{max{min{-}}} to < minmin max {ev(R,Pap,Qa)+
min{-} Qa R Sx(Qa)
e . . . . Esp(Rv SX(QA)va\X)}
The difficulty in studying the bounds in Corollary 1 is that _ L. R P B (RW
the min and max operators are nested. The problem will be ~ — 'G'}' min{ev (R, Pap, @4) + Eap(R, Wy x)}
simplified if we can change the order of thein and max = min{min{ev (R, Pap,Q4)} + Esp(R, Wy|x)}
operators. foQa
Corollary 2: For symmetric channel$Vy x defined on = minfev(R, Pap) + Esp(R, Wy x)} (18)
Page 94 in [10], this includes the binary symmetric and blnar¥:Orollary 2 is proved. 0

erasure channels, where the input distributibn to maximize

the random coding error exponeft. (R, Sx, Wy x) is uni- With this corollary proved, we can give a sufficient condition
form on X, or for more general channélswhere the input ynder which the lower bound and upper bound match similar
distribution Sy to maximize the random coding error exponentiq that for the joint source-channel coding case in Section II-
E.(R,Sx,Wy|x) is the same for allz, then the upper and B 3, More discussions see Section V.

lower bounds in Theorem 1 and Corollary 1 can be further

simplified to the following forms: C. Why it is hard to generalize Corollary 2 to non-symmetric
channels?
E(Pap,Wy|x) < Wheth . o P
min{ev (R, Pag) + Eop (R, Wy )} (14) ether smax min{ey (R, Pag, Qa) +
E(P Wy y) > E.(R,Sx(Qa), Wy x)} is equal to
AB, Wy|z) 2 min max {ev(R,Pap,Qa) + E.(R,Sx(Qa), Wy x)}
m]%n{eU(R, Pap)+ E.(R, Wy |x)} (15) R 8x(Qa)

is not obvious for general (non-symmetric) channels. A
Note: in this case, the upper and lower bounds forsufficient condition of the existence of a unique saddle point

E(Pap, Wy x) is the same as those @, (Pas, Wy |x) hence the equality is known as the Sion’s Theorem [13]

in Proposition 1. More discussions see Section V. which states that:
o : - - — mi 19
Proof: An important property for symmetric channels is max min f(p,v) = min max fu,v) (19)

that the input distribution that maximizes the random coding )
if M and N are convex, compact spaces afida quasi-

5For example, a channel consisted of parallel symmetric channelsoncave-convex (definitions see [2]) and continuous function



on M x N. For the function of interest,: A. Encoder side information often does not help

. Similar to Proposition 1, we can see the conditions under
max min{ey (R, Pap,Qa) + - ) o .
Sx(Qa) R which we can give a complete characterization of the joint
E.(R,Sx(Qa), Wy |x)} (20)  source channel coding with decoder only side information error
) o N ) exponentE(Pap, Wy |x). If R* minimizes{ey (R, Pas) +
We_- examine _the su_ff|C|ent con_dltlon under _ which ag, (R, Wy x)} and Eq,(R*, Wy | x) = E-(R*, Wy |x), then
unique equilibrium exists, according to the Sion's The+the upper bound and the lower bound match. Hence:
orem. First, ey (R, Pa,Qa) + Esp(R,Sx(Qa), Wy |x) . .
is guasi-convex inR because bothey (R, Pas,Qa) and — E(Pas, Wy |x) =euv(R", Pag) + E-(R", Wyx). (22)
E(R,Sx(Qa), Wy |x) are convex, hence quasi-convex in

; X Comparing Corollary 2 and Proposition 1, we bound the
R. However, (20) is not quasi concave 6 (Q4): paring y P

error exponent with or without decoding side-information by
E(R, Sx(Qa), Wy |x) the same lower and upper bounds. This does not mean that
— inf D(V- WorvlS E(Pap,Wy|z) = Epotn(PaB, Wy|z) always holds. But if

- vlflx (Vrix Wy ix|Sx (Qa4) the lower bound and upper bound match, which is shown in
IV x: Sx(Qa)) — BRI, Figure 4, then we have:

notice that the first term is linear ifix (Q4), the second term E(Pap, Wy|z) = Bootn(Pap, Wy|z) =

is quasi-concave but not concave. But the sum of a linear ev(R", Pap) + Er(R", Wy x).

function and a quasi-concave function might not be quasiznere p* minimizesev (R, Pas) + Er(R, Wy |x) andR* >
concave. This shows that th;ein max theorem cannot be p  This is another example for block coding where knowing
established by using the Sion's Theorem. This does not me&fe.information does not help increase the error exponent. In
that the minmax theorem cannot be proved. However fory,q contrary, as discussed in [4], in the delay constrained setup,

a non quasi-concave function that may have multiple peakgere is a penalty for not knowing the side-information even
min max{-} is not necessarily equal t@ax min{-}. if the channel is noiseless.

V. “ALMOST” COMPLETE CHARACTERIZATION OF B. Separate coding is strictly sub-optimal

E(Pap, Wy|x) FOR SYMMETRIC CHANNELS An obvious coding scheme for the problem in Figure 1 is

The sufficient condition in Corollary 2 is important, sincet0 implement a separate coding scheme. A source encoder
binary symmetric and binary erasure channels are among tfiEst encodes the source sequenceinto a rateR?, where R
most well studied discrete memoryless channels. We furthd$ determined later, bit streant'”(a™) then an independent
discuss the implications of the “almost” complete characterichannel encoder encodes the bifs™ into channel inputs
zation of E(Pag, Wy |x) for symmetric channels. ™. The channel decoder first decodes the channel output
First we give an example shown in Figure 3 and Figure 4¥" into bits ¢"® and then the independent source decoder
The sources is a Bernoulli.5 random variable and the joint reconstructsa” from ¢ and side informationb™. This

distribution has the distribution is a separate coding scheme with outer source with side
information coding and inner channel coding, both at rAte

Pap = { 0.50 0.00 } (21) If both coding are random coding that achieves the random

0.05 0.45 coding error exponents for both source coding and channel

The channelWy x is a binary symmetric channel with _coding respectively. The union bound of the error probability
cross rate).025. The channel coding error exponent bounddS as follows:
E.(R,Wy x) andE;,(R, Wy |x) and the source coding with N
decoder side-information upper bouad(R, Pag) are plotted ~ Pr(a" # 3" (6", y"))
in Figure 3: The .chan.nel coding bound match while> R, _ Pr(cnR ank y™)) + Pr(a" # E(EnR(yn)’ b,
where R, is defined in [10].
Note: the lower bound of the source coding with side informa- ) (23)
tion error exponent (R, Pag) is not plotted in the figure. < Pr(c" #£E(y") + Pr(a” £ 3@ (y"), b")

In Figure 4, we add both the lower and upper bounds on | = c"F(y™)) (24)
the joint source channel coding with decoder side informa- < Q—n(ET(R,W}qX)—e%L) n 2—7z(eL(R,PAB)—ei) (25)
tion to the plot in Figure 3. For this source channel pair —
Pap and Wy x, we have a complete characterization ofwhereel ande2 converges to zero as goes to infinity. (23)
Evotn(Pap, Wy |x) because the channel is symmetric andollows the union bound argument that a decoding error occurs
the two bounds match at the minimal point, i.e. the twaf either the inner channel coding fails or the outer source
curves: ey (R, PaB) + Esp(R,Wy|x) and ey (R, Pag) +  coding fails. (24) is true because conditional probability is
E,(R,Wy x) match at the minimal point as shown in Fig- large or equal to joint probability. Finally (25) is true because
ure 4. The value of the minimum i8; shown in Figure 4. both the outer source coding and inner channel coding achieve

(
¢ = My



1.8 1.8

Rate R Rate R

Fig. 3. The upper bound on source coding with side- Fig. 4. ey (R, Pap) + Esp(R, Wy |x) andey (R, Pag) +
information error exponenty (R, Pag) is the dotted line. The  E.(R, Wy |x) are added to Figure 3 in dashed line and
random coding bound- (R, Wy | x ) and sphere packing bound solid line respectively, they match at the minimal point
Esp(R, Wy | x) for channel coding error exponents are the solid hence the joint source-channel coding with decoder side-
line and the dashed line respectively. information error exponent is completely determined as
E(Pap,Wy|x) = E; And E; is the separate coding error
exponenttseparate (Pap, Wy | x) defined in (26).

the random coding error exponents. From (25) and that weE, (R, Wy |x) is monotonically decreasingy (R, Pag) is
can optimize the digital interface rafe between the channel monotonically increasing, and both are continuous and convex
coder and source coder, we know that the separate coding erem shown in Figure 4. This means that for r&esuch that

exponent is E.(R,Wy|x) = ev(R, Pap):
m}g,x{min{Er(R, Wy|X), 6L(R, PAB}} Esepa'r‘ate(PABa WY|X) = E’I‘(Ra WY|X) = 6U(R7 PAB)
£ Fseparate(Pas, Wy |x) (26) Now let R* be the rate to minimize{ey (R, Pag) +

) ) ) ) ) _ET(R,WY‘X)}, i.e.
This separate coding scheme is also discussed for joint
source channel coding in [6]. A similar bound is drawn.  E(Pas, Wy x) > ev(R", Pa) + E-(R", Wy x).
We next show why the separate coding error exponent

Ercparate(Pan, Wy|x) is in general strictly smaller than the ~ There are three scenarios. Firstif = I, then

lower bound ofE(Pag, Wy x) in (15). E(Pan. W > * ¥
, , > ey (R, PaB) + E-(R", Wy x)X
First, obviously,  Fscparate(Pan, Wy |x) < (Fam W) = eul ) ( o)
m,‘%X{min{Er(R Wy x),eu(R, PaB)}}. Secondly = 2B, (R, Wy|x) = 2Bscparate(Pas, Wy |x).



Secondly, ifR* < R,
E(Pag, Wy |x) > E-(R", Wy |x) > E-(R, Wy |x)
= Fscparate(Pas, Wy |x)-
Finally if B* > R,
E(Pa,Wy|x) > eu(R", Pap) > evu(R, Pap)

- Eseparate(PABu WY\X)

So in all cases, the joint source channel coding error
exponentE(Pap, Wy |x) is strictly larger than the separate

coding error exponentscparate (Pas, Wy |x). This is clearly
illustrated in Figure 4.

Note: Escparate(Pan, Wy|x) is an achievable separate
coding error exponent from the obvious separate cod-

[4

5
6
[7

8

9

ing scheme. What we prove is that this obvious one is

strictly smaller than the joint source-channel coding er-[12]
13]

ror exponent. This is similar to the claim Csizmakes
in [6].

maxg{min{E,(R, Wy|x),ev (R, Pap}} which is compa-

rable to (26). The proof hinges on the complete transparenc

between the source coding and channel coding, otherwise

have a joint coding schemes. A detailed discussion is in [15].
[16]
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VI. CONCLUSIONS

We study the joint source channel coding with decoder
side-information problem, with or without encoder side-

information. This is an extension of Cs#&s joint source

channel coding error exponent problem in [6]. To derive the

It should be clear that the upper bound of
any separate source channel coding error exponent ifl4]

lower bound, we use a novel joint source channel with decoder
side-information decoding scheme. We further investigate the
conditions under which the lower bounds and upper bounds
match. A game theoretic approach is applied to show the
equivalence of the lower and upper bound. This approach

might be useful in simplifying other error exponents with a
cascade of min-max operators, for example, the Wyner-Ziv

coding error exponent recently studied in [11].
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