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Abstract— In this paper, we study the upper and the lower
bounds on the joint source-channel coding error exponent with
decoder side-information. The results in the paper are non-trivial
extensions of the Csisźar’s classical paper [6]. Unlike the joint
source-channel coding result in [6], it is not obvious whether the
lower bound and the upper bound are equivalent even if the
channel coding error exponent is known. For a class of channels,
including the symmetric channels, we apply a game-theoretic
result to establish the existence of a saddle point and hence prove
that the lower and upper bounds are the same if the channel
coding error exponent is known. More interestingly, we show that
encoder side-information does not increase the error exponents in
this case.

I. I NTRODUCTION

In Shannon’s very first paper on information theory [12], it
is established that separate coding is optimal for memoryless
source channel pairs. Reliable communication is possible if
and only if the entropy of the source is lower than the
capacity of the channel. However, the story is different when
error exponent is considered. It is shown that joint source-
channel coding achieves strictly better error exponent than
separate1 coding [6]. The key technical component of [6] is a
channel coding scheme to protect different message sets with
different channel coding error exponents. In this paper, we
are concerned with the joint source-channel coding with side
information problem as shown in Figure 1. For a special setup
of Figure 1, where the discrete memoryless channel (DMC) is
a noiseless channel with capacity2 R, i.e. the source coding
with side-information problem, the reliable reconstruction of
an at the decoder is possible if and only ifR is larger than
the conditional entropyH(PA|B) [14]. The error exponents of
this problem is also studied in [9], [7] and more importantly
in [1].

The duality between source coding with decoder side-
information and channel coding is established in the 80’s [1].
This is an important result that all the channel coding error
exponent bounds can be easily applied to source coding with
side-information error exponent. The result is a consequence

This work was done when he was a postdoctoral researcher with
the Hewlett-Packard Laboratories, Palo Alto, CA.

1In [6], Csisźar hand-wavily shows that the obvious separate coding
scheme is suboptimal in terms achieving the best error exponent. The
rather obvious result is rigidly proved in [15].

2In this paper, we use bits andlog2, andR is always non-negative.
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Fig. 1. Source coding with decoder side-information

of the type covering lemma [7], also known as the Johnson-
Stein-Lov́asz theorem [5]. With this duality result, we know
that the error exponent of channel coding of channelWY |X
with channel code compositionQX is essentially the same
problem as the error exponent of source coding with decoder
side-information where the joint distribution isQX ×WY |X .
Hence a natural question is what if we put these two dual
problems together, what is the error exponent of joint source-
channel coding with decoder side-information?

The more general case, whereWY |X is a noisy channel, is
recently studied [16], [15]. It is shown that, not surprisingly,
the reliable reconstruction ofan is possible if and only if the
channel capacity of the channel is larger than the conditional
entropy of the source. A suboptimal error exponent based on a
mixture scheme of separate coding and the joint source channel
coding first developed in [6] is achieved. In this paper, we
follow Csisźar’s idea in [6] and develop a new coding scheme
for joint source channel coding with decoder side-information.
For a class of channels, including the symmetric channels, the
resulted lower and upper bounds have the same property as
the joint source-channel coding error exponentwithout side-
information in [6]: they match if the channel coding error
exponent is known at a critical rate. We use a game theoretic
approach to interpret this result.

The outline of the paper is as follows. We review the
problem setup and classical error exponent results in Section II.
Then in Section III, we present the error exponent result for
joint source-channel coding with both decoder and encoder
side information which provides a simple upper bound to
the error exponent investigated in the paper. This is a simple
corollary of Theorem 5 in [6]. The main result of this paper
is presented in Section IV. Some implications of these bounds
are given in Section V.



II. REVIEW OF SOURCE AND CHANNEL DOING ERROR

EXPONENTS

In this paper random variables are denoted bya andb, the
realizations of the random variables are denoted bya andb.

A. System model of joint source-channel coding with decoder
side-information

As shown in Figure 1, the source and side-information,
an and bn respectively, are random variables i.i.d from dis-
tribution PAB on a finite alphabetA × B. The channel is
memoryless with input/output probability transitionWY |X ,
where the input/output alphabetsX andY are finite. Without
loss of generality, we assume that the number of source
symbols and the number of channel uses are equal, i.e. the
encoder observesan and sends a codewordxn(an) of length
n to the channel, the decoder observes the channel outputyn

and side-informationbn which is not available to the encoder,
the estimate iŝan(bn, yn).

The error probability is the expectation of the decoding error
average over all channel and source behaviors.

Pr(an 6= ân(bn, yn)) =
∑

an,bn

PAB(an, bn)
∑
yn

WY |X(yn|xn(an))1(an 6= ân(bn, yn)). (1)

The error exponent, for the optimal coding scheme, is defined
asE(PAB , WY |X) =

lim inf
n→∞

− 1

n
log Pr(an 6= ân(bn, yn)). (2)

The main result of this paper is to establish both upper and
lower bounds onE(PAB , WY |X) and show the tightness of
these bounds.

B. Classical error exponent results
3 We review some classical results on channel coding

error exponents and source coding with side-information error
exponents. These bounds are investigated in [10], [7], [9] and
[8].

1) Channel coding error exponentsEc(R, WY |X): Chan-
nel coding is a special case of joint source-channel coding
with side-information: the sourcea and the side-information
b are independent, i.e.PAB = PA × PB , anda is a uniform
distributed random variable on{1, 2, ..., 2R}. For the sake of
simplicity, we assume that2R is an integer. This is not a
problem if2R is not an integer since we can lumpK symbols
together and approximate2KR by an integer for someK, this
is not a problem becauselim

K→∞
1
K

log2(b2KRc) = R. With

this interpretation of channel coding, the definitions of error
probability in (1) and error exponent in (2) still holds.

The channel coding error exponentEc(R, WY |X) is lower
bounded by the random coding error exponent and upper

3In this paper, we write the error exponents (both channel coding
and source coding) in the style of Csiszár’s method of types, equivalent
Gallager style error exponents can be derived through the Fenchel
duality.

bounded by the sphere packing error exponent.

Er(R, WY |X) ≤ Ec(R, WY |X) ≤ Esp(R, WY |X) (3)

whereEr(R, WY |X)

= max
SX

inf
VY |X

D(VY |X‖WY |X |SX) +

|I(VY |X ; SX)−R|+
= max

SX

Er(R, SX , WY |X) (4)

andEsp(R, WY |X)

= max
SX

inf
VY |X :I(VY |X ;SX )<R

D(VY |X‖WY |X |SX)

= max
SX

Esp(R, SX , WY |X) (5)

HereSX is the input composition (type) of the code words.
Er(R, WY |X) = Esp(R, WY |X) in the high rate regime that
R > Rcr whereRcr is defined in [10] as the minimum rate for
which the sphere packingEsp(R, WY |X) and random coding
error exponentsEr(R, WY |X) match for channelWY |X .
There are tighter bounds on the channel coding error exponents
Ec(R, WY |X) in the low rate regime forR < Rcr, known as
straight-line lower bounds and expurgation upper bounds [10].
However, in this paper, we focus on the basic random coding
and sphere packing bounds, as the main message can be
effectively carried out.

It is well known [10] that both the random coding and the
sphere-packing bounds are decreasing withR and are convex
in R. And they are both positive if and only ifR < C(WY |X),
whereC(WY |X) is the capacity of the channelWY |X .

2) Source coding with decoder side-information error ex-
ponents: This is also a special case of the general setup in
Figure 1. This time the channelWY |X is a noiseless channel
with input-output alphabetX = Y and |X | = 2R. Again, we
can reasonably assume that2R is an integer.

The source coding with side-information error exponent4

e(R, PAB) can be bounded as follows:

eL(R, PAB) ≤ e(R, PAB) ≤ eU (R, PAB), (6)

where

eL(R, PAB) = inf
QAB

D(QAB‖PAB) + |R−H(QA|B)|+

andeU (R, PAB) = inf
QAB :H(QA|B)>R

D(QAB‖PAB).

The duality between channel coding and source coding with
decoder side information had been well understood [1]. We
give the following duality results on error exponents.

e(R, QA, PB|A) = Ec(H(QA)−R, QA, PB|A),

or equivalently:

e(H(QA)−R, QA, PB|A) = Ec(R, QA, PB|A)

4In this paper, if R ≥ log2 |A| for source coding with side-
information error exponents, we let the error exponent be∞.
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whereEc(R, QA, PB|A) is the channel coding error exponent
for channelPB|A at rateR and the codebook composition is
QA. e(R, QA, PB|A) is the source coding with side informa-
tion error exponent at rateR with source sequences uniformly
distributed in typeQA and the side information is the output of
channelPB|A with input sequence of typeQA. So obviously,
we have:

Ec(R, PB|A) = max
QA

{Ec(R, QA, PB|A)}
e(R, PAB) = min

QA

{D(QA‖PA) + e(R, QA, PB|A)}

These results are established by the type covering lemma [6]
on the operational level, i.e. a complete characterizations
of the source coding with side information error exponent
e(R, QA, PB|A) implies a complete characterizations of the
channel coding error exponentEc(H(QA) − R, QA, PB|A)
and vice versa.

From these duality results, it is well known that both the
lower and the upper bounds are increasing withR and are
convex in R. And they are both positive if and only if
R > H(PA|B). The special case of the source coding with
decoder side information problem is that the side information
is independent of the source, i.e.PAB = PA × PB . In this
case, the error exponent is completely characterized [7],

e(R, PA) = inf
QA:H(QA)>R

D(QA‖PA) (7)

3) Joint source-channel coding error exponents [6]:In
his seminal paper [6], the joint source-channel coding error
exponents is studied. This is yet another special case of the
general setup in Figure 1. Whena andb are independent, i.e.
PAB = PA × PB , we can drop all theb terms in (1). Hence
the error probability is defined as:Pr(an 6= ân(yn)) =
∑
an

PA(an)
∑
yn

WY |X(yn|xn(an))1(an 6= ân(yn)). (8)

Write the error exponent of (8) asE(PA, WY |X). The lower
and upper bounds of the error exponents are derived in [6]. It
is shown that:

min
R
{e(R, PA) + Esp(R, WY |X)} ≤ E(PA, WY |X)

≤ min
R
{e(R, PA) + Er(R, WY |X)} (9)

The upper bound is derived by using standard method of types
argument. The lower bound is a direct consequence of the
channel coding Theorem 5 in [6].

The difference between the lower and upper bounds is in
the channel coding error exponent. The joint source chan-
nel coding error exponent is “almost” completely charac-
terized because the only possible improvement is to de-
termine the channel coding error exponent which is still
not completely characterized in the low rate regime where
R < Rcr. However, let R∗ be the rate that minimizes
{e(R, PA) + Er(R, WY |X)}, if R∗ ≥ Rcr or equivalently
Er(R

∗, WY |X) = Esp(R∗, WY |X), then we have a complete

characterization of the joint source channel coding error expo-
nent:

E(PA, WY |X) = e(R∗, PA) + Er(R
∗, WY |X). (10)

The goal of this paper is to derive a similar result for
E(PAB , WY |X) defined in (2) as that for the joint source
channel coding in (9) and (10).

4) A recite of Theorem 5 in [6]:Given a sequence of
positive integers{mn} with 1

n
log mn → 0 andmn message

setsA1, ....Amn each with size|Ai| = 2nRi . Then there exists
a channel code(f0, φ0), where the encoderf0 :

⋃mn
i=0Ai →

Xn wheref0(a) = xn(a) ∈ Si
X for a ∈ Ai and the decoder

φ0 : Yn → ⋃mn
i=0Ai, write φ0(y

n) as â(yn) s.t. for any
messagea ∈ Ai, the decoding error

pe(a) =
∑
yn

WY |X(yn|xn(a))1(a 6= â(yn))

≤ 2n(Er(Ri,Si
X ,WY |X )−εn)

for every channelWY |X , and εn → 0. In particular, if the
channelWY |X is known to the encoder, eachSi

X can be picked
to maximizeEr(Ri, S

i
X , WY |X), hence for eacha ∈ Ai:

pe(a) ≤ 2n(Er(Ri,WY |X )−εn).

This channel coding theorem as Csiszár put it, the “main result

of this paper” in [6]. We use this theorem directly in the proof
of the lower bound in Proposition 1 and further modify it to
show the lower bound in Theorem 1.

III. JOINT SOURCE-CHANNEL CODING ERROR EXPONENT

WITH BOTH DECODER AND ENCODER SIDE-INFORMATION

As a warmup to the more interesting scenario where the
side-information is not known to the encoder, we present the
upper/lower bounds when both the encoder and the decoder
know the side-information. This setup is shown in Figure 2.
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Fig. 2. Source coding with both decoderand encoder side-
information

The error probability of the coding system is, similar to (1):
Pr(an 6= ân(bn, yn)) =

∑
an,bn PAB(an, bn)

∑
yn

WY |X(yn|xn(an, bn))1(an 6= ân(bn, yn)). (11)

The error exponent of this setup is denoted by
Eboth(PAB , WY |X) which is defined in the same way
as E(PAB , WY |X) in (2). The difference is that the encoder
observes both sourcean and the side-informationbn, hence
the output of the encoder is a function of both:xn(an, bn).
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So obviously, Eboth(PAB , WY |X) is not smaller than
E(PAB , WY |X).

Comparing (11) and (8), we can see the connections between
joint source-channel coding with both decoder and encoder
side information and joint source-channel coding. Knowing the
side informationbn, the joint source channel coding with both
encoder and decoder side information problem is essentially
a channel coding problem with messages distributed onAn

with a distributionPA|B(an|bn). Hence we can extend the
results for joint source-channel coding error exponent [6]. We
summarize the bounds onEboth(PAB , WY |X) in the following
proposition.

Proposition 1: Lower and upper bound on
Eboth(PAB , WY |X)

Eboth(PAB , WY |X) ≤ min
R
{eU (R, PAB) + Esp(R, WY |X)}

Eboth(PAB , WY |Z) ≥ min
R
{eU (R, PAB) + Er(R, WY |X)}

Not explicitly stated, but it should be clear that the range of
R is (0, log2 |A|).

Proof: see Appendix A in [3]. Because
Eboth(PAB , WY |X) is no smaller thanE(PAB , WY |X),
so the lower bound ofE(PAB , WY |X) in Theorem 1 is
also a lower bound forEboth(PAB , WY |X). However, in the
appendix in [3], we give a simple proof of the lower bound
on Eboth(PAB , WY |X) which is a corollary of Theorem 5
in [6]. ¤

Comparing the lower and the upper bounds for the case
with both encoder and decoder side-information, we can easily
see that ifR∗ minimizes{eU (R, PAB)+Er(R, WY |X)} and
Esp(R∗, WY |X) = Er(R

∗, WY |X), then the upper bound and
the lower bound match. Hence,

Eboth(PAB , WY |X) = eU (R∗, PAB) + Er(R
∗, WY |X).

In this caseEboth(PAB , WY |X) is completely character-
ized.

IV. JOINT SOURCE-CHANNEL ERROR EXPONENTS WITH

ONLY DECODER SIDE INFORMATION

We study the more interesting problem where only decoder
knows the side-information in this section. We first give a
lower and an upper bound on the error exponent of joint
source-channel coding with decoder only side-information.
The result is summarized in the following Theorem.

Theorem 1:Lower and upper bound on the joint source
channel coding with decoder side-information only, as setup
in Figure 1, error exponent: For the error probabilityPr(an 6=
ân(bn, yn)) and error exponentE(PAB , WY |X) defined in (1)

and (2), we have the following lower and upper bounds:

E(PAB , WY |X) ≥ min
QA

max
SX (QA)

min
QB|A,VY |X

{
D(QAB‖PAB) + D(VY |X‖WY |X |SX(QA)) +

|I(SX(QA); VY |X)−H(QA|B)|+}
E(PAB , WY |X) ≤ min

QA

max
SX (QA)

min
QB|A,VY |X :I(SX (QA);VY |X )<H(QA|B)

{D(QAB‖PAB)

+D(VY |X‖WY |X |SX(QA))}
Proof: The main technical tool used here is the method of

types. For the lower bound we propose a joint coding scheme
for the joint source channel coding with side information
problem. This scheme is a modification of the coding scheme
first proposed in [6]. However, we cannot directly use the
channel coding Theorem 5 in [6] because of the presence
of the side information. In essence, we have to study a
more complicated case using the method of types. Details see
AppendixB in [3]. ¤

To simplify the expressions of the lower and upper bounds
and later give a sufficient condition for these two bounds to
match, we introduce the “digital interface”R and have the
following corollary.

Corollary 1: upper and lower bounds onE(PAB , WY |X)
with “digital interface” R

E(PAB , WY |X) ≤ min
QA

max
SX (QA)

min
R
{ (12)

eU (R, PAB , QA) + Esp(R, SX(QA), WY |X)}
E(PAB , WY |Z) ≥ min

QA

max
SX (QA)

min
R
{ (13)

eU (R, PAB , QA) + Er(R, SX(QA), WY |X)}
where Er(R, SX(QA), WY |X) is the standard random cod-
ing error exponent for channelWY |X at rateR with input
distribution SX(QA) defined in (4), whileeU (R, PAB , QA)
is a peculiar source coding with side-information error expo-
nent for sourcePAB at rateR, where the empirical source
distribution is fixed atQA. That is forQA

eU (R, PAB , QA) , min
QB|A:H(QA|B)≥R

D(QAB‖PAB)

Proof: The proof is in AppendixC in [3]. ¤

With the simplified expression of the lower and upper
bounds in Corollary 1, we can give a game theoretic inter-
pretation of the bounds. And more importantly, we present
some sufficient conditions for the two bounds to match.

A. A game theoretic interpretation of the bounds

The lower and upper bounds established in Corollary 1
clearly have a game theoretic interpretation. This is a two
player zero sum game. The first player is “nature”, the second
player is the coding system, the payoff from “nature” to
the coding system is the bounds on the error exponents in
Corollary 1. “Nature” chooses the marginal of the sourceQA

(observable to the coding system) andR which is essentially
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the side informationQB|A and the channel behaviorVY |X
(non-observable to the coding system). The coding system
chooseSX(QA) after observingQA. Hence in this game, the
”nature” has two moves, the first move onQA and the last
move onR which is essentiallyQB|A and VY |X , while the
coding system has the middle move onSX(QA).

Comparing Corollary 1 for joint source-channel coding with
decoder side information and the classical joint source-channel
coding error exponent [6] in (9), it is desirable to have a
sufficient condition that the lower bound and the upper bound
match, i.e. the complete characterization as that in (10). It
is simpler for the case in (9) since all is needed is that the
sphere backing bound and the random coding bound to match
at the critical rateR∗ as discussed in Section II-B.3. However,
for the two bounds in Corollary 1, it is not clear what the
conditions are such that these two bounds match. Suppose
that the solution of the game (12) is(Qu

A, Su
X(QA), Ru) and

solution of the game (13) is(Ql
A, Sl

X(QA), Rl). An obvious
sufficient condition for the two bounds match is as follows:

(Ql
A, Sl

X(QA), Rl) = (Qu
A, Su

X(QA), Ru) and

Er(R
u, Su

X(QA), WY |X) = Esp(Ru, Su
X(QA), WY |X).

This condition is hard to verify foranysource channel pairs. In
the next section, we try to simplify the condition under which
these two bounds match for a class of channels.

B. A sufficient condition to reducemin{max{min{·}}} to
min{·}

The difficulty in studying the bounds in Corollary 1 is that
the min and max operators are nested. The problem will be
simplified if we can change the order of themin and max
operators.

Corollary 2: For symmetric channelsWY |X defined on
Page 94 in [10], this includes the binary symmetric and binary
erasure channels, where the input distributionSX to maximize
the random coding error exponentEr(R, SX , WY |X) is uni-
form on X , or for more general channels5, where the input
distributionSX to maximize the random coding error exponent
Er(R, SX , WY |X) is the same for allR, then the upper and
lower bounds in Theorem 1 and Corollary 1 can be further
simplified to the following forms:

E(PAB , WY |X) ≤
min

R
{eU (R, PAB) + Esp(R, WY |X)} (14)

E(PAB , WY |Z) ≥
min

R
{eU (R, PAB) + Er(R, WY |X)} (15)

Note: in this case, the upper and lower bounds for
E(PAB , WY |X) is the same as those forEboth(PAB , WY |X)
in Proposition 1. More discussions see Section V.

Proof: An important property for symmetric channels is
that the input distribution that maximizes the random coding

5For example, a channel consisted of parallel symmetric channels.

error exponent is constant for all rateR, hence the inner
maxmin{·} is equal tominmax{·}, i.e.
E(PAB , WY |X)

≥ min
QA

max
SX (QA)

min
R
{eU (R, PAB , QA) +

Er(R, SX(QA), WY |X)}
= min

QA

min
R

max
SX (QA)

{eU (R, PAB , QA) +

Er(R, SX(QA), WY |X)}
= min

QA

min
R
{eU (R, PAB , QA) + Er(R, WY |X)} (16)

= min
R
{min

QA

{eU (R, PAB , QA)}+ Er(R, WY |X)}
= min

R
{eU (R, PAB) + Er(R, WY |X)} (17)

where (16) follows the definition of random coding bound
in (3) and (17) follows the obvious equality:

min
QA

eU (R, PAB , QA) =

min
QAB :H(QA|B)≥R

D(QAB‖PAB) = eU (R, PAB).

The upper bound in 14 is trivial by noticing that
maxmin{·} ≤ minmax{·} [2], hence:
E(PAB , WY |X)

≤ min
QA

max
SX (QA)

min
R
{eU (R, PAB , QA) +

Esp(R, SX(QA), WY |X)}
≤ min

QA

min
R

max
SX (QA)

{eU (R, PAB , QA) +

Esp(R, SX(QA), WY |X)}
= min

QA

min
R
{eU (R, PAB , QA) + Esp(R, WY |X)}

= min
R
{min

QA

{eU (R, PAB , QA)}+ Esp(R, WY |X)}
= min

R
{eU (R, PAB) + Esp(R, WY |X)} (18)

Corollary 2 is proved. ¤

With this corollary proved, we can give a sufficient condition
under which the lower bound and upper bound match similar
to that for the joint source-channel coding case in Section II-
B.3. More discussions see Section V.

C. Why it is hard to generalize Corollary 2 to non-symmetric
channels?

Whether max
SX (QA)

min
R
{eU (R, PAB , QA) +

Er(R, SX(QA), WY |X)} is equal to
min

R
max

SX (QA)
{eU (R, PAB , QA) + Er(R, SX(QA), WY |X)}

is not obvious for general (non-symmetric) channels. A
sufficient condition of the existence of a unique saddle point
hence the equality is known as the Sion’s Theorem [13]
which states that:

max
µ∈M

min
ν∈N

f(µ, ν) = min
ν∈N

max
µ∈M

f(µ, ν) (19)

if M and N are convex, compact spaces andf a quasi-
concave-convex (definitions see [2]) and continuous function
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onM×N . For the function of interest,:

max
SX (QA)

min
R
{eU (R, PAB , QA) +

Er(R, SX(QA), WY |X)}. (20)

We examine the sufficient condition under which a
unique equilibrium exists, according to the Sion’s The-
orem. First, eU (R, PAB , QA) + Esp(R, SX(QA), WY |X)
is quasi-convex inR because botheU (R, PAB , QA) and
Esp(R, SX(QA), WY |X) are convex, hence quasi-convex in
R. However, (20) is not quasi concave onSX(QA):

Er(R, SX(QA), WY |X)

= inf
VY |X

D(VY |X‖WY |X |SX(QA))

+|I(VY |X ; SX(QA))−R|+,

notice that the first term is linear inSX(QA), the second term
is quasi-concave but not concave. But the sum of a linear
function and a quasi-concave function might not be quasi-
concave. This shows that theminmax theorem cannot be
established by using the Sion’s Theorem. This does not mean
that the minmax theorem cannot be proved. However for
a non quasi-concave function that may have multiple peaks,
minmax{·} is not necessarily equal tomaxmin{·}.

V. “A LMOST” COMPLETE CHARACTERIZATION OF

E(PAB , WY |X) FOR SYMMETRIC CHANNELS

The sufficient condition in Corollary 2 is important, since
binary symmetric and binary erasure channels are among the
most well studied discrete memoryless channels. We further
discuss the implications of the “almost” complete characteri-
zation ofE(PAB , WY |X) for symmetric channels.

First we give an example shown in Figure 3 and Figure 4.
The sourcea is a Bernoulli0.5 random variable and the joint
distribution has the distribution

PAB =

{
0.50 0.00
0.05 0.45

}
(21)

The channelWY |X is a binary symmetric channel with
cross rate0.025. The channel coding error exponent bounds
Er(R, WY |X) andEsp(R, WY |X) and the source coding with
decoder side-information upper boundeU (R, PAB) are plotted
in Figure 3. The channel coding bound match whileR ≥ Rcr,
whereRcr is defined in [10].
Note: the lower bound of the source coding with side informa-
tion error exponenteL(R, PAB) is not plotted in the figure.

In Figure 4, we add both the lower and upper bounds on
the joint source channel coding with decoder side informa-
tion to the plot in Figure 3. For this source channel pair
PAB and WY |X , we have a complete characterization of
Eboth(PAB , WY |X) because the channel is symmetric and
the two bounds match at the minimal point, i.e. the two
curves: eU (R, PAB) + Esp(R, WY |X) and eU (R, PAB) +
Er(R, WY |X) match at the minimal point as shown in Fig-
ure 4. The value of the minimum isEj shown in Figure 4.

A. Encoder side information often does not help

Similar to Proposition 1, we can see the conditions under
which we can give a complete characterization of the joint
source channel coding with decoder only side information error
exponentE(PAB , WY |X). If R∗ minimizes{eU (R, PAB) +
Er(R, WY |X)} andEsp(R∗, WY |X) = Er(R

∗, WY |X), then
the upper bound and the lower bound match. Hence:

E(PAB , WY |X) = eU (R∗, PAB) + Er(R
∗, WY |X). (22)

Comparing Corollary 2 and Proposition 1, we bound the
error exponent with or without decoding side-information by
the same lower and upper bounds. This does not mean that
E(PAB , WY |Z) = Eboth(PAB , WY |Z) always holds. But if
the lower bound and upper bound match, which is shown in
Figure 4, then we have:

E(PAB , WY |Z) = Eboth(PAB , WY |Z) =

eU (R∗, PAB) + Er(R
∗, WY |X).

whereR∗ minimizeseU (R, PAB)+Er(R, WY |X) andR∗ >
Rcr. This is another example for block coding where knowing
side-information does not help increase the error exponent. In
the contrary, as discussed in [4], in the delay constrained setup,
there is a penalty for not knowing the side-information even
if the channel is noiseless.

B. Separate coding is strictly sub-optimal

An obvious coding scheme for the problem in Figure 1 is
to implement a separate coding scheme. A source encoder
first encodes the source sequencean into a rateR, whereR
is determined later, bit streamcnR(an) then an independent
channel encoder encodes the bitscnR into channel inputs
xn. The channel decoder first decodes the channel output
yn into bits ĉnR and then the independent source decoder
reconstructsân from ĉnR and side informationbn. This
is a separate coding scheme with outer source with side
information coding and inner channel coding, both at rateR.
If both coding are random coding that achieves the random
coding error exponents for both source coding and channel
coding respectively. The union bound of the error probability
is as follows:

Pr(an 6= ân(bn, yn))

= Pr(cnR 6= ĉnR(yn)) + Pr(an 6= â(ĉnR(yn), bn),

cnR = cnR(yn)) (23)

≤ Pr(cnR 6= ĉnR(yn)) + Pr(an 6= â(ĉnR(yn), bn)

|cnR = cnR(yn)) (24)

≤ 2−n(Er(R,WY |X )−ε1n) + 2−n(eL(R,PAB)−ε2n) (25)

whereε1n andε2n converges to zero asn goes to infinity. (23)
follows the union bound argument that a decoding error occurs
if either the inner channel coding fails or the outer source
coding fails. (24) is true because conditional probability is
large or equal to joint probability. Finally (25) is true because
both the outer source coding and inner channel coding achieve
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Rate R
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0.8
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1.4

1.6

1.8

Fig. 3. The upper bound on source coding with side-
information error exponenteU (R, PAB) is the dotted line. The
random coding boundEr(R, WY |X) and sphere packing bound
Esp(R, WY |X) for channel coding error exponents are the solid
line and the dashed line respectively.

Rate R
0 1

0  

Es
0.2
Ej

0.4

0.6

0.8

1  

1.2

1.4

1.6

1.8

Fig. 4. eU (R, PAB) + Esp(R, WY |X) and eU (R, PAB) +
Er(R, WY |X) are added to Figure 3 in dashed line and
solid line respectively, they match at the minimal point
hence the joint source-channel coding with decoder side-
information error exponent is completely determined as
E(PAB , WY |X) = Ej And Es is the separate coding error
exponentEseparate(PAB , WY |X) defined in (26).

the random coding error exponents. From (25) and that we
can optimize the digital interface rateR between the channel
coder and source coder, we know that the separate coding error
exponent is

max
R
{min{Er(R, WY |X), eL(R, PAB}}

, Eseparate(PAB , WY |X) (26)

This separate coding scheme is also discussed for joint
source channel coding in [6]. A similar bound is drawn.
We next show why the separate coding error exponent
Eseparate(PAB , WY |X) is in general strictly smaller than the
lower bound ofE(PAB , WY |X) in (15).

First, obviously, Eseparate(PAB , WY |X) ≤
max

R
{min{Er(R, WY |X), eU (R, PAB)}}. Secondly

{Er(R, WY |X) is monotonically decreasing,eU (R, PAB) is
monotonically increasing, and both are continuous and convex
as shown in Figure 4. This means that for rateR̄ such that
Er(R̄, WY |X) = eU (R̄, PAB):

Eseparate(PAB , WY |X) = Er(R̄, WY |X) = eU (R̄, PAB)

Now let R∗ be the rate to minimize{eU (R, PAB) +
Er(R, WY |X)}, i.e.

E(PAB , WY |X) ≥ eU (R∗, PAB) + Er(R
∗, WY |X).

There are three scenarios. First ifR∗ = R̄, then

E(PAB , WY |X) ≥ eU (R∗, PAB) + Er(R
∗, WY |X)X

= 2Er(R̄, WY |X) = 2Eseparate(PAB , WY |X).
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Secondly, ifR∗ < R̄,

E(PAB , WY |X) ≥ Er(R
∗, WY |X) > Er(R̄, WY |X)

= Eseparate(PAB , WY |X).

Finally if R∗ > R̄,

E(PAB , WY |X) ≥ eU (R∗, PAB) > eU (R̄, PAB)

= Eseparate(PAB , WY |X).

So in all cases, the joint source channel coding error
exponentE(PAB , WY |X) is strictly larger than the separate
coding error exponentEseparate(PAB , WY |X). This is clearly
illustrated in Figure 4.

Note: Eseparate(PAB , WY |X) is an achievable separate
coding error exponent from the obvious separate cod-
ing scheme. What we prove is that this obvious one is
strictly smaller than the joint source-channel coding er-
ror exponent. This is similar to the claim Csiszár makes
in [6]. It should be clear that the upper bound of
any separate source channel coding error exponent is
maxR{min{Esp(R, WY |X), eU (R, PAB}} which is compa-
rable to (26). The proof hinges on the complete transparency
between the source coding and channel coding, otherwise we
have a joint coding schemes. A detailed discussion is in [15].
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VI. CONCLUSIONS

We study the joint source channel coding with decoder
side-information problem, with or without encoder side-
information. This is an extension of Csiszár’s joint source
channel coding error exponent problem in [6]. To derive the
lower bound, we use a novel joint source channel with decoder
side-information decoding scheme. We further investigate the
conditions under which the lower bounds and upper bounds
match. A game theoretic approach is applied to show the
equivalence of the lower and upper bound. This approach
might be useful in simplifying other error exponents with a
cascade of min-max operators, for example, the Wyner-Ziv
coding error exponent recently studied in [11].
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