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Abstract— The randomized fixed-composition codes with
optimal decoding error exponents are recently studied in [11],
[12] for the finite alphabet interference channel with two
transmitter-receiver pairs. In this paper we investigate the
capacity region for randomized fixed-composition codes. A
complete characterization of the capacity region of the said
coding scheme is given. The inner bound is derived by showing
the existence of a positive error exponent within the capacity
region. A simple universal decoding rule is given. The tight
outer bound is derived by extending a technique first developed
in [10] for single input output channels to interference channels.
It is shown that even with a sophisticated time-sharing scheme
among randomized fixed-composition codes, the capacity region
of the randomized fixed-composition coding is not bigger than
the known Han-Kobayashi [24] capacity region. This suggests
that the study of the average behavior of randomized codes are
not sufficient in finding new capacity regions.

I. I NTRODUCTION

The interference channel is a channel model with multiple
input-output pairs that share a common communication chan-
nel [23]. The capacity region, within which reliable commu-
nication can be achieved forall input-output pairs, has been
studied [23], [1], [3], [2]. The most well known capacity region
result is given in [24], where the capacity region is studied
for both discrete and Gaussian cases. Some recent progresses
on the capacity region are reported in [14], [19], [22], [5],
[13]. However, the capacity regions for general interference
channels are still unknown. We focus our investigation on
the capacity region for a specific coding scheme: randomized
fixed-composition codes for which the error probability is
defined as the average error probability over all code books
with a certain composition (type). Fixed-composition coding is
a useful coding scheme in the investigation of both upper [15]
and lower bounds of channel coding error exponents [8] for
point to point channel and [21], [20] for multiple access
(MAC) channels. Recently in [11] and [12], randomized fixed-
composition codes were used to derive a lower bound on the
error exponent for discrete memoryless interference channels.
A lower bound on the maximum-likelihood decoding error
exponent is derived, this is a new attempt in investigating
the error exponents for interference channels. The unanswered
question is the capacity region of such coding schemes.

This work was done when he was a postdoctoral researcher with
the Hewlett-Packard Laboratories, Palo Alto, CA.

We answer the above question by giving a complete char-
acterization of the interference channel capacity region for
randomized fixed-composition codes. To prove the achiev-
ability of the capacity region, we prove the positivity of
an achievable error exponent everywhere inside the capacity
region. This error exponent is derived by using the method of
types [7], in particular, the universal decoding scheme used for
multiple-access channels [21]. A better error exponent can be
achieved by using the more complicated universal decoding
rules developed in [20]. But since they both have the same
achievable capacity region, we use the simpler scheme in [21].
To prove the converse, that the achievable region matches the
outer bound, we extend the technique in [10] for point to
point channels to interference channels by using the known
capacity region results for multiple-access channels. The result
reveals the intimate relations between interference channels
and multiple-access channels. With the capacity region for
fixed-composition code established, it is evident that this
capacity region is a subset of the Han-Kobayashi region [24].

In this paper we focus on the two input-output case and
study the discrete memoryless interference channels with
transition probabilityWZ|X,Y and W̃Z̃|X,Y respectively as
shown in Figure 1. The two channel inputs arexn ∈ Xn and
yn ∈ Yn, outputs arezn ∈ Zn and z̃n ∈ Z̃n respectively,
whereX , Y, Z and Z̃ are finite sets. We study the basic
interference channel where each encoder only has a private
message to the corresponding decoder.

The technical proof of this paper is focused on the aver-
age behavior of fixed-composition code books. However this
fundamental setup can be extended in the following three
directions.
• It is obvious that there exists a code book that its

decoding error is no bigger than the average decoding
error over all code books. Hence the achievability results
in this paper guarantees the existence of a of deterministic
coding scheme with at least the same error exponents and
capacity region. More discussions are in Section II-E.

• The focus of this paper is on the fixed-composition codes
with a compositionP , whereP is a distribution on the in-
put alphabet. This code book generation is different from
the non-fixed-composition random coding [16] according
to distributionP . It is well known in the literature that
the fixed-composition codes gives better error exponent
result in low rate regime for point to point channels [8]
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WZ|XY (z|x, y)xn(mx)

yn(my)

mx ∈ {1, 2, ...2nRx}

W̃Z̃|XY (z̃|x, y)Encoder Y

Encoder X Decoder X

Decoder Ymy ∈ {1, 2, ...2nRy}

m̂x(zn)

m̂y(z̃n)

zn

z̃n

Fig. 1. A discrete memoryless interference channel of two users

and multiple-access channels [21], [20]. However they
have the same achievable rate region. It is the same case
for interference channels and hence the capacity region
result in this paper applies to the non-fixed-composition
random codes.

• Time-sharing is a key element in achieving capacity
regions for multi-terminal channels [6]. For instance,
for multiple-access channels, simple time-sharing among
fixed-composition codes gives the entire capacity region.
We show that our fixed composition codes can be used to
build a time-sharing capacity region for the interference
channel. More interestingly, we show that the simple
time-sharing technique that gives the entire capacity re-
gion for multiple-access channels is not enough to get the
largest capacity region, a more sophisticated time-sharing
scheme is needed. Detailed discussions are in Section IV.

The outline of the paper is as follows. In Section II we
first formally define randomized fixed-composition codes and
its capacity region and then in Section II-C we present the
main result of this paper: the interference channel capacity
region for randomized fixed-composition codes in Theorem 1.
The proof is later briefly explained in Section III with more
details in [4]. Finally in Section IV, we argue that due to
the non-convexity of capacity region of the randomized fixed-
composition codes. A more sophisticated time-sharing scheme
is needed. This shows the necessity of studying the geometry1

of the code-books for interference channels.

II. RANDOMIZED FIXED-COMPOSITION CODES AND ITS

CAPACITY REGION

We first review the definition of randomized fixed-
composition code that is studied intensively in previous
works [9], [10], [21], [20]. Then the definition of the inter-
ference channel capacity region for such codes is introduced.
Then we give the main result of this paper: the complete

1A code book of rateR and of code lengthn can be viewed as a set
of 2nR points located in the codeword spaceXn, hence the geometry
of a code book is the relations among these2nR points.

characterization of the capacity region for randomized fixed-
composition codes.

A. Randomized fixed-composition codes

A randomized fixed-composition coding system is a uniform
distribution on the code books in which every codeword is
from the type set with the fixed composition (type).

First we introduce the notion of type set [6]. A type set
T n(P ) is a set of all the stringsxn ∈ Xn with the same type
P whereP is a probability distribution [6]. A sequence of type
setsT n ⊆ Xn has compositionPX if the types ofT n con-
verges toPX , i.e. lim

n→∞
N(a|T n)

n
= PX(a) for all a ∈ X that

PX(a) > 0 andN(a|T n) = 0 for all a ∈ X thatPX(a) = 0,
whereN(a|T n) is the number of occurrence ofa in typeT n.
We ignore the nuisance of the integer effect and assume that
nPX(a) is an integer for alla ∈ X and nRx and nRy are
also integers. This is indeed a reasonable assumption since we
study long block lengthn and all the information theoretic
quantities studied in this paper are continuous on the code
compositions and rates. We simply denote byT n(PX) the
length-n type set which has “asymptotic” typePX .Allowing
identical codewords for difference messages in the same code
book, there are|T n(PX)|2nRx

many code books with fixed-
compositionPX and rateRx.

In this paper, we study the randomized fixed-composition
codes, where each code book with all codewords from the fixed
composition being chosen with the same probability. Equiva-
lently, over all these code books, a codeword for messagei is
uniformly i.i.d distributed on the type setT n(PX). A formal
definition is as follows.

Definition 1: Randomized fixed-composition codes: for a
probability distribution PX on X , a rate Rx randomized
fixed-composition-PX encoder picks a code book with the as
follows. For any length-n fixed-composition-PX code book
cX = (xn(1), xn(2), ..., x(2nRx)), wherexn(i) ∈ T n(PX),
i = 1, 2, ..., 2nRx , andxn(i) andxn(j) may not be different
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for i 6= j, the code bookcX is chosen with probability

(
1

|T n(PX)|
)2nRx

.

In other words, the choice of the code book is a ran-
dom variable that is uniformly distributed on the in-
dex set of all code books with fixed-compositionPX :
{1, 2, 3, ..., |T n(PX)|2nRx }. The chosen code bookcX is
shared between the encoderX and the decodersX and Y .

The key property of the randomized fixed-composition codes
is that for any message subset{i1, i2, ...il} ⊆ {1, 2, ..., 2nRx},
the codewords for these messages are identical independently
distributed on the type setT n(PX).

For randomized fixed-composition codes, the average error
probability P n

e(x)(Rx, Ry, PX , PY ) for X is the expectation
of decoding error over all message, code books and channel
behaviors2.

P n
e(x)(Rx, Ry, PX , PY ) =

(
1

|T n(PX)|
)2nRx

(1)

(
1

|T n(PY )|
)2nRy ∑

cX

∑
cY

1

2nRx

∑
mx

1

2nRy

∑
my

∑
zn

WZ|XY (zn|xn(mx), yn(my))1(m̂x(zn) 6= mx)

wherexn(mx) is the codeword of messagemx in code book
cX , similarly for yn(my), m̂x(zn) is the decision made by
the decoder knowing the code bookscX andcY .

B. Randomized fixed-composition coding capacity for interfer-
ence channels

Given the definitions of randomized fixed-composition cod-
ing and the average error probability in (1) for such codes, we
can formally define the capacity region for such codes.

Definition 2: Capacity region for randomized fixed-
composition codes: for a fixed-compositionPX and PY , a
rate pair(Rx, Ry) is said to be achievable forX, if for all
δ > 0, there existsNδ < ∞, s.t. for all n > Nδ,

P n
e(x)(Rx, Ry, PX , PY ) < δ (2)

We denote byRx(PX , PY ) the closure of the union of the all
achievable rate pairs. Similarly we denote byRy(PX , PY ) the
achievable region forY , andRxy(PX , PY ) for (X, Y ) where
both decoding errors are small. Obviously

Rxy(PX , PY ) = Rx(PX , PY )
⋂
Ry(PX , PY ). (3)

We only need to focus our investigation onRx(PX , PY ),
then by the obvious symmetry, bothRy(PX , PY ) and
Rxy(PX , PY ) follow.

2To simplify notations, we denote by
∑
cX

the sum over all compo-

sition PX and rateRx code bookcX in (1).

C. Capacity region of the fixed-composition code,
Rx(PX , PY ), for X

The main result of this paper is the complete characteri-
zation of the randomized fixed-composition capacity region
Rx(PX , PY ) for X, as illustrated in Figure 2. By symmetry,
Ry(PX , PY ) and thenRxy(PX , PY ) follow.

Theorem 1:Interference channel capacity region
Rx(PX , PY ) for randomized fixed-composition codes
with compositionsPX andPY :

Rx(PX , PY ) =

{(Rx, Ry) : 0 ≤ Rx < I(X; Z), 0 ≤ Ry}
⋃

{(Rx, Ry) : 0 ≤ Rx < I(X; Z|Y ),

Rx + Ry < I(X, Y ; Z)} (4)

where the random variables in (4),(X, Y, Z) ∼
PXPY WZ|X,Y . The region Rx(PX , PY ) is illustrated
in Figure 2.

The achievable part of the theorem states that: for a rate
pair (Rx, Ry) ∈ Rx(PX , PY ), the union of RegionI andII
in Figure 2, for allδ > 0, there existsNδ < ∞, s.t. for all
n > Nδ, the average error probability (1) for the randomized
code from compositionsPX andPY is smaller thanδ for X:

P n
e(x)(Rx, Ry, PX , PY ) < δ

for some decoding rule. RegionII is also the multiple-access
capacity region for fixed-composition codes(PX , PY ) for
channelWZ|XY .

The converse of the theorem states that for any rate pair
(Rx, Ry) outside ofRx(PX , PY ), that is regionIII, IV and
V in Figure 2, there existsδ > 0, such that forall n,

P n
e(x)(Rx, Ry, PX , PY ) > δ

no matter what decoding rule is used. The definition of the
error probabilityP n

e(x)(Rx, Ry, PX , PY ) is average over all
code books and channel realizations as defined in (1).

The sketch of the proof of Theorem 1 is in Section III with
details in [4].

There are two important observations here. First, the capac-
ity region achieved forx and y defined asRxy(PX , PY ) =
Rx(PX , PY )

⋂Ry(PX , PY ) is a subset of the capacity region
proposed by Han and Kobayashi in [24] which is convex.
Hence the randomized fixed-composition codes do not give a
bigger capacity region than that in [24]. Secondly, the converse
of the randomized coding does not guarantee that there is
not a single good fixed-composition code book. The converse
claims that, the average (over all code books with the fixed
composition) decoding error probability does not converge to
zero if the rate pair is outside the capacity region in Theorem 1.

The significance of the above two points is that we cannot
hope to get a bigger capacity region than that in [24] by
using the fixed-composition random coding scheme which is

3
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Fig. 2. Randomized fixed-composition capacity regionRx(PX , PY ) for X, the achievable region is the union of RegionI andII.

Ry

Rx

Fig. 3. A typical randomized fixed-composition capacity region
Rxy(PX , PY ) = Rx(PX , PY )∩Ry(PX , PY ) is the intersection of
the dotted line and the solid lines, this capacity region is not necessarily
convex.

sufficient to achieve the entire capacity regions for point to
point channel [9], multiple access channels [18] and degraded
broadcast channels [17]. This confirms that interference chan-
nel coding is a more difficult problem.

D. Necessity of more sophisticated time-sharing schemes

In the achievability part of Theorem 1, we prove that
the average error probability forX is arbitrarily small for
randomized fixed-composition codes if the rate pair(Rx, Ry)
is inside the capacity regionRx(PX , PY ). For interference
channels, it is obvious that the rate region for bothX andY
is:

Rxy(PX , PY ) = Rx(PX , PY ) ∩Ry(PX , PY ), (5)

where Ry(PX , PY ) is defined in the same manner as
Rx(PX , PY ) but the channel is̃WZ̃|XY instead ofWZ|XY as
shown in Figure 1. A typical capacity regionRxy(PX , PY ) is
shown in Figure 3. It is not necessarily convex.

However, by a simple time-sharing between different rate
pairs for the same composition, we can convexify the capacity
region. Then the convex hull of the union of all such capacity

regions of different compositions gives a bigger convex achiev-
able capacity region. This capacity region of the interference
channel is

CONV EX


 ⋃

PX ,PY

Rxy(PX , PY )


 .

It is tempting to claim that the above convex capacity region
is the largest one can get by time-sharing the “basic” fixed-
composition codes as multiple-access channels shown in [6].
However, as will be discussed later in Section IV, it is not the
case. A more sophisticated time-sharing gives a bigger capacity
region.

This is an important difference between interference channel
coding and multiple-access channel coding because the fixed-
composition capacity region is convex for the latter and hence
the simple time-sharing gives the biggest(entire) capacity re-
gion [6]. Time-sharing capacity is detailed in Section IV.

E. Existence of a good code for an interference channel

In this paper we focus our study on the average (over all
messages) error probability over all code books with the same
composition. For a rate pair(Rx, Ry), if the average error
probability forX is smaller thanδ, then obviously there exists
a code book such that the error probability is smaller than
δ for X. This should be clear from the definition of error
probability P n

e(x)(Rx, Ry, PX , PY ) in (1). In the following
example, we illustrate that this is also the case for decoding
error for bothX and Y . We claim without proof that this
is also true for “uniform” time-sharing coding schemes later
discussed in Section IV. The existence of a code book pair
that achieves the error exponents in the achievability part of
the proof of Theorem 1 can also be shown. The proof is similar
to that in [16] and Exercise 30 (b) on page 198 [9].

Similar to the error probability forX defined in (1), we
define the average joint error probability forX andY as

4



P n
e(xy)(Rx, Ry, PX , PY ) =

(
1

|T n(PX)|
)2nRx (

1

|T n(PY )|
)2nRy

∑
cX

∑
cY

1

2nRx

∑
mx

1

2nRy

∑
my

(6)

{ ∑
zn

WZ|XY (zn|xn(mx), yn(my))1(m̂x(zn) 6= mx)

+
∑
z̃n

W̃Z̃|XY (z̃n|xn(mx), yn(my))1(m̂y(z̃n) 6= my)
}

For a rate pair (Rx, Ry) ∈ Rxy(PX , PY ) =
Rx(PX , PY )

⋂Ry(PX , PY ), we know that for allδ > 0,
there existsNδ < ∞, s.t. for all n > Nδ, the average
error probability is smaller thanδ for user X and userY :
P n

e(x)(Rx, Ry, PX , PY ) < δ and P n
e(y)(Rx, Ry, PX , PY ) <

δ. It is easy to see that the average joint error probability for
userX andY can be bounded by:

P n
e(xy)(Rx, Ry, PX , PY )

= P n
e(x)(Rx, Ry, PX , PY ) + P n

e(y)(Rx, Ry, PX , PY )

≤ 2δ (7)

From (6), we know thatP n
e(xy)(Rx, Ry, PX , PY ) is the aver-

age error probability ofall (PX , PY )-fixed-composition codes.
Together with (7), we know that there exists at leastonecode
book pair such that the error probability is no bigger than2δ.

III. SKETCH OF THE PROOF OFTHEOREM 1

There are two parts of the theorem, achievability and con-
verse. The achievability part is proved by showing that by
using a maximum mutual information decoding rule, positive
error exponents exist everywhere in the capacity region in
Theorem 1. We apply a method of types argument that is well
known for randomized fixed-composition code in the point to
point channel coding [9] and MAC channel coding [21]. The
converse is proved by giving a non-vanishing lower bound
on the error probability outside the capacity region defined
in Theorem 1. In the proof, we extended the technique first
developed in [10] for point to point channels to interference
channels. Due to the page limit, we ignore the proof here.
Details are in [4].

IV. D ISCUSSIONS ONTIME-SHARING

The main result of this paper is the randomized fixed-
composition coding capacity region forX that isRx(PX , PY )
shown in Figure 2. So obviously, the interference channel
capacity region, where decoding errors for bothX andY are
small, is the intersection ofRx(PX , PY ) andRy(PX , PY )
whereRy(PX , PY ) is defined in the similar way but with
channelW̃Z̃|XY instead ofWZ|XY . The intersected region
defined in (5),Rxy(PX , PY ), is in general non-convex as
shown in Figure 3. Similar to multiple-access channels capac-
ity region, studied in Chapter 15.3 [6], we use this capacity
regionRxy(PX , PY ) as the building blocks to generate larger
capacity regions.

A. A digression to MAC channel capacity region

Before giving the time-sharing results for interference chan-
nels and show why the simple time-sharing idea works for
MAC channels but not for interference channels, we first
look at Rx(PX , PY ) in Figure 2. RegionII is obviously
the multiple access channelWZ|XY region achieved by in-
put composition(PX , PY ) at the two encoders, denoted by
Rmac

xy (PX × PY ). In [6], the full description of the MAC
channel capacity region is given in two different manners:

CONV EX


 ⋃

PX ,PY

Rmac
xy (PX × PY )




= CLOSURE
 ⋃

PU ,PX|U ,PY |U

Rmac
xy (PX|U × PY |U × PU )


 (8)

where Rmac
xy (PX|U × PY |U × PU ) = {(Rx, Ry) :

Rx ≤ I(X; Z|Y, U), Ry ≤ I(Y ; Z|X, U), Rx + Ry ≤
I(X, Y ; Z|U)} and U is the time-sharing auxiliary random
variable and|U| = 4.

The LHS of (8) is the convex hull of all the fixed-
composition MAC channel capacity regions. The RHS of (8)
is the closure (without convexification) of all the time-sharing
MAC capacity regions.The equivalence in (8) is non-trivial, it
is not a consequence of the tightness of the achievable region.
It hinges on the convexity of the “basic” capacity regions
Rmac

xy (PX , PY ). As will be shown in Section IV-C, this is
not the case for interference channels, i.e. (8) does not hold
anymore.

B. Simple time-sharing capacity region and error exponent

The simple idea of time-sharing is well studied for multi-
user channel coding, broadcast channel coding. Whenever
there are two operational points(R1

x, R1
y), (R2

x, R2
y), while

there exist two coding schemes to achieve small error probabil-
ity at each operational point, one can useλn amount of channel
uses at(R1

x, R1
y) with coding scheme1 and(1−λ)n amount

of channel uses at(R2
x, R2

y) with coding scheme2. The rate of
this coding scheme is(αR1

x +(1−α)R2
x, αR1

y +(1−α)R2
y)

and the error probability is still small3 (no bigger than the sum
of two small error probabilities). This idea is easily generalized
to more than2 operational points.

This simple time sharing idea works perfectly for MAC
channel coding as shown in (8). The whole capacity region can
be described as time sharing among fixed-composition codes
where the fixed-composition codes are building blocks. If we
extend this idea to interference channel, we have the following
simple time sharing region as discussed in Section II-D:

3The error exponent is, however, at most half of the individual error
exponent.
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CONV EX


 ⋃

PX ,PY

Rxy(PX , PY )


 = (9)

CONV EX


 ⋃

PX ,PY

Rx(PX , PY )
⋂

Ry(PX , PY )


 .

We shall soon see in the next section that this result can be
improved.

C. Beyond simple time-sharing: “Uniform” time-sharing

In this section we give a time-sharing coding scheme that
was first developed by Gallager [18] and later further studied
for universal decoding by Pokorny and Wallmeier [21] to
get better error exponents for MAC channels. This type of
“uniform” time-sharing schemes not only achieves better error
exponents, more importantly, we show that it achievesbigger
capacity region than the simple time-sharing scheme does
for interference channels! Unlike the multiple-access channels
where the simple time-sharing achieves the whole capacity
region, this is unique to the interference channels, due to
the fact that the capacity region is the convex hull of the
intersections of pairs of non-convex regions (convex or not
is not the issue here, the real difference is the intersection
operation).

The organization of the discussions parallels that for that of
the fixed-composition coding. We first introduce the “uniform”
time-sharing coding scheme, then give the achievable error
exponents and lastly drive the achievable rate region for such
coding schemes. The proofs are omitted since they are similar
to those for the randomized fixed-composition codes.

Definition 3: “Uniform” time-sharing codes: for a probabil-
ity distribution PU on U , whereU = {u1, u2, ..., uK} with∑K

i=1 PU (ui) = 1, and a pair of conditional independent
distributionsPX|U , PY |U . We define the two codeword sets4

as

Xc(n) = {xn : x
nPU (u1)
1 ∈ PX|u1 , x

n(PU (u1)+PU (u2))

nPU (u1)+1

∈ PX|u2 , ..., xn
n(1−PU (uK))+1 ∈ PX|uK

}
i.e. the i’th chunk of the codewordxn with length nPU (ui)
has compositionPX|ui

, and similarly

Yc(n) = {yn : y
nPU (u1)
1 ∈ PY |u1 , y

n(PU (u1)+PU (u2))

nPU (u1)+1

∈ PY |u2 , ..., yn
n(1−PU (uK))+1 ∈ PY |uK

}.
A “uniform” time-sharing code(Rx, Ry, PUPX|UPY |U ) en-
coder picks a code book with the following probability: for
any messagemx ∈ {1, 2, ..., 2nRx}, the codewordxn(mx) is
uniformly distributed inXc(n), similarly for encoder Y.

After the code book is randomly generated and revealed to
the decoder, the decoder uses a maximum mutual information
decoding rule. Similar to the fixed-composition coding, the
decoder needs to either decode both messagesX andY jointly

4Again, we ignore the nuisance of the non-integers here.

or simply treatsY as noise and decodeX only, depending
on where the rate pairs are in RegionI or II, as shown
in Figure 4. The error probability we investigate is again the
average error probability over all messages and code books.

Theorem 2:Interference channel capacity region
Rx(PUPX|UPY |U ) for “uniform” time-sharing codes
with compositionPUPX|UPY |U :

Rx(PUPX|UPY |U ) =

{(Rx, Ry) : 0 ≤ Rx < I(X; Z|U), 0 ≤ Ry}
⋃

{(Rx, Ry) : 0 ≤ Rx < I(X; Z|Y, U),

Rx + Ry < I(X, Y ; Z|U)} (10)

where the random variables in (10),(U, X, Y, Z) ∼
PUPX|UPY |UWZ|X,Y . And the interference capacity region
for PUPX|UPY |U is

Rxy(PUPX|UPY |U ) =

Rx(PUPX|UPY |U )
⋂
Ry(PUPX|UPY |U ) (11)

The cardinality ofU is shown to be no bigger than7 by
using the Carath́eodory Theorem similar to that in [6] for the
capacity region for multiple access channels. We ignore the
proof here.

The rate region defined in (10) itself does not give any new
X-capacity regions forX, since both RegionI and II in
Figure 4 can be achieved by simple time-sharing of Region
I and II repectively in (4). But for the interference channel
capacity, we argue in the next section that this coding scheme
gives a strictly bigger capacity region than that given by the
simple time-sharing of fixed-composition codes in (9).

The proof of Theorem 2 is similar to that of Theorem 1.
Details are in [4].

D. Why the “uniform” time sharing is needed?

It is well understood in the literature [18], also briefly
discussed in Section IV-B, that the “uniform” time-sharing
fixed-composition coding gives a bigger error exponent than
the simple time-sharing coding does. More interestingly, we
argue that it gives a bigger interference channel capacity
region. First we write down the interference channel capacity
region generated from the basic “uniform” time-sharing fixed-
composition codes:

CONV EX


 ⋃

PX|U PY |U PU

Rxy(PUPX|UPY |U )


 .(12)

where Rxy(PUPX|UPY |U ) is defined in (11) and
CONV EX(A) is the convex hull (simple time sharing) of
setA.

U is a time-sharing auxiliary random variable. Unlike the
MAC coding problem, where simple time-sharing of fixed-
composition codes achieve the full capacity region, it is not
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Fig. 4. “Uniform” time-sharing capacity regionRx(PUPX|UPYU
) for X, the achievable region is the union of RegionI andII. This region

is very similar to that for fixed-composition coding shown in Figure 2, only difference is now there is an auxiliary time-sharing random variable
U .

guaranteed for interference channels. The reason is the inter-
section operator in the basic building blocks in (5) and (11)
respectively, i.e. the interference nature of the problem5.

Obviously the rate region by simple time sharing of fixed
composition codes in (9) is a subset of simple time sharing
of the “uniform” time sharing capacity region (12). In the
following example, we illustrate why (12) is bigger than (9).

Example (symmetric interference channels): Suppose
that we have a symmetric interference channel, i.e. the input
alphabet setsX = Y and output alphabet setsZ = Z̃
and for anyx, y ∈ X = Y and for anyz ∈ Z = Z̃:
the transition probabilitiesWZ|XY (z|x, y) = W̃Z̃|XY (z|y, x).
For such interference channels, we know that the capacity
regionsRx(PX , PY ) andRy(PY , PX) are symmetric along
the 45-degree lineRx = Ry. That is, for anyPX , PY , a
rate pair(R1, R2) ∈ Rx(PX , PY ) if and only if (R2, R1) ∈
Ry(PY , PX).

The comparison of simple timesharing capacity region and
the more sophisticated time-sharing fixed-composition capac-
ity region for symmetric interference channels are illustrated
by a toy example in Figure 5. For a distribution(PX , PY ), the
achievable region for the fixed-composition codes is illustrated
in Figure 5, Rx(PX , PY ) and Ry(PX , PY ) respectively,
these are bounded by the red dotted lines and red dash-
dotted lines respectively, so the interference capacity region
Rxy(PX , PY ) is bounded by the pentagonABEFO. By
symmetry,Rx(PY , PX) and Ry(PX , PY ) are bounded by
the blue dotted lines and blue dash-dotted lines respectively,
the capacity regionRxy(PY , PX) is bounded by the pen-
tagonHGCDO. So the convex hull of these two regions is

5To understand why intersection is the difference but
not the non-convexity, we consider the following toy
example: four convex sets:A1, A2, B1, B2. We show that
CONV EX(A1

⋂
B1, A2

⋂
B2) can be strictly smaller than

CONV EX(A1, A2)
⋂

CONV EX(B1, B2). Let A1 = B2 ⊂
B1 = A2, thenCONV EX(A1

⋂
B1, A2

⋂
B2) = A1 is strictly

smaller thanCONV EX(A1, A2)
⋂

CONV EX(B1, B2) = A2.

Ry

Rx

E

D

C

BA

F

GH

O

Fig. 5. Simple timesharing of fixed-composition capacityABCDO
VS time-sharing fixed composition capacity(0.5) ( the black pentagon)

ABCDO.
Now consider the following timesharing fixed-composition

codingPX|UPY |UPU whereU = {0, 1}, PU (0) = PU (1) =
0.5 and PX|0 = PY |1 = PX , PX|1 = PY |0 = PY . The
interference capacity region is obviously bounded by the black
pentagon in Figure 5. This toy example shows why (12) is
bigger than (9).

V. FUTURE DIRECTIONS

The most interesting issue of interference channels is the
geometry of the two code books. For point to point channel
coding, the codewords in the optimal code book is uniformly
distributed on a sphere of the optimal compositions and
the optimal composition achieves the capacity. For multiple
access channels, a simple time-sharing among different fixed-
composition codes is sufficient to achieve the whole capacity
region, where for each fixed-composition codes, the code-
words are uniformly distributed. To get the biggest possible

7



achievable rate region for interference channels, however, as
illustrated in Section IV, a more sophisticated “uniform” time
sharing is needed. So what is time sharing? Both simple time
sharing and “uniform” time sharing change the geometry of the
code books, however, in different ways. Simple time sharing
“glue” segments of codewords together due to the indepen-
dence of the coding in different segments of the channel uses,
meanwhile for “uniform” time sharing, codewords still have
equal distances between one another. Better understanding of
the geometry of code books will help us better understand
the interference channels. In this paper, we give a tight
outer bound to a class of coding schemes, the time-sharing
fixed-composition code. An important future direction is to
categorize the coding schemes for interference channels and
more outer bound result may follow. This is in contrast to the
traditional outer bound derivations [3] where genies are used.
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