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Abstract—The randomized fixed-composition codes with
optimal decoding error exponents are recently studied in [11],
[12] for the finite alphabet interference channel with two
transmitter-receiver pairs. In this paper we investigate the
capacity region for randomized fixed-composition codes. A
complete characterization of the capacity region of the said
coding scheme is given. The inner bound is derived by showing
the existence of a positive error exponent within the capacity
region. A simple universal decoding rule is given. The tight
outer bound is derived by extending a technique first developed
in [10] for single input output channels to interference channels.
It is shown that even with a sophisticated time-sharing scheme
among randomized fixed-composition codes, the capacity region
of the randomized fixed-composition coding is not bigger than
the known Han-Kobayashi [24] capacity region. This suggests
that the study of the average behavior of randomized codes are
not sufficient in finding new capacity regions.
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We answer the above question by giving a complete char-
acterization of the interference channel capacity region for
randomized fixed-composition codes. To prove the achiev-
ability of the capacity region, we prove the positivity of
an achievable error exponent everywhere inside the capacity
region. This error exponent is derived by using the method of
types [7], in particular, the universal decoding scheme used for
multiple-access channels [21]. A better error exponent can be
achieved by using the more complicated universal decoding
rules developed in [20]. But since they both have the same
achievable capacity region, we use the simpler scheme in [21].
To prove the converse, that the achievable region matches the
outer bound, we extend the technique in [10] for point to
point channels to interference channels by using the known
capacity region results for multiple-access channels. The result
reveals the intimate relations between interference channels
and multiple-access channels. With the capacity region for

The interference channel is a channel model with multipldixed-composition code established, it is evident that this
input-output pairs that share a common communication chai$aPacity region is a subset of the Han-Kobayashi region [24].

nel [23]. The capacity region, within which reliable commu-
nication can be achieved fail input-output pairs, has been
studied [23], [1], [3], [2]. The most well known capacity region

result is given in [24], where the capacity region is studiec?t‘lown in
for both discrete and Gaussian cases. Some recent progreséesc

on the capacity region are reported in [14], [19], [22], [5],
[13]. However, the capacity regions for general interferenc

In this paper we focus on the two input-output case and
study the discrete memoryless interference channels with
transition probability Wz x,y and Wy ;- respectively as
Figure 1. The two channel inputs are € X™ and
V", outputs arez™ € Z" and z" € Z" respectively,

where X, V), Z and Z are finite sets. We study the basic

interference channel where each encoder only has a private

channels are still unknown. We focus our investigation on€Ssage to the corresponding decoder.

the capacity region for a specific coding scheme: randomize

fixed-composition codes for which the error probability is
defined as the average error probability over all code boo

with a certain composition (type). Fixed-composition coding ig

d The technical proof of this paper is focused on the aver-
age behavior of fixed-composition code books. However this

l&lndamental setup can be extended in the following three

irections.

a useful coding scheme in the investigation of both upper [15] * !t iS obvious that there exists a code book that its

and lower bounds of channel coding error exponents [8] for

point to point channel and [21], [20] for multiple access

decoding error is no bigger than the average decoding
error over all code books. Hence the achievability results

(MAC) channels. Recently in [11] and [12], randomized fixed-
composition codes were used to derive a lower bound on the
error exponent for discrete memoryless interference channels.
A lower bound on the maximum-likelihood decoding error
exponent is derived, this is a new attempt in investigating
the error exponents for interference channels. The unanswered
question is the capacity region of such coding schemes.

This work was done when he was a postdoctoral researcher with
the Hewlett-Packard Laboratories, Palo Alto, CA.

in this paper guarantees the existence of a of deterministic
coding scheme with at least the same error exponents and
capacity region. More discussions are in Section II-E.
The focus of this paper is on the fixed-composition codes
with a compositionP, whereP is a distribution on the in-

put alphabet. This code book generation is different from
the non-fixed-composition random coding [16] according
to distribution P. It is well known in the literature that
the fixed-composition codes gives better error exponent
result in low rate regime for point to point channels [8]
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Fig. 1. A discrete memoryless interference channel of two users

and multiple-access channels [21], [20]. However theyharacterization of the capacity region for randomized fixed-
have the same achievable rate region. It is the same casemposition codes.
for interference channels and hence the capacity region
result in this paper applies to the non-fixed-composition
random codes. A. Randomized fixed-composition codes
o Time-sharing is a key element in achieving capacity
regions for multi-terminal channels [6] For instance, A randomized fixed-composition Coding system is a uniform
for mu|tip|e-access channels, Simp|e time-sharing amongistribution on the code books in which every codeword is
fixed-composition codes gives the entire capacity regiorffom the type set with the fixed composition (type).
We show that our fixed composition codes can be used to First we introduce the notion of type set [6]. A type set
build a time-sharing capacity region for the interferenceZ " (P) is a set of all the strings™ € X™ with the same type
channel. More interestingly, we show that the simpleP whereP is a probability distribution [6]. A sequence of type
time-sharing technique that gives the entire capacity resets7™ C X™ has compositionPx if the types of7" con-
gion for multiple-access channels is not enough to get theerges toPx, i.e. lim %T") = Px(a) for all a € X that
largest capacity region, a more sophisticated time-sharing (4) > 0 andNT(TaTTO”) =0 forall a € X that Px(a) = 0,
scheme is needed. Detailed discussions are in Section I\(here N (a|7™) is the number of occurrence afin type 7".
The outline of the paper is as follows. In Section Il weWe ignore the nuisance of the integer effect and assume that
first formally define randomized fixed-composition codes ana.Px (a) is an integer for alla € X andnR, andnR, are
its capacity region and then in Section II-C we present th@lso integers. This is indeed a reasonable assumption since we
main result of this paper: the interference channel capacitgtudy long block lengthn and all the information theoretic
region for randomized fixed-composition codes in Theorem Iquantities studied in this paper are continuous on the code
The proof is later briefly explained in Section Il with more compositions and rates. We simply denote By (Px) the
details in [4]. Finally in Section IV, we argue that due tolength: type set which has “asymptotic” typEx .Allowing
the non-convexity of capacity region of the randomized fixedidentical codewords for difference messages in the same code
composition codes. A more sophisticated time-sharing schentmok, there arQT"(PX)F"R" many code books with fixed-
is needed. This shows the necessity of studying the geometrgompositionPx and rateR,.
of the code-books for interference channels. In this paper, we study the randomized fixed-composition
codes, where each code book with all codewords from the fixed
Il. RANDOMIZED FIXED-COMPOSITION CODES AND ITS  composition being chosen with the same probability. Equiva-
CAPACITY REGION lently, over all these code books, a codeword for message
We first review the definition of randomized fixed- Uniformly i.i.d distributed on the type s&t™(Px). A formal
composition code that is studied intensively in previouglefinition is as follows.
works [9], [10], [21], [20]. Then the definition of the inter- . . ' .
ference channel capacity region for such codes is introduced.Dennltlon 1. Randomized fixed-composition codes: for a

; ; ; . robability distribution Px on X, a rate R, randomized
Then we give the main result of this paper: the completé . . v )
9 pap P (ﬁxed-composmonpx encoder picks a code book with the as

1A code book of rateR and of code length. can be viewed as a set follows. For any length: fixed-compositionPx code book

of 27 points located in the codeword spat@, hence the geometry ¢x = (2" (1),z"(2), ..., z(2"%)), wherez" (i) € T"(Px),
of a code book is the relations among the&é® points. i=1,2,..,2""% andz" (i) andz™(j) may not be different



for i # j, the code bookx is chosen with probability C. Capacity region of the fixed-composition code,
on Rz RI(Px,Py), for X
(#) . The main result of this paper is the complete characteri-
[T (Px) zation of the randomized fixed-composition capacity region
In other words, the choice of the code book is a ranRa(Px,Py) for X, as illustrated in Figure 2. By symmetry,
dom variable that is uniformly distributed on the in- Ry(Px,Py) and thenRq,(Px, Py) follow.
dex set of all code books with fixed-compositioRx: . . .
Theorem 1:Interference channel capacity  region

" onRa .
{;72’?&76'7‘7 (me }.d;he gh?‘seg coge gk;ook;é;s R.(Px,Py) for randomized fixed-composition codes
shared between the encod&r and the decoder’ andy. .o compositionsPy and Py :

The key property of the randomized fixed-composition codes Rao(Px, Py) =
is that for any message subgét, iz, ...i;} C {1,2, ..., Q"Rm},
the codewords for these messages are identical independently {(Ray By) 1 0 < Ro < I(X:2),0 < Ry} U
distributed on the type sé&f™ (Px). {(Rs,Ry) : 0 < R, < I(X; Z]Y),

For randomized fixed-composition codes, the average error R.+ R, < I(X,Y;2Z)} (4)
probability P, (Rz, Ry, Px, Py) for X is the expectation

of decoding error over all message, code books and channihere the random variables in (4)(X,Y,Z) ~

behaviors2. .PXI.JyWZ|X7y. The region R.(Px,Py) is illustrated
, e in Figure 2.
Plloy(Re, Ry, Px, Py) = (m) 1) The achievable part of the theorem states that: for a rate

Ry pair (R, Ry) € Ra(Px, Py), the union of Region andI1
1 1 1 in Figure 2, for all§ > 0, there existsNs < oo, s.t. for all
<IT"(Py)\) EX: EY: 2nRa 2 ity 2 Z; n > Ny, the average error probability (1) for the randomized
c c My my 2z . .
n|_n n ~ ’ code from composition®x and Py is smaller thary for X:
Wiy (7|2 (ma), 5™ ()1 (7 (27) # ) P Ay

wherex™(m) is the codeword of message. in code book

cx, similarly for y™(m,), m.(2") is the decision made by for some decoding rule. RegialY is also the multiple-access

the decoder knowing the code bookg andcy . capacity region for fixed-composition codé®x, Py) for
channelWz| xy.

B. Randomized fixed-composition coding capacity for interfer-

ence channels

Pl)(Re, Ry, Px, Py) < §

The converse of the theorem states that for any rate pair
(R, Ry) outside of R, (Px, Py), that is region/I1, IV and
Given the definitions of randomized fixed-composition cod+/ in Figure 2, there exist§ > 0, such that forall n,
ing and the average error probability in (1) for such codes, we
can formally define the capacity region for such codes. Pl2)(Ra, Ry, Px,Py) >0

no matter what decoding rule is used. The definition of the
error probability P, (Rz, Ry, Px, Py) is average over all
code books and channel realizations as defined in (1).

The sketch of the proof of Theorem 1 is in Section Il with
details in [4].

Definition 2: Capacity region for randomized fixed-
composition codes: for a fixed-compositidhy and Py, a
rate pair(R., Ry) is said to be achievable faK, if for all
6 > 0, there existsVs < oo, s.t. for alln > Ns,

ey (Re, Ry, Px,Py) < § 2 . . .
e v Px, Py) @ There are two important observations here. First, the capac-

We denote byR..(Px, Py) the closure of the union of the all ity region achieved for: andy defined asR.,(Px, Py) =
achievable rate pairs. Similarly we denote Ry (Px, Py) the Ra(Px,Py) Ry (Px,Py)isa sups_et of the capacity region
achievable region fo¥", andR., (Px, Py) for (X,Y) where proposed by Han and Kobayashi in [24] which is convex.

both decoding errors are small. Obviously Hence the randomized fixed-composition codes do not give a
bigger capacity region than that in [24]. Secondly, the converse
Rauy(Px, Py) = Rm(PXpr)ﬂRy(PXaPY)- (3) of the randomized coding does not guarantee that there is

. o not a single good fixed-composition code book. The converse

We only need to focus our investigation dR.(Px, Py),  claims that, the average (over all code books with the fixed
then by the obvious symmetry, botR,(Px,Py) and  omnosition) decoding error probability does not converge to
Ray(Px, Py) follow. zero if the rate pair is outside the capacity region in Theorem 1.
p— , The significance of the above two points is that we cannot
To simplify notations, we denote béz the sum over all compo- hope to get a bigger capacity region than that in [24] by
sition Px and rateR, code bookcx in f(l). using the fixed-composition random coding scheme which is
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Fig. 2. Randomized fixed-composition capacity regidp(Px, Py ) for X, the achievable region is the union of Regibrand /1.
regions of different compositions gives a bigger convex achiev-

able capacity region. This capacity region of the interference
channel is

Ry

CONVEX | |J Ruy(Px,Pr)

Px,Py

It is tempting to claim that the above convex capacity region
is the largest one can get by time-sharing the “basic” fixed-
Rx composition codes as multiple-access channels shown in [6].
However, as will be discussed later in Section IV, it is not the
Fig. 3. A typical randomized fixed-composition capacity regioncase. A more sophisticated time-sharing gives a bigger capacity
Rzy(Px, Py) = Rz(Px, Py)NRy(Px, Py) is the intersection of  region.
tctz)?“c/ig)t(ted line and the solid lines, this capacity region is not necessarily This is an important difference between interference channel
' coding and multiple-access channel coding because the fixed-
composition capacity region is convex for the latter and hence
sufficient to achieve the entire capacity regions for point t¢he simple time-sharing gives the biggest(entire) capacity re-
point channel [9], multiple access channels [18] and degradeion [6]. Time-sharing capacity is detailed in Section IV.
broadcast channels [17]. This confirms that interference chan-
nel coding is a more difficult problem.

E. Existence of a good code for an interference channel

D. Necessity of more sophisticated time-sharing schemes )
In this paper we focus our study on the average (over all

In the achievability part of Theorem 1, we prove thatpessages) error probability over all code books with the same
the average error probab_ll_lty foK |s_arb|trarlly small for composition. For a rate paifR., R,), if the average error
randomized fixed-composition codes if the rate gdi., Ry)  probability for X is smaller thars, then obviously there exists
is inside the capacity regio. (Px, Py). For interference 5 code book such that the error probability is smaller than
channels, it is obvious that the rate region for béfhandY 5 for x. This should be clear from the definition of error
1S probability P, (Ra, Ry, Px,Py) in (1). In the following

_ example, we illustrate that this is also the case for decoding

Ray(Px, Py) = Ru(Px, ) N Ry (P, Py), ®) error for both X and Y. We claim without proof that this
where R,(Px,Py) is defined in the same manner asis also true for “uniform” time-sharing coding schemes later
R.(Px, Py) but the channel iWZ\xy instead ofi¥/;| xy as  discussed in Section IV. The existence of a code book pair
shown in Figure 1. A typical capacity regidR,, (Px, Py)is  that achieves the error exponents in the achievability part of
shown in Figure 3. It is not necessarily convex. the proof of Theorem 1 can also be shown. The proof is similar

However, by a simple time-sharing between different ratd0 that in [16] and Exercise 30 (b) on page 198 [9].
pairs for the same composition, we can convexify the capacity Similar to the error probability forX defined in (1), we
region. Then the convex hull of the union of all such capacitydefine the average joint error probability f&Ff andY as



oy (Rzy Ry, Px, Py) = A. A digression to MAC channel capacity region

e(zy)
1

(m) W nels and show why the simple time-sharing idea works for
1 1 MAC channels but not for interference channels, we first

3N WE WZ (6) look at R.(Px,Py) in Figure 2. RegionII is obviously

cx ¢y mg my the multiple access chann&V; xy region achieved by in-
{Z Waixy (2" 2" (ma), y" (my)) 1 (e (2") #m,) Put composition(Px, Py) at the two encoders, denoted by

Zn Rzy“(Px x Py). In [6], the full description of the MAC

+Z WZ\XY(2n|xn(mw)7 " (my))1(ay (37) # my)} channel capacity region is given in two different manners:

2n e ( 1 2"y Before giving the time-sharing results for interference chan-
7" )I)

For a rate pair (R:,Ry) € TRuy(Px,Py) =

R+(Px, Py)(Ry(Px, Py), we know that for all§ > 0, CONVEX U RI(Px x Py)

there existsNs; < oo, s.t. for all n > Nj;, the average Pyx.Py

error probability is smaller thaa for user X and userY’: — CLOSURE

Pl)(Rs, Ry, Px, Py) < ¢ and P, (Rs, Ry, Px, Py) <

0. It is easy to see that the average joint error probability for U RI(Pxyw X Py X Po) | (8)

userX andY can be bounded by:

Py,Pxu,Py|u

Pllzy)(Re, Ry, Px, Py)

- N where R7'“(Pxjy x Pyjw x Py) = {(Raz,Ry)
= Pl (Ra, Ry, Px, Py) + Ply)(Ra, Ry, Px, Py) R. < I(X;Z|Y,U),R, < I(Y;Z|X,U),R. + R, <
< 26 (7) I(X,Y;Z|U)} and U is the time-sharing auxiliary random

variable andi{| = 4.

The LHS of (8) is the convex hull of all the fixed-
composition MAC channel capacity regions. The RHS of (8)
is the closure (without convexification) of all the time-sharing
MAC capacity regions.The equivalence in (8) is non-trivial, it
I1l. SKETCH OF THE PROOF OFTHEOREM 1 is not a consequence of the tightness of the achievable region.

. . It hinges on the convexity of the “basic” capacity regions
There are two parts of the theorem, achievability and cons m“Cg(]PX Py). As wil beyshown in Section FI)V-Cythisg is

ve.rse. The gchlevablllty part IS proved by §howmg tha?.b)ﬁotythe case for interference channels, i.e. (8) does not hold
using a maximum mutual information decoding rule, pos't'veanymore.

error exponents exist everywhere in the capacity region in
Theorem 1. We apply a method of types argument that is well

known for randomized fixed-composition code in the point toB. Simple time-sharing capacity region and error exponent
point channel coding [9] and MAC channel coding [21]. The

converse is proved by giving a non-vanishing lower bound The simple idea of time-sharing is well studied for multi-
on the error probability outside the capacity region definedSer channel coding, broadcast channel coding. Whenever
in Theorem 1. In the proof, we extended the technique firdhere are two operational poinis;, R,), (R, R;), while
developed in [10] for point to point channels to interferencdhere exist two coding schemes to achieve small error probabil-
channels. Due to the page limit, we ignore the proof herdty at each operational point, one can ugeamount of channel

From (6), we know that’,,,(Rz, Ry, Px, Py) is the aver-
age error probability oéll (Px, Py )-fixed-composition codes.
Together with (7), we know that there exists at leasé code
book pair such that the error probability is no bigger ti2an

Details are in [4]. uses at R}, R,) with coding schemé and (1 — X\)n amount
of channel uses &t?2, R2) with coding scheme. The rate of
IV. DISCUSSIONS ONTIME-SHARING this coding scheme xR, + (1 — a)R2, aR, + (1 — a)R})

The main result of this paper is the randomized fixeg@nd the error probability is stil smal(no bigger than the sum
composition coding capacity region faf that isR., (Px, Py) of two small error pro_babllltles_). This idea is easily generalized
shown in Figure 2. So obviously, the interference channdP More thar2 operational points.
capacity region, where decoding errors for bothandY are This simple time sharing idea works perfectly for MAC
small, is the intersection oR.(Px, Py) and R,(Px,Py) channelcoding as shown in (8). The whole capacity region can
where R, (Px, Py) is defined in the similar way but with be described as time sharing among fixed-composition codes
channeIVVZ‘XY instead of W xy. The intersected region where the fixed-composition codes are building blocks. If we
defined in (5), R.y(Px, Py), is in general non-convex as €xtend this idea to interference channel, we have the following
shown in Figure 3. Similar to multiple-access channels capagimple time sharing region as discussed in Section II-D:
ity region, studied in Chapter 15.3 [6], we use this capacity

regionR., (Px, Py) as the building blocks to generate larger 3the error exponent is, however, at most half of the individual error
capacity regions. exponent.



or simply treatsY as noise and decod¥ only, depending
on where the rate pairs are in Regidnor 71, as shown

CONVEX U Rey(Px,Py) | = (9) in Figure 4. The error probability we investigate is again the
Py Py average error probability over all messages and code books.
Theorem 2:Interference  channel  capacity  region
CONVEX U Ra(Px, Py) ﬂ Ry(Px, Py) | . Ra(PyPxjyPyjw) for “uniform” time-sharing codes
Px.Py with compositionPy Px | Py v
We shall soon see in the next section that this result can be
improved. Rz (PuPxjuPyiv) =
C. Beyond simple time-sharing: “Uniform” time-sharing {(Re;R,) : 0 < R. < I(X; Z|U),0 < R} U
In this section we give a time-sharing coding scheme that {(Rs,R,): 0 < R, < I(X; Z|Y,U)

was first developed by Gallager [18] and later further studied )
for universal decoding by Pokorny and Wallmeier [21] to Ro + By <I(X,Y; Z|U)} (10)
get better error exponents for MAC channels. This type ofyhere the random variables in (10\U, X,Y, Z) ~

“uniform” time-sharing schemes not only achieves better eITOPy, Py Py |y Wz x.v- And the interference capacity region
exponents, more importantly, we show that it achievégger  for PyPxuPyy is

capacity region than the simple time-sharing scheme does

for interference channels! Unlike the multiple-access channels Ry (PuPx v Pyv)

where the simple time-sharing achieves the whole capacity

region, this is unique to the interference channels, due to Rm(PUPXWPy‘U)ﬂRy(PUPX‘UPYW) (11)

the fact that the capacity region is the convex hull of the o ) )

intersections of pairs of non-convex regions (convex or nol "€ cardinality of¢/ is shown to be no bigger than by

is not the issue here, the real difference is the intersectid#Sing the Caradodory Theorem similar to that in [6] for the

operation). capacity region for multiple access channels. We ignore the
The organization of the discussions parallels that for that d¢roof here.

the fixed-composition coding. We first introduce the “uniform The rate region defined in (10) itself does not give any new

time-sharing coding scheme, then give the achievable err%-capacity regions forX, since both Regionl and IT in
exponents and lastly drive the achievable rate region for sucﬂgure 4 can be achievéd by simple time-sharing of Region
coding schemes. The proofs are omitted since they are similar ; : :
o tho%,se for the randorF:Iized fixed-composition cod):as Fand 11 repectively in (4). But for the interference channel
P : capacity, we argue in the next section that this coding scheme

Definition 3: “Uniform” time-sharing codes: for a probabil- 9ives a strictly bigger capacity region than that given by the
ity distribution P on 2/, whereld = {u1, ua, ..., ux } With simple time-sharing of fixed-composition codes in (9).
ZK_I Py(u;) = 1, and a pair of conditional independent The proof of Theorem 2 is similar to that of Theorem 1.
distributions Px i/, Py . We define the two codeword séts Details are in [4].
as

D. Why the “uniform” time sharing is needed?

_ .m . _nPy(ur) n(Py (u1)+Py (uz2))
Xe(n) = {a" : 2y € PXluw“nPU(ul)H It is well understood in the literature [18], also briefly

S PX|u2,.--,IZ(1_pU(uK>>+1 € Pxlug} discussed in Section IV-B, that the “uniform” time-sharing

fixed-composition coding gives a bigger error exponent than
the simple time-sharing coding does. More interestingly, we
argue that it gives a bigger interference channel capacity
Yeo(n) = {y" : g0 € Py, yt et Pulea)) ragion, First we write down the interference channel capacity

nPy (u1)+1 . o . . )
€ Pyjus oo Y- Py (ug))+1 € Py jug }- region g_e_nerated from the basic “uniform” time-sharing fixed-
composition codes:

i.e. thei'th chunk of the codeword:™ with lengthn Py (u;)
has compositionPx ,,;, and similarly

A “uniform” time-sharing code&(R., Ry, Pu Pxju Py u) en-

coder picks a code book with the following probability: for

any messagen, € {1,2,...,2""% 1, the codeword:" (m.,) is CONVEX U Rey(PuPxiuPyip) [(12)
uniformly distributed inX.(n), similarly for encoder Y. Pxju Py v Pu

l}ghere Ray(PuPxjuPyy) is defined in (11) and

After the code book is randomly generated and revealed : ! ! .
A) is the convex hull (simple time sharing) of

the decoder, the decoder uses a maximum mutual informati&%ONVEX(
decoding rule. Similar to the fixed-composition coding, the>€t4-

decoder needs to either decode both messagasdY jointly Ulis a _time-sharing auxiliary _random variablt_e. UnIik(_a the
MAC coding problem, where simple time-sharing of fixed-

4Again, we ignore the nuisance of the non-integers here. composition codes achieve the full capacity region, it is not



1(Y; Z|X,U)

1(Y; Z|U)

R
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Fig. 4. “Uniform” time-sharing capacity regioR., (Py Px i Py;, ) for X, the achievable region is the union of Regiband /1. This region

is very similar to that for fixed-composition coding shown in Figure 2, only difference is now there is an auxiliary time-sharing random variable

U.

guaranteed for interference channels. The reason is the inter- R
section operator in the basic building blocks in (5) and (11)
respectively, i.e. the interference nature of the proBlem
Obviously the rate region by simple time sharing of fixed :
composition codes in (9) is a subset of simple time sharing A|.......... .B
of the “uniform” time sharing capacity region (12). In the H
following example, we illustrate why (12) is bigger than (9).

Example (symmetric interference channels): Suppose
that we have a symmetric interference channel, i.e. the input
alphabet setst = )Y and output alphabet set§ = =

and for anyz,y € X = Y and for anyz € Z2 = Z:
the transition probabilitie$V 7| x v (z|z, y) = WZ\xy(ZvaL’)-
For such interference channels, we know that the capacity ©
regionsR.(Px, Py) and Ry (Py, Px) are symmetric along
the 45-degree lineR, = R,. That is, for anyPx, Py, a
rate pair(R1, R2) € R.(Px, Py) if and only if (R2, R1) €
Ry(Py, Px).

The comparison of simple timesharing capacity region and
the more sophisticated time-sharing fixed-composition capacs o po.
ity region for symmetric interference channels are illustrated Now consider the following timesharing fixed-composition
by a toy example in Figure 5. For a distributi¢Rx, Py ), the coding Py iy Py Py wheretd = {0,1}, Py (0) = Py(1) =
_achigvable region for the fixed-composition codes is il!ustrategf) and Pxjo = Py = Px, Pxp = Py = Py. The
in Figure 5, R.(Px, Py) and R,(Px, Py) respectively, jnterference capacity region is obviously bounded by the black

these are bounded' by the red .dotted lines and red d"’_‘%ntagon in Figure 5. This toy example shows why (12) is
dotted lines respectively, so the interference capacity regiofigger than (9).

Ray(Px, Py) is bounded by the pentagod BEFO. By

symmetry, R.(Py, Px) and Ry(Px, Py) are bounded by V. FUTURE DIRECTIONS

the blue dotted lines and blue dash-dotted lines respectively, . o . .

the capacity regiorR,y(Py, Px) is bounded by the pen- The most interesting issue of interference channels is the

tagon HGCDO. So the convex hull of these two regions isgeometry of the two code books. For point to point channel
coding, the codewords in the optimal code book is uniformly

5To understand why intersection is the difference butdistributed on a sphere of the optimal compositions and
not the non-convexity, we consider the following toy the optimal composition achieves the capacity. For multiple
example: four convex setsiAi, Az, Bi, B2. We show that  access channels, a simple time-sharing among different fixed-
gg%ggﬁgﬁigi]hﬁ%gf;g )??12’1 ,b§2)_SIE§|yAlsr1a"gQ tgan composition codes is sufficient to achieve the whole capacity
By = Ay, thenCONVEX (A1 (B, Ao (| B2) = A, is strictly ~ region, where for each fixed-composition codes, the code-
smaller thanCONV EX (A1, A2)NCONV EX(B1, B2) = As. words are uniformly distributed. To get the biggest possible

Rx

Fig. 5. Simple timesharing of fixed-composition capacitysC' DO
VS time-sharing fixed composition capacity(0.5) ( the black pentagon)



achievable rate region for interference channels, however, %]
illustrated in Section IV, a more sophisticated “uniform” time
sharing is needed. So what is time sharing? Both simple ti
sharing and “uniform” time sharing change the geometry of th
code books, however, in different ways. Simple time sharingi7]
“glue” segments of codewords together due to the indepen-
dence of the coding in different segments of the channel used8l
meanwhile for “uniform” time sharing, codewords still have 19
equal distances between one another. Better understanding of
the geometry of code books will help us better understand
the interference channels. In this paper, we give a tigHg0l
outer bound to a class of coding schemes, the time-sharing
fixed-composition code. An important future direction is topq;
categorize the coding schemes for interference channels and
more outer bound result may follow. This is in contrast to the
traditional outer bound derivations [3] where genies are use?zz]

6]
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