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Abstract— Traditionally, joint source-channel coding
is viewed in the block coding context — all the source
symbols are known in advance by the encoder. Here, we
consider source symbols to be revealed to the encoder
in real time and require that they be reconstructed at
the decoder within a certain fixed end-to-end delay. We
derive upper and lower bounds on the reliability function
with delay for cases with and without channel feedback.
For erasure channels with feedback, the upper-bound is
shown to be achievable and the resulting scheme shows
that from a delay perspective,nearly separate source and
channel coding is optimal.

I. I NTRODUCTION

The block-length story for error exponents is partic-
ularly seductive when upper and lower bounds agree
— as they do for both lossless source coding and for
point-to-point channel coding in the high-rate regime
[1], [2]. However, the block-code setting conflates a
particular style of implementation with the problem
statement itself. Recently, it has become clear that
fixed-block codes may indeed incur unnecessarily poor
performance with respect to end-to-end delay, even
when the required delay is fixed.

In [3], we show that despite the block channel cod-
ing reliability functions not changing with feedback
in the high rate regime, the reliability function with
respect to fixed-delay can in fact improve dramatically
with feedback.1 For fixed-rate lossless source-coding,
[5] showed similarly that the reliability function with
fixed delay is much better than the reliability with
fixed block-length. An example given in [5], [6]
illustrated how sometimes an extremely simple and
clearly suboptimal nonblock code can dramatically
outperform the best possible fixed-length block-code
when considering the tradeoff with fixed delay.

These results suggest that a more systematic exam-
ination of the tradeoff between delay and probability
of error is needed in other contexts as well. The main
results in this paper are upper and lower bounds on the

1It had long been known that the reliability function with respect
to averageblock-length can improve, but there was a mistaken
assertion by Pinsker in [4] that the fixed-delay exponents do not
improve with feedback.

error exponents with delay for lossless joint source-
channel coding, both with and without feedback.

Without feedback, the upper bound strategy paral-
lels the one used in [3] for channel coding alone. We
also derive a lower bound (achievability) on the fixed-
delay error exponents by combining variable length
source coding and sequential random channel coding.
These two bounds are in general not the same.2 We
then study the joint source-channel coding problem
with noiseless feedback, giving a “focusing”[3] type
of upper bound similar to the pure channel coding
result in [3]. We then give a matching lower bound on
the joint source-channel reliability for the special case
of binary erasure channels. The scheme is interesting
because it is essentially a separation based architecture
except that it uses a variable-rate interface between the
source and channel coding layers.
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Fig. 1. Sequential joint source-channel coding, delay∆ = 3

A. Review of block joint source-channel coding

The setup is shown in Figure 2. For convenience,
there is a common clock for the iid sourcesn

1 , si ∼ Qs
3 from a finite alphabetS and the DMC channel
W . Without loss of generality, the source distribution
Qs(s) > 0, ∀s ∈ S. The DMC has transition matrix
Wy |x where the input and output alphabets are finite
sets X and Y respectively. A block joint source-
channel coding system forn source symbols consists

2This parallels what was reported in [7] for block-coding. There,
separate source-channel coding does not achieve the upper bound
of the error exponent on joint source-channel coding.

3In this paper,s is random variable,s is the realization of the
random variable.
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Fig. 2. Joint source-channel coding with a fixed delay requirement

of a encoder-decoder pair(En,Dn). Where

En : Sn → Xn, En(sn
1 ) = xn

1

Dn : Yn → Sn,Dn(yn
1 ) = ŝn

1

The error probability isPr(sn
1 6= ŝn

1 ) = Pr(sn
1 6=

Dn(En(sn
1 ))). The block source-channel exponent

Eb,sc is achievable if∃ a family of {(En,Dn)}, s.t.4

lim inf
n→∞

− 1
n

log2 Pr(sn
1 6= ŝn

1 ) = Eb,sc (1)

The relevant results of [7] are summarized into the
following theorem.

Theorem 1:E(1)
b,sc ≤ Eb,sc ≤ E

(2)
b,sc where

E
(1)
b,sc = min

H(Qs)≤R≤log |S|
{e(R) + Er(R)}

E
(2)
b,sc = min

H(Qs)≤R≤log |S|
{e(R) + E(R)}

e(R) = minU :H(U)≥R D(U‖Q) is the block source
coding error exponent for sourceQs . E(R) is the
block channel coding error exponent for channelWy |x
and

Er(R) = max
P

min
V

[D(V ‖W |P ) + |I(P, V )−R|+]

is the random coding error exponent for channelWy |x .
Thus as shown in [1],

E(R) ≤ Esp(R) = max
P

min
V :I(V,P )≤R

D(V ‖W |P )

the sphere packing bound, andE(R) = Er(R) =
Esp(R) for Rcr ≤ R ≤ C. As shown in [7], if the
minimum ofe(R)+Er(R) is attained for anR ≥ Rcr

thenEb,sc = e(R)+Er(R). This error exponent is in
general better than the obvious separate source chan-
nel coding error exponentmaxR{min{e(R), Er(R)}}
[7].

B. Source coding and channel coding with delay
constraint

We review some related results from [5] on sequen-
tial lossless source coding and from [3] on sequential
channel coding.

4We use bits andlog2 in this paper.

For lossless source coding, [5] derives a tight5

bound on the error exponent with a hard delay con-
straint:∀i, lim inf∆→∞ −1

∆ log2 Pr(si 6= ŝi(i + ∆)) =
Es,s(R) , where Es,s(R) is the sequential source
coding error exponent:

Es,s(R) = inf
α>0,Us :H(Us)≥(1+α)R

1
α

D(Us‖Qs)

= inf
α>0

1
α

e((1 + α)R) (2)

Wheree(R) = infUs :H(Us)≥R D(Us‖Qs) is the block
source coding error exponent [2].

For channel coding without feedback but facing a
hard delay constraint, [9] reviews how the random
block-coding error exponentEr(R) governs how the
probability of bit error decays with delay6 for random
tree codes. Formally, for alli7 and ∆, there exists a
sequential channel coding system, s.t.

lim inf
∆→∞

−1
∆

log2 Pr(bi 6= b̂i(
i

R
+ ∆)) = Er(R) (3)

whereb̂i( i
R + ∆)is the estimate ofbi after in total

i
R +∆ channel uses, i.e.∆ seconds afterbi enters the
encoder.

In [3], we generalize Pinsker’s result from [4] to
show that the Haroutunian Bound [10]E+(R) serves
as an upper bound on the error exponent for channel
coding with delay. Formally, for channelVy |x , for any
channel coding scheme, there exists a finite function
i(∆) on ∆, s.t. the error exponent with delay:

lim inf
∆→∞

−1
∆

log2 Pr(bi(∆) 6= b̂i(∆)(
i(∆)
R

+ ∆))

≤ E+(R) (4)

whereE+(R) is the Haroutunian bound.

E+(R) = inf
Vy|x :I(PV ,Vy|x )<R

sup
P

D(Vy |x‖Wy |x |P )

= inf
Vy|x :I(PV ,Vy|x )<R

sup
x∈X

D(Vy |x(.|x)‖Wy |x(.|x))

5This bound is achieved by using a finite delay prefix code in
[5].

6For channel coding with delay constraints, we measure the delay
in terms of channel uses(seconds), not number of information bits.

7thei’th information bitbi enters the encoder at thei
R

’th channel
use(second).



I(PV , Vy |x) is the mutual information of input distri-
bution PV and channelVy |x where PV is the input
distribution to maximizeI(PV , Vy |x). The Haroutu-
nian bound is the same as the random coding error
exponent for symmetric channels in high rate regime
[3].

In [3], an upper bound is given for the error expo-
nent for delay-constrained channel coding with causal
noiseless feedback problem:

lim inf
∆→∞

−1
∆

log2 Pr(bi(∆) 6= b̂i(∆)(
i(∆)
R

+ ∆))

≤ inf
λ∈[0,1]

E+(λR)
1− λ

(5)

The resulting “focusing” bound Ea(R)
4
=

infλ∈[0,1]
E+(λR)

1−λ is strictly larger than the
Haroutunian bound. This bound is achievable
for binary erasure channels as well as sufficiently
symmetric DMCs with strictly positive zero-error
capacity.

C. Sequential Joint Source-Channel Coding

Rather than being known in advance, the source
symbols enter the encoder in a real-time fashion. We
assume that the source generates1 source symbols
per second from the finite alphabetS. The i’th source
symbol si is not known at the encoder until timei at
the decoder. Without loss of generality, the encoder
uses1 channel use per second.8

Definition 1: A sequential encoder-decoder pair
E ,D are sequences of maps.{Ei}, i = 1, 2, ... and
{Di}, i = 1, 2, .... The output ofEi are the input to
the channel at timei.

Ei : Si −→ X
Ei(si

1) = xi

The outputs ofDi are the decoding decisions of the
i’th source symbol based on the channel outputs up
to time i + ∆.

Di : Yi+∆ −→ S
Di(yi+∆

1 ) = ŝi(i + ∆)

where ŝi(i + ∆) is the estimation ofsi at time
i + ∆ thus has end-to-end delay of∆ seconds. A
sequential source-channel coding system is illustrated
in Figure 1.

For sequential source-channel coding, it is impor-
tant to study how symbol-wise decoding error decays
with delay. This is parallel to the study of decoding
error with respect to block length in block coding.

8If the source and channel are not synchronized, we can al-
ways synchronize them by grouping multiple source symbols and
channels uses to a super source symbol and a super channel use
respectively.

Definition 2: A joint source-channel coding delay-
reliability(error exponent)Es,sc is achievable if and
only if there exists a family of sequential source-
channel codes{(E , D)} s.t. for all i,

lim inf
∆→∞

−1
∆

log2 Pr(si 6= ŝi(i + ∆)) = Es,sc

Write the delay-reliability with causal noiseless feed-
back asEs,scf

. In the rest of the paper, we study upper
and lower bounds onEs,sc andEs,scf

.

II. U PPER BOUND ON ERROR EXPONENTS WITH

FIXED DELAY

In this section we derive an upper bound on the
sequential joint source channel error exponentEs,sc.

Theorem 2:For the source-channel coding prob-
lem, if the source is iid∼ Qs from a finite alphabet
and the channel is a DMC with transition probability
Wy |x , then the error exponentsEs,sc with fixed delay

must satisfyEs,sc ≤ E
(2)
s,sc, where

E(2)
s,sc = inf

R
{ inf

Vy|x :I(PV ,Vy|x )<R
sup
P

D(Vy |x‖Wy |x |P )

+ inf
α>0,Us :H(Us)>(1+α)R

1
α

D(Us‖Qs)}
= inf

R
{E+(R) + Es,s(R)} (6)

The theorem is proved using a variation of the
bounding technique used in [3] (and originating in [4])
for the fixed-delay channel coding problem. Lemmas
1-6 are the joint source-channel coding counterparts to
Lemmas 4.1-4.5 in [3]. The idea of the proof is to first
build a feed-forward sequential source-channel de-
coder which has access to the previous source symbols
in addition to the channel outputs. The second step
is to construct a block source-channel coding scheme
from the optimal feed-forward sequential decoder and
showing that if the source-channel pair behave atypi-
cally enough, then the decoding error probability will
be large for at least one of the source symbols. The
next step is to prove that neither the atypicality of the
channel before that particular source symbol nor the
atypicality of the source after that particular source
symbol causes the error because of the feed-forward
information. Thus the cause of the decoding error for
that particular symbol is the atypical behavior of the
future channel or the atypical behavior of the past
source symbols. The last step is to lower bound the
probability of the atypical behavior and upper bound
the error exponents. The proof spans into the next
several subsections.

A. Feed-forward decoders

Definition 3: A delay ∆ decoderD∆ with feed-
forward is a decoderD∆

j that also has access to the



feedforward

delay

Delay ∆

feedfoward

decoder 1

Delay ∆

feedforward

decoder 2

- - -

- -

?

-

6

6
?

- -

.........................................................................................................................................................................................................

Noisy

Channel

Causal

encoder

−

ŝ
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Fig. 3. A cutset illustration of the Markov Chainsn
1 − (s̃n

1 , yn+∆
1 ) − sn

1 . Decoder1 and decoder2 are type I and II delay∆
feed-forward decoders respectively. They are equivalent.

past source symbolssj−1
1 in addition to the channel

outputsyj+∆
1 .

Using this feed-forward decoder:

ŝj(j + ∆) = D∆
j (yj+∆

1 , sj−1
1 ) (7)

Lemma 1:For any source-channel encoderE , the
optimal delay∆ decoderD∆ with feed-forward only
needs to depend onyj+∆

j , sj−1
1 .

Proof: The sourcesi is an iid random process
and the channel inputsxj+∆

1 are functions ofsj+∆
1 ,

so we have the Markov chain:yj−1
1 − xj−1

1 −
(sj−1

1 , yj+∆
j ) − sj+∆

j . Conditioned on the past
source symbols, the past channel outputs are com-
pletely irrelevant for estimation. ¤

Write the error sequence of the feed-forward de-
coder as9 s̃i = si − ŝi. Then we have the following
property for the feed-forward decoders.

Lemma 2:Given a joint source-channel encoderE ,
the optimal delay∆ decoderD∆ with feed-forward
for symbol j only needs to depend onyj+∆

1 , s̃j−1
1

Proof: Proceed by induction. It holds forj =
1 since there are no prior source symbols. Suppose
that it holds for allj < k and considerj = k. By
the induction hypothesis, the action of all the prior
decodersj can be simulated using(yj+∆

1 , s̃j−1
1 ) giving

ŝk−1
1 . This in turn allows the recovery ofsk−1

1 since
we also knows̃k−1

1 . Thus the decoder is equivalent.
¤

We call the feed-forward decoders in Lemmas 1 and
2 type I and II delay∆ feed-forward joint source-
channel decoders respectively. Lemma 1 and 2 tell us
that feed-forward decoders can be thought of in three
ways: having access to all channel outputs and all
past source symbols,(yj+∆

1 , sj−1
1 ), having access to a

recent window of channel outputs and all past source

9For any finite|S|, we can always define a groupZ|S| on S,
where the operators− and+ are indeed−, + mod |S|

symbols,(yj+∆
j , sj−1

1 ), or having access to all channel
outputs and all past decoding errors,(yj+∆

1 , s̃j−1
1 ).

B. Constructing a block code

To encode a block ofn source symbols, just run
the joint source-channel encoderE and terminate with
the encoder run using some random source symbols
drawn according to the distribution ofQs . To decode
the block, just use the delay∆ decoderD∆ with feed-
forward, and then use the feedforward error signals to
correct any mistakes that might have occurred. As a
block coding system, this hypothetical system never
makes an error from end to end. As shown in Figure 3,
the data processing inequality implies:

Lemma 3: If n is the block-length, the channel
inputs arexn

1 , then

H(s̃n
1 ) ≥ H(sn

1 )− I(xn+∆
1 , yn+∆

1 ) (8)
Proof:

H(sn
1 ) = I(sn

1 ; sn
1 )

=(a) I(sn
1 ; s̃n

1 , yn+∆
1 )

=(b) I(sn
1 ; yn+∆

1 ) + I(sn
1 ; s̃n

1 |yn+∆
1 )

≤(c) I(xn+∆
1 ; yn+∆

1 ) + I(sn
1 ; s̃n

1 |yn+∆
1 )

≤ I(xn+∆
1 ; yn+∆

1 ) + H(s̃n
1 )

(a) is true because of the data processing inequality
considering the following Markov chain:sn

1 −
(s̃n

1 , yn+∆
1 ) − sn

1 and the fact thatI(sn
1 ; sn

1 ) =
H(sn

1 ) ≥ I(sn
1 ; s̃n

1 , , yn+∆
1 ). (b) is the chain rule for

mutual information.(c) is true because of the the
data processing inequality considering the following
Markov chain:sn

1 − xn+∆
1 − yn+∆

1 ). ¤

C. Lower bound the symbol-wise error probability

Now suppose this block-code were to be run with
the source distributionUs from time 1 to n and were
to be run with the distributionQs from time n + 1 to
n + ∆, and the channel transition matrixVy |x from
time 1 to n + ∆ s.t. nH(Us) > I(xn+∆

1 ; yn+∆
1 ),



wherexn+∆
1 is the input random vector to the channel.

We first examineI(xn+∆
1 ; yn+∆

1 ) under the discrete
memoryless channel law10 Vy |x . By Lemma 8.9.2 in
[11]:

I(xn+∆
1 ; yn+∆

1 ) ≤
n+∆∑

i=1

I(xi; yi)

Now assumePV is the distribution on the input to
maximizeI(x ; y) given the channel lawVy |x . Then:

I(xn+∆
1 ; yn+∆

1 ) ≤ (n + ∆)I(PV , Vy |x)

If nH(Us) > (n + ∆)I(PV , Vy |x) ≥
I(xn+∆

1 ; yn+∆
1 ) then the block coding scheme

constructed in the previous section will with
probability 1 make a block error. Moreover, many
individual symbols will also be in error often:

Lemma 4: If the source is coming fromUs from
time 1 to n, and the channel law isVy |x from time 1
to timen+∆, such thatH(Us) > (1+ ∆

n )I(PV , Vy |x)
, then there exists aδ > 0 so that forn large enough
(here we fix the ratio∆

n ), the feed-forward decoder

will make at least
H(Us)−n+∆

n I(PV ,Vy|x )
2 log2 |S|−(H(Us)−n+∆

n I(PV ,Vy|x ))
n

symbol errors with probabilityδ or above.δ satisfies
11 hδ+δ log2(|S|−1) = 1

2 (H(Us)−n+∆
n I(PV , Vy |x)).

Proof: Lemma 3 implies:

n∑

i=1

H(s̃i) ≥ H(s̃n
1 )

≥ nH(Us)− (n + ∆)I(PV , Vy |x)(9)

The average entropy per source symbol fors̃ is at
least H(Us) − n+∆

n I(PV , Vy |x). Now suppose that
H(s̃i) ≥ 1

2 (H(Us)− n+∆
n I(PV , Vy |x)) for t positions.

By noticing thatH(s̃i) ≤ log2 |S|, we have

n∑

i=1

H(s̃i) ≤ t log2 |S|

+(n− t)
1
2
(H(Us)− n + ∆

n
I(PV , Vy |x))

With Eqn. 9, we derive the desired result:

t ≥ (H(Us)− n+∆
n I(PV , Vy |x))

2 log2 |S| − (H(Us)− n+∆
n I(PV , Vy |x))

n (10)

Where 2 log2 |S| − (H(Us) − n+∆
n I(PV , Vy |x)) ≥

2 log2 |S| −H(Us) ≥ 2 log2 |S| − log2 |S| > 0
Now for t positions 1 ≤ j1 < j2 < ... <

jt ≤ n the individual entropyH(s̃j) ≥ 1
2 (H(Us) −

n+∆
n I(PV , Vy |x)) . By the property of the binary

entropy function12, Pr(s̃j 6= s0) = Pr(sj 6= ŝj) ≥ δ.¤

10We write the transition probabilityVy|x (x, y) = vy|x
11Write hδ = −δ log2 δ − (1− δ) log2(1− δ)
12s0 is the zero element in the finite groupZ|X|.

We can pickj∗ = jt ≥ t, by the previous lemma we

know thatj∗ ≥ 1
2

(H(Us)−n+∆
n I(PV ,Vy|x ))

2 log2 |S|−(H(Us)−n+∆
n I(PV ,Vy|x ))

n, so

if we fix ∆
n and letn go to infinity, thenj∗ goes to

infinity as well.
At this point, Lemma 1 and 4 together imply that

even if the channel only behaves like it came from the
channel lawVy |x from timej∗ to j∗+∆ and the source
behaves like it came from a distributionUs from time
1 to j∗−1, s.t.H(Us) > (1+∆

n )I(PV , Vy |x), whatever
the source distribution from timen+1 to timen+∆
is, the same minimum error probabilityδ still holds.
So we assume the source from timen + 1 to time
n + ∆ is from distributionQs .

Now define the “bad source-channel-sequence” set
Ej∗ as the set of source and channel output sequence
pairs so that the type I delay∆ joint source-channel
decoder makes a decoding error atj∗. Formally13

Ej∗ = {(~s, ¯̄y)|sj∗ 6= D∆
j∗(s̄, ¯̄y)}. By Lemma 4,

Pr(Ej∗) ≥ δ. Notice thatEj∗ does not depend on
the distribution of the sourceor the channel behavior
but only on the encoder-decoder pair. DefineJ =
min{n, j∗ + ∆}, and ¯̄̄s = sJ

1 .Now we write the
typical set for distributionUs : Aε1

j∗(Us) = {~s|∀s ∈
S : ns(¯̄̄s)

J ∈ (Us(s) − ε1, Us(s) + ε1)} and for each
~s, write the strongly typical set for channelVy |x :
Aε1,ε2

j∗ (Vy |x |~s) = {¯̄y|∀x ∈ X either nx(¯̄x(~s))
∆ <

ε2 or ∀y ∈ Y,
nx,y(¯̄x(~s),¯̄y)

nx(¯̄x(~s)) ∈ (vy|x − ε1, vy|x + ε1)}.
Finally we have the joint strongly typical set for source
Us and channelVy |x : Aε1,ε2

j∗ (Us , Vy |x) = {(~s, ¯̄y)|~s ∈
Aε1

j∗(Us) and ¯̄y ∈ Aε1,ε2
j∗ (Vy |x |~s)}

Lemma 5:PrUs,Vy|x (Ej∗ ∩ Aε1,ε2
j∗ (Us , Vy |x)) ≥ δ

2
for largen and∆.

Proof: First, we defineAε1
j∗(U

C
s ) = {(~s, ¯̄y)|∃s ∈

S : ns(¯̄̄s)
J /∈ (Us(s)− ε1, Us(s) + ε1)}

and Aε1,ε2
j∗ (~s, V C

y |x) = {(~s, ¯̄y)|∀x ∈
X either nx(¯̄x(~s))

∆ < ε2 or ∀y ∈ Y,
nx,y(¯̄x(~s),¯̄y)

nx(¯̄x(~s)) ∈
(vy|x − ε1, vy|x + ε1)}

So the total set{(~s, ¯̄y)} can be partitioned as

{(~s, ¯̄y)} = (11)

Aε1,ε2
j∗ (Us , Vy |x) ∪ (Aε1

j∗(U
C
s ) ∪ [∪~sA

ε1,ε2
j∗ (~s, V C

y |x)])

Fix ∆
n , let n go to infinity, thenJ = min{n, j∗+∆}

and ∆ go to infinity. By strong typicality in Lemma
13.6.1 in [11], we know that∀ε1 > 0, if J is large
enough, thenPrUs ,Vy|x (A

ε1
j∗(U

C
s )) ≤ δ

4 . By the same
lemma:∀~s : Vy |x(A

ε1,ε2
j∗ (~s, V C

y |x)|¯̄x(~s)) ≤ δ
4 . Because

the channel behavior is independent with the source,

13To simplify the notation, write:~s = sj∗+∆
1 , s̄ = sj∗−1

1 , ¯̄s =

sj∗+∆
j∗ , ¯̄y = yj∗+∆

j∗



we have:

PrUs ,Vy|x (A
ε1,ε2
j∗ (Us , Vy |x))

=(a) 1− PrUs ,Vy|x (A
ε1
j∗(U

C
s ))

−PrUs ,Vy|x (∪~sA
ε1,ε2
j∗ (~s, V C

y |x))

≥(b) 1− δ

4
−

∑

~s

Us(~s)Vy |x(A
ε1,ε2
j∗ (~s, V C

y |x)|¯̄x(~s))

≥ 1− δ

4
−

∑

~s

Us(~s)
δ

4

= 1− δ

2
(12)

(a) is true because of (11).(b) is true because the
source and channel behavior are independent. From
this we know:

PrUs ,Vy|x (Ej∗ ∩Aε1,ε2
j∗ (Us , Vy |x))

≥(a) PrUs ,Vy|x (Ej∗)
−(1− PrUs,Vy|x (A

ε1,ε2
j∗ (Us , Vy |x)))

≥ δ − δ

2

=
δ

2
(a) is true becausePr(A1 ∩ A2) ≥ Pr(A1) −
Pr(AC

2 ) = Pr(A1)− (1− Pr(A2)) ¤

For source channel output pair(~s, ¯̄y) ∈
Aε1,ε2

j∗ (Us , Vy |x), we can bound the ratio of the
probability of (~s, ¯̄y) under sourceUs , channel rule
Vy |x and the probability of(~s, ¯̄y) under the true
sourceQs and true channel ruleWy |x as follows.

Lemma 6:∀ε > 0, we can pickε1, ε2 small enough,
s.t. for large enoughn (∆

n is fixed): ∀(~s, ¯̄y) ∈
Aε1,ε2

j∗ (Us , Vy |x),

PrQs ,Wy|x ((~s, ¯̄y))
PrUs ,Vy|x ((~s, ¯̄y))

≥ 2−∆ supP D(Vy|x‖Wy|x |P )−j∗D(Us‖Qs)−(j∗+∆)ε

Proof: The source and the channel behavior are
independent, so:

PrQs ,Wy|x ((~s, ¯̄y))
PrUs ,Vy|x ((~s, ¯̄y))

=
Qs(~s)Wy |x(¯̄y|¯̄x(~s))
Us(~s)Vy |x(¯̄y|¯̄x(~s))

~s ∈ Aε1
j∗(Us), from Lemma6 in [12], we know that

for n large enough:

Qs(~s)
Us(~s)

≥ 2−j∗D(Us‖Qs)−j∗ε

Meanwhile, ¯̄y ∈ Aε1,ε2
j∗ (~s, Vy |x), from Lemma 4.4 in

[3], we know that forn large enough:

Wy |x(¯̄y|¯̄x(~s))
Vy |x(¯̄y|¯̄x(~s))

≥ 2−∆ supP D(Vy|x‖Wy|x |P )−∆ε

Combining the above two inequalities, we get the
desired result. ¤

We are ready to bound the error probability of the
j∗’th source symbol under the true source distribution
Qs and channel ruleWy |x .

Lemma 7:∀ε > 0, and large enoughn (∆
n fixed):

PrQs ,Wy|x (Ej∗) ≥
δ

2
2−∆ supP D(Vy|x‖Wy|x |P )−j∗D(Us‖Qs)−(j∗+∆)ε

Proof: Combining Lemma 5 and 6.

PrQs ,Wy|x (Ej∗)
≥ PrQs ,Wy|x (Ej∗ ∩Aε1,ε2

j∗ (Us , Vy |x))
= PrUs,Vy|x (Ej∗ ∩Aε1,ε2

j∗ (Us , Vy |x))
PrQs ,Wy|x (Ej∗ ∩Aε1,ε2

j∗ (Us , Vy |x))
PrUs,Vy|x (Ej∗ ∩Aε1,ε2

j∗ (Us , Vy |x))

≥(a)
δ

2
PrQs ,Wy|x (Ej∗ ∩Aε1,ε2

j∗ (Us , Vy |x))
PrUs,Vy|x (Ej∗ ∩Aε1,ε2

j∗ (Us , Vy |x))

≥(b)
δ

2
2−∆ supP D(Vy|x‖Wy|x |P )−j∗D(Us‖Qs)−(j∗+∆)ε

(a) is true because of Lemma 5 and(b) is true because
of Lemma 6. ¤

Now we are ready to prove Theorem 2. ForUs and
Vy |x , as long asH(Us) > n+∆

n I(PV , Vy |x), we have
a constantδ > 0, by letting ε go to 0, ∆ andn go to
infinity proportionally, we have:

−1
∆

log2 PrQs ,Wy|x (sj∗(j∗ + ∆) 6= sj∗)

=
−1
∆

log2 PrQs ,Wy|x (Ej∗)

≤ ε + sup
P

D(Vy |x‖Wy |x |P ) +
j∗

∆
D(Us‖Qs)

≤ ε + sup
P

D(Vy |x‖Wy |x |P ) +
n

∆
D(Us‖Qs)

where ε can be arbitrarily small. Notice that
H(Us) > n+∆

n I(PV , Vy |x) is equivalent to∃R, s.t.
1

1+αH(Us) > R > I(PV , Vy |x), whereα = ∆
n . Then

the upper bound on the error exponent is the minimum
of the above error exponents over allα > 0, i.e:

E(2)
s,sc = inf

R
inf

α>0,Us ,Vy|x :I(PV ,Vy|x )<R,H(Us)>(1+α)R

{sup
P

D(Vy |x‖Wy |x |P ) +
1
α

D(Us‖Qs)}
= inf

R
{ inf

Vy|x :I(PV ,Vy|x )<R
sup
P

D(Vy |x‖Wy |x |P )

+ inf
α>0,Us :H(Us)>(1+α)R

1
α

D(Us‖Qs)}
= inf

R
{E+(R) + Es,s(R)} (13)

¥

Both the upper bound for sequential error exponent
and the upper bound for the block source channel
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Fig. 4. Separate source-channel coding

coding error exponent have the form of a minimization
over the sum of the source coding and the channel
coding error exponents over an imaginary rateR.
However, the sequential source coding error exponent
Es,s(R) is strictly larger than the block source coding
error exponente(R) in general. Thus the upper bound
for sequential joint source-channel coding error expo-
nent is generally strictly larger than its block coding
counterpart.

III. L OWER BOUND ON ACHIEVABLE ERROR

EXPONENTS WITH DELAY

An obvious lower bound on the error exponent can
be obtained by implementing an optimal sequential
source code [5] and randomized sequential channel
code [13] separately. Both the source coding and
channel coding are committed at the same rateR,
R ∈ (H(Qs), CW ), whereCW is the capacity of the
channel. This separate source channel coding system
works as shown in Figure 4.

Theorem 3:For the iid source∼ Qs and a dis-
crete memoryless channel with transition probabil-
ity Wy |x , the delay-reliability defined in Defini-

tion 2 is lower bounded byE(1)
s,sc, where E

(1)
s,sc =

maxR{min{Er(R), Es,s(R)}}. i.e. there exists a sep-
arate source channel coding system committed to rate
R∗, whereR∗ maximizesmin{Er(R), Es,s(R)} s.t.
for all ε > 0, there existsK < ∞, s.t. for all i, ∆,

Pr(si 6= ŝi(i + ∆)) ≤ K2−∆(E(1)
s,sc−ε)

Proof: For this coding scheme, a decoding error
on si at time i + ∆ occurs only if the first channel
error occurs before the last information bit describing
si or the last information bit aboutsi is not fed into the
channel encoder at timei + ∆ yet. The union bound
on the error events is as follows. For allε > 0, there
existsK < ∞ s.t.

Pr(si 6= ŝi(i + ∆)) ≤(a)

iR∑

k=1

PrW (bk
1 6= b̂k

1 (i + ∆))

+
(i+∆)R∑

k=iR

PrW (bk
1 6= b̂k

1 (i + ∆))Prs(si 6= ŝi(
k

R
))

+Prs(si 6= ŝi(i + ∆))

≤(b)

iR∑

k=1

K12−(i+∆− k
R )Er(R)

+
(i+∆)R∑

k=iR

K12−(i+∆− k
R )Er(R)2−( k

R−i)(Es,s(R)−ε1)

+K12−∆Es,s(R)

≤ K2∆2−∆(min{Es,s(R),Er(R)}−ε1)

≤ K2−∆(min{Es,s(R),Er(R)}−ε) (14)

whereK1, K2 andε1 are properly chosen finite real
numbers.(a) is the union bound on all possible error
events and the fact that channel coding and source
coding are independent as shown in Figure 4.(b) is
by (2) and (3).E(1)

s,sc The above coding scheme works
for all R ∈ (H(Qs), CW ). The optimal rateR∗ is
chosen for the source coderand the channel coder to
achieve the error exponentE

(1)
s,sc. ¥

BecauseEr(R) ≤ E+(R), in general the lower
boundE

(1)
s,cs is strictly smaller than the upper bound

E
(2)
s,cs in Eqn.13. This is comparable to the obvi-

ous non-optimal achievable error exponent for block
source-channel coding.

IV. JOINT SOURCE-CHANNEL CODING WITH

FEEDBACK

In this section, we study the joint source-channel
coding with feedback problem under delay constraint.
As shown in Figure 5, the output of the channel is fed
back to the joint source-channel encoder noiselessly.
Recall thatEs,scf

is the error exponent with feedback
with decoding delay.
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-
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Noisy
channel

Wy|x
-

?

y1, y2, ...
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Fig. 5. joint source-channel coding with feedback

A. Upper bound onEs,scf

Theorem 4:For the iid source∼ Qs and a discrete
memoryless channel with transition probabilityWy |x
and noiseless feedback, then

Es,scf
≤ min

λ∈[0,1],R
{ λ

1− λ
e(R) +

1
1− λ

E+(λR)}



Proof: Suppose a sequential joint source channel
coding with feedback error exponentEs,scf

can be
achieved. i.e. for allε > 0, there exists finiteK1, s.t.
for all i, ∆:

Pr(si 6= ŝi(i + ∆)) ≤ K12
−∆(Es,scf

−ε) (15)

Thus we can give an upper bound on the block error
at decoding timen + ∆:

Pr(sn
1 6= ŝn

1 (n + ∆)) ≤
n∑

i=1

Pr(si 6= ŝi(n + ∆))

≤
n∑

i=1

K12
−(n+∆−i)(Es,scf

−ε)

= K2−∆(Es,scf
−ε) (16)

whereK is finite.
On the other hand, we also have a lower bound on

the block error. For a message set of size2mR and
allowing m channel uses, the channel coding error
probability for the memoryless channel with causal
feedback is lower bounded byK2−m(E+(R)−εn),
whereεn → 0. This gives the following lower bound
on the block error probability for joint source-channel
coding with feedback, where the length of the source
block is n and allowingn + ∆ channel uses.

Pr(sn
1 6= ŝn

1 ) (17)

≥(a)

∑

T n
P∈T n

PrQs (T
n
P )2−(n+∆)(E+(

nH(P )
n+∆ )+ε(1)n )

≥(b)

∑

T n
P∈T n

2−n(D(P‖Qs)+ε(2)n ))

2−(n+∆)(E+(
nH(P )
n+∆ )+ε(1)n ))

≥ 2−minP {nD(P‖Qs)+(n+∆)(E+(
nH(P )
n+∆ ))}−nεn

whereTn is the set of types onSn andE+(R) = 0
for R > CW , εn, ε

(1)
n and ε

(2)
n all converge to0 asn

goes to infinity.(a) is true because there are2nH(P )

equally likely sequences in a typeTn
P , meanwhilen+

∆ channel uses with feedback are available, thus we
have the lower bound on the error probability by the
Haroutunian bound.(b) is by Theorem 12.1.4 in [11].

Combining (16) and (17), we have:

Es,scf
≤ ε

log2 K

∆
+

εn

∆

+min
P
{ n

∆
D(P‖Qs) +

n + ∆
∆

E+(
nH(P )
n + ∆

)}

This is true for all∆ and n, write λ = n
n+∆ and

let n goes to infinity:

Es,scf
≤ min

λ∈[0,1]P
{ λ

1− λ
D(P‖Qs)+

1
1− λ

E+(λH(P ))}

For anyλ, the right hand side is minimized byP
s.t.H(P ) ≥ H(Qs) because for thoseP , s.t.H(P ) <
H(Qs), we have

λ

1− λ
D(P‖Qs) +

1
1− λ

E+(λH(P ))

≥(a)
1

1− λ
E+(λH(Qs))

=
λ

1− λ
D(Qs‖Qs) +

1
1− λ

E+(λH(Qs))

(a) is true becauseE+(·) is monotonically decreasing.

Es,scf

≤ min
λ∈[0,1],P :H(P )≥H(Qs)

{λD(P‖Qs) + E+(λH(P ))
1− λ

}

= min
λ∈[0,1],R≥H(Qs)

{ min
P :H(P )=R

{λD(P‖Qs) + E+(λH(P ))
1− λ

}}

= min
λ∈[0,1],R≥H(Qs)

{ λ

1− λ
e(R) +

1
1− λ

E+(λR)}

= min
λ∈[0,1],R

{ λ

1− λ
e(R) +

1
1− λ

E+(λR)}

The last equality is becausee(R) = 0, for R < H(Qs)
andE+(·) is monotonically decreasing.

¥

B. Es,scf
for binary erasure channels (BEC)

We do not have a general scheme for joint source
channel coding for arbitrary DMC’s. But for binary
erasure channels, we can apply an optimal universal
source code[5] followed by an optimal “repeat until
received” channel code[3] for a BEC. In [3], a “fo-
cusing” bound is derived for BEC.

Our optimal joint source-channel coding with feed-
back scheme for binary erasure channel is as follows.
A block-lengthN is chosen that is much smaller than
the target end-to-end delays14, while still being large
enough. For a discrete memoryless source and large
block-lengths N , the best possible variable-length
code is given in [2] and consists of two stages: first
describing the type of the block~si usingO(|S| log2 N)
bits and then describing which particular realization
has occurred by using a variableNH(~si) bits. The
overheadO(|S| log2 N) is asymptotically negligible
and the code is also universal in nature. It is easy to
verify that limN→∞

EQs (l(~s))
N = H(Qs) This code is

obviously a prefix-free code. Writel(~si) as the length
of the codeword for~si, then:

l(~si) ≤ |S| log2(N + 1) + NH(~si) (18)

The binary sequences describing the source is fed
to the optimal “repeat until received” channel coding
system described in [3].

14We are interested in the performance with asymptotically large
delays∆



Theorem 5:For the iid source∼ Qs and a binary
erasure channel with error rateδ with causal noiseless
feedback, then using the code described above:

Es,scf
= min

λ∈[0,1],R
{λe(R) + E+

BEC(λR)
1− λ

} ∆= E∗

where15 E+
BEC(R) = D(1−R‖δ) is the Haroutunian

bound for BEC.
Before the proof, we have the following lemmas to

bound the probabilities of atypical channel behavior
and atypical source behavior respectively.

Lemma 8: (Channel atypicality) For a binary era-
sure channel with erasure rateδ, the probability of
more thann erasures int channel uses is upper
bounded by(t − n)2−tD( n

t ‖δ) if n
t > δ and upper

bounded by1 if n
t ≤ δ.

Proof: The proof is trivial by applying Theorem
12.1.4 in [11]. Thus for allε > 0, there existsK < ∞,
s.t. the above probability is upper bounded by:

K2−t(E+
BEC(1−n

t )−ε) (19)

¤
Lemma 9: (Source atypicality) for allε > 0, N

large enough, there existsK < ∞, s.t. for all ∆, n :

Pr(
n∑

i=1

l(~si) > nNr) ≤ K2−nN(e(r)−ε) (20)

Proof: Only need to show the case forr >
H(Qs). By the Craḿer’s theorem[14]:

Pr(
n∑

i=1

l(~si) > nNr) = Pr(
1
n

n∑

i=1

l(~si) > Nr)

≤ (n + 1)|S|
N

2−n infx≥Nr I(x) (21)

where the rate functionI(x) is [14]:

I(x) = sup
ρ∈R

{ρx− log2(
∑

~s∈SN

Qs(~s)2ρl(~s))}

Write I(x, ρ) = ρx − log2(
∑

~s∈SN Qs(~s)2ρl(~s)),
I(x, 0) = 0. x ≥ Nr > NH(Qs), for largeN :

∂I(x, ρ)
∂ρ

|ρ=0 = x−
∑

~s∈SN

Qs(~s)l(~s) ≥ 0

By the Hölder inequality, for allρ1, ρ2, and for all
θ ∈ (0, 1):

(
∑

pi2ρ1li)θ(
∑

pi2ρ2li)(1−θ)

≥
∑

(pθ
i 2

θρ1li)(p(1−θ)
i 2(1−θ)ρ2li)

=
∑

pi2(θρ1+(1−θ)ρ2)li

This shows thatlog2(
∑

~s∈SN Qs(~s)2ρl(~s)) is a convex
function onρ, thusI(x, ρ) is a concave function onρ
for fixedx. Then∀x > 0, ∀ρ < 0, I(x, ρ) < 0. , which

15We write D(a‖b) as the Kullback-Liebler divergence of two
binary distributions(a, 1− a) and (b, 1− b).

means that theρ to maximizeI(x, ρ) is positive. This
implies thatI(x) is monotonically increasing withx.
Thus infx≥Nr I(x) = I(Nr)

For ρ ≥ 0, using the upper bound onl(~x) in (18):

log2(
∑

~s∈SN

Qs(~s)2ρl(~s))

≤ log2(
∑

T N
P ∈T N

2−ND(P‖Qs)2ρ(|S| log2(N+1)+NH(P )))

≤ log2((N + 1)|S|2−N minP {D(P‖Qs)−NH(P )}+ρ|S| log2(N+1))
= N

(−min
P
{D(P‖Qs)− ρH(P )}+ εN

)

where εN = (1+ρ)|S| log2(N+1)
N goes to0 as N goes

to infinity. Substitute the above equality toI(Nr):

I(Nr) ≥ N
(
sup
ρ>0

{min
P

ρ(r −H(P )) + D(P‖Qs)} − εN

)
(22)

First fix ρ, by a simple Lagrange multiplier argument,
with fixedH(P ), we know that the distribution to min-
imizeD(P‖Qs) is a tilted distribution ofQα

s . It can be
verified that∂H(Qα

s )
∂α ≥ 0 and ∂D(Qα

s ‖Qs)
∂α = α

∂H(Qα
s )

∂α .
Thus the distribution to minimizeD(P‖Qs)−ρH(P )
is Qρ

s . Using some algebra, we have

D(Qρ
s ‖Qs)− ρH(Qρ

s ) = −(1 + ρ) log2

∑

s∈S
Qs(s)

1
1+ρ

Substitute this into (22):

I(Nr) ≥ N
(
sup
ρ>0

ρr − (1 + ρ) log2

∑

s∈S
Qs(s)

1
1+ρ − εN

)

= N
(
e(r)− εN

)
(23)

The last equality can again be proved by a simple
Lagrange multiplier argument. Substitute (23) into
(21) and by lettingN be big enough, we get the the
desired bound in (20). ¤

Now we are ready to prove Theorem 5.
Proof: We give an upper bound on the decoding

error on~st at time (t + ∆)N . At time (t + ∆)N , the
decoder cannot decode~st with 0 error probability iff
the binary strings describing~st are not all out of the
buffer. Since the encoding buffer is FIFO, this means
that the number of non-erasures from some timet1 <
tN to (t+∆)N is less than the number of the bits in
the buffer at timet1 plus the number of bits coming
into the encoder from timet1 to time tN . Suppose the
buffer is last empty at timetN−nN where0 ≤ n ≤ t.
Given this condition, the decoding error occurs only if∑n−1

i=0 l(~st−i) > (n+∆)N−nE(tN−nN, tN +∆N)
wherenE(t1, t2) is the number of erasures from time
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Fig. 6. (a)Upper/lower bounds onEs,sc as functions of erasure rate. Upper(dotted)/lower(dashed) bounds on block coding error exponent
Eb,sc (b) Joint source-channel coding error exponent with feedbackEs,scf

t1 to time t2. Then16

Pr(~st 6= ~st((t + ∆)N)

≤
t∑

n=0

[ nlmax∑
m=0

Pr(
n−1∑

i=0

l(~st−i) > m)

Pr((n + ∆)N − nE(tN − nN, tN + ∆N) < m)
]

≤(a)

t∑
n=0

nlmax∑
m=0

K12−nN(e( m
nN )−ε1)

K22
−(n+∆)N(E+

BEC(1− (n+∆)N−m
(n+∆)N

)−ε2)

≤(b)

t∑
n=0

K32−N(minR{ne(R)+(n+∆)E+
BEC( nR

n+∆ )}−ε3)

≤(c)

γ∆∑
n=0

K32−∆N(minR,λ∈[0,1]{
λe(R)+E

+
BEC

(λR)
1−λ }−ε3)

+
∞∑

n=γ∆

K32−nN(minR{e(R)+E+
BEC(R)}−ε3)

≤(d) K2−∆N(E∗−ε)

where,K ′
is andε′is are properly chosen real numbers.

(a) is true because the source and memoryless channel
are independent and Lemma 8 and 9. In(b), we
write R = m

nN and take theR to minimize the error
exponents. Defineγ = E∗

minR{e(R)+E+
BEC(R)} . The first

term of (c) comes from definingλ = n
n+∆ , the

second term is by noticing thatE+(·) is monotonically
decreasing.(d) is by definitions ofγ andE∗. ¥

V. EXAMPLE : ERROR EXPONENTS FORBECS

For a Bernoulli (0.25) source followed by a binary
erasure channel (δ) joint source-channel coding sys-
tem, the entropy rate of the source isH(s) = 0.81. We
plot both the upper bound and the lower bound on the
joint source channel coding error exponent with delay
Es,sc and the bounds on block error exponentsEb,sc

in Figure 6(a). The feedback error exponentEs,scf
is

plotted in Figure 6(b).

16lmax is the longest code length,lmax ≤ |S| log2(N + 1) +
N |S|.

VI. CONCLUSIONS ANDFUTURE WORK

We studied sequential joint source-channel coding
and defined the error exponents with delay. By ap-
plying a variation of the feed-forward channel coding
analysis in [3], we derived an upper bound on error ex-
ponents with delay for lossless source-channel coding.
A lower bound on the error exponent based on separate
sequential source and channel coding is given. There
is, in general, a gap between the lower and upper
bounds. It is an open problem on how to implement
joint source channel coding with delay constraint. For
joint source channel coding with feedback, we only
show the achievability result for erasure channels.
General results for general DMCs are unknown. More-
over, no result on lossy source-channel coding with
delay-constrained problem is known.
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