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Abstract— Traditionally, joint source-channel coding error exponents with delay for lossless joint source-
is viewed in the block coding context — all the source channel coding, both with and without feedback.
symbols are known in advance by the encoder. Here, we Without feedback, the upper bound strategy paral-
consider source symbols to be revealed to the encoder S .
in real time and require that they be reconstructed at lels the _One used in [3] for Chalnnel .C_Od'ng along. We
the decoder within a certain fixed end-to-end delay. We @also derive a lower bound (achievability) on the fixed-
derive upper and lower bounds on the reliability function ~ delay error exponents by combining variable length
with delay for cases with and without channel feedback. source coding and sequential random channel coding.
For erasure channels with feedback, the upper-bound is These two bounds are in general not the Sariide

shown to be achievable and the resulting scheme shows th tudv the ioint h | codi bl
that from a delay perspective,nearly separate source and 1en Study the joint source-channel coding problem

channel coding is optimal. with noiseless feedback, giving a “focusing”[3] type
of upper bound similar to the pure channel coding
. INTRODUCTION result in [3]. We then give a matching lower bound on

) _ the joint source-channel reliability for the special case
The block-length story for error exponents is particyf pinary erasure channels. The scheme is interesting
ularly seductive when upper and lower bounds agregecayse it is essentially a separation based architecture
— as they do for both lossless source coding and fQtycent that it uses a variable-rate interface between the

point-to-point channel coding in the high-rate regimey,rce and channel coding layers.
[1], [2]. However, the block-code setting conflates a

particular style of implementation with the problem " A A e A
statement itself. Recently, it has become clear that i i i l l l
fixed-block codes may indeed incur unnecessarily podincoding xa(st) xa(st) xa(si) xa(st) xs(s7) xe(sy) -
performance with respect to end-to-end delay, even l
when the required delay is fixed. Channel Outputs Vo Vs va Vs Yo ..

In [3], we show that despite the block channel cod- l l l
ing reliability functions not changing with feedback

Decoding 51(4)  8(5) 53(6) ..

in the high rate regime, the reliability function with
respect to fixed-delay can in fact improve dramatically Fig. 1. Sequential joint source-channel coding, detay= 3
with feedback For fixed-rate lossless source-coding,

[5] showed similarly that the reliability function with

fixed delay is much better than the rellablllty with A, Review of block joint source-channel Coding
fixed block-length. An example given in [5], [6]
illustrated how sometimes an extremely simple angn
clearly suboptimal nonblock code can dramaticallys
outperform the best possible fixed-length block-cod
when considering the tradeoff with fixed delay.

The setup is shown in Figure 2. For convenience,
ere is a common clock for the iid sourslg, s; ~ Qs
from a finite alphabetS and the DMC channel
9. Without loss of generality, the source distribution

. s) > 0, Vs € §S. The DMC has transition matrix
These results suggest that a more systematic exal —s( )

« Where the input and output alphabets are finite
ination of the tradeoff between delay and probabilityse{‘S X and Y resF:)ectiver Ap blocpk joint source-

of error is needed in other contexts as well. The maif - el coding system for source symbols consists
results in this paper are upper and lower bounds on the

2This parallels what was reported in [7] for block-coding. There,
11t had long been known that the reliability function with respectseparate source-channel coding does not achieve the upper bound
to averageblock-length can improve, but there was a mistakenof the error exponent on joint source-channel coding.
assertion by Pinsker in [4] that the fixed-delay exponents do not 3In this paper,s is random variables is the realization of the
improve with feedback. random variable.
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Fig. 2. Joint source-channel coding with a fixed delay requirement
of a encoder-decoder p&(€,,, D,,). Where For lossless source coding, [5] derives a tight
. . . . bound on the error exponent with a hard delay con-
En: 8" — A", En(st) = o7 straint: Vz, lim inf A oo _Kl log, Pr(s; #5(i+A)) =
Dy : Y" — 8", D, (y7) = §7 E, s(R) , where E; ;(R) is the sequential source

coding error exponent:

The error probability isPr(sy # s") = Pr(s]" # 1
D, (En(s"))). The block source-channel exponent E, (R) = in —D(Us||Qs)
Ey .. is achievable i3 a family of {(£,, D)}, s.t* “>°v(f:H(Us)2<1+‘*>R @

1 = inf —e((1+ a)R) 2)
lim inf —=logy, Pr(s] #37) = Epee (1) a>0 a

nTee Wheree(R) = infy,.rv,)>r D(Us||Qs) is the block
The relevant results of [7] are summarized into thesource coding error exponent [2].

following theorem. For channel coding without feedback but facing a
Theorem 1:E.") < Ej .. < E*) where hard delay constraint, [9] reviews how the random
’ ’ block-coding error exponent,.(R) governs how the
BN = min {e(R) + E.(R)} probability of bit error decays with deléyor random
’ H(Qs)<R<log|S| tree codes. Formally, for al” and A, there exists a
EZSQQC = min {e(R)+ E(R)} sequential channel coding system, s.t.
’ H(Qs)<R<log S|

e(R) = ming.g@y>r D(U||Q) is the block source ,
di ent f E(R) is the lim inf —- bl _
coding error exponent for soura@s. E(R) is the Jim inf — log, Pr(b; # bi(— +A)) = E.(R) (3)
block channel coding error exponent for chanigl, —oo A R
and whereBi(é + A)is the estimate ob; after in total
4 4+ A channel uses, i.e\ seconds afteb; enters the
— : _ p|t R ' @
E.(R) = mgxm‘}n[D(VHW\P) +|I(P,V)— R|T] encoder.
In [3], we generalize Pinsker’s result from [4] to
show that the Haroutunian Bound [18]" (R) serves
as an upper bound on the error exponent for channel

E(R) < E,y(R)=max min D(V|W|P) coding with delay. Formally, for channél,,., for any
P V:(V,P)<R channel coding scheme, there exists a finite function

the sphere packing bound, ad(R) = E,(R) — i(A) on A, s.t. the error exponent with delay:

is the random coding error exponent for chanigl,..
Thus as shown in [1],

E.p(R) for R, < R < C. As shown in [7], if the e —1 ‘ . i(A)
minimum ofe(R)+ E,.(R) is attained for amR > R, lim AIEEO A logy Pr(bia) 7# bia( R +4))
thenE, ;. = e(R) + E.(R). This error exponent is in < EY(R) 4

general better than the obvious separate source chan- N ) )
nel coding error exponemtaxz {min{e(R), B, (R)}} where ET(R) is the Haroutunian bound.

7 o) e v - P
(R) ‘/}‘X:I(PI‘IZV;‘X)<RSIIIDP (Vy‘XHWy‘X| )

nf Sup D(Vypu(-[2)[Wya (1))

B. Source coding and channel coding with delay = i
Vi I (Py,Vy ) <R g

constraint

We review some related results from [5] on sequen- 5This bound is achieved by using a finite delay prefix code in
tial lossless source coding and from [3] on sequentid?l: o _
channel coding 6For channel coding with delay constraints, we measure the delay
’ in terms of channel uses(seconds), not number of information bits.
"the'th information bitb; enters the encoder at tlfﬁjg’th channel
4We use bits andog, in this paper. use(second).



I(Py,V),) is the mutual information of input distri-  Definition 2: A joint source-channel coding delay-
bution Py and channelV,|, where Py, is the input reliability(error exponent)E; .. is achievable if and
distribution to maximizel (Py,V,,). The Haroutu- only if there exists a family of sequential source-
nian bound is the same as the random coding err@hannel code$(&, D)} s.t. for all i,
exponent for symmetric channels in high rate regime 1
[3]. lim inf x log, Pr(s; #5i(i + A)) = Es s¢

In [3], an upper bound is given for the error expo- -

nent flor dilayégonitramsld Channel coding with Caus%rite the delay-reliability with causal noiseless feed-
noiseless teedback problem. back asF; ., . In the rest of the paper, we study upper

— . ] nd lower n i ndFE .
limAiggoxllogz Pr(bia) 7# bi(A)(% N d lower bounds 0o and Fiose,
E+(AR) [I. UPPER BOUND ON ERROR EXPONENTS WITH
< inf /"~ (5) FIXED DELAY
A0, 1 — A
In this section we derive an upper bound on the
The resulting “focusing” bound E,(R) = sequential joint source channel error exponBgt..
infrcn A% is  strictly larger than the  Theorem 2:For the source-channel coding prob-

Haroutunian bound. This bound is achievabldem, if the source is iid~ @5 from a finite alphabet
for binary erasure channels as well as sufficientlyand the channel is a DMC with transition probability
symmetric DMCs with strictly positive zero-error W, ., then the error exponents, ,. with fixed delay

capacity. must satisfyE, .. < E{%., where
C. Sequential Joint Source-Channel Coding

Rather than being known in advance, the sourc&. . =inf{_ _I(Pinfv )<RSIILPD(‘/)/\XHW)/\X|P)
symbols enter the encoder in a real-time fashion. We S 1
assume that the source generatesource symbok + inf —D(Us||Qs) }
per second from the finite alphahgt Thei'th source °_Y>0’U5f(U5)>(1+a)R o
symbols; is not known at the encoder until timeat = mH{ET(R) + By s (R)} (6)
the decoder. Without loss of generality, the encoder The theorem is proved using a variation of the
usesl channel use per secofid. bounding technique used in [3] (and originating in [4])

Definition 1: A sequential encoder-decoder pairfor the fixed-delay channel coding problem. Lemmas
E,D are sequences of map&€;},i = 1,2,... and 1-6 are the joint source-channel coding counterparts to
{D;},i = 1,2,.... The output of&; are the input to Lemmas 4.1-4.5 in [3]. The idea of the proof is to first
the channel at time. build a feed-forward sequential source-channel de-
; coder which has access to the previous source symbols
&i 5 — X in addition to the channel outputs. The second step
Ei(s]) = x4 is to construct a block source-channel coding scheme
from the optimal feed-forward sequential decoder and
showing that if the source-channel pair behave atypi-
u(E)ally enough, then the decoding error probability will

be large for at least one of the source symbols. The
D, YA S next step is to prove that neither the atypicality of the
Dy(y ™) =3, + A) channel before that particular source symbol nor the

A ! atypicality of the source after that particular source
where 5;(i + A) is the estimation ofs; at time Symbol causes the error because of the feed-forward
i + A thus has end-to-end delay df seconds. A information. Thus the cause of the decoding error for
sequential source-channel coding system is illustratgfiat particular symbol is the atypical behavior of the
in Figure 1. future channel or the atypical behavior of the past

For sequential source-channel coding, it is imporsource symbols. The last step is to lower bound the
tant to study how symbol-wise decoding error decaygrobability of the atypical behavior and upper bound
with delay. This is parallel to the study of decodingthe error exponents. The proof spans into the next
error with respect to block length in block coding. several subsections.

The outputs ofD; are the decoding decisions of the
i'th source symbol based on the channel outputs
to time i + A.

81 the source and channel are not synchronized, we can af\. Feed-forward decoders

ways synchronize them by grouping multiple source symbols and o . A o
channels uses to a super source symbol and a super channel usvpef'n'tlon 3A delay A decoderD~ with feed-

respectively. forward is a decodei)jA that also has access to the
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Fig. 3. A cutset illustration of the Markov Chak} — (E{l,y{”'A) — s7'. Decoderl and decode® are type | and Il delayA
feed-forward decoders respectively. They are equivalent.
ast source symbols/ ! in addition to the channel symbols,(y/*2,s7~1), or having access to all channel
y] 191
i+A . i i
outputsy; "~ . outputs and all past decoding errofgi t4, 50 71).

Using this feed-forward decoder: .
B. Constructing a block code
5(i+A) =Dyl 87 ) To encode a block of. source symbols, just run
the joint source-channel encodgeand terminate with
Lemma 1:For any source-channel encod€s the the encoder run using some random source symbols
optimal delayA decoderD4 with feed-forward only drawn according to the distribution @f,. To decode
needs to depend Oyﬁ+A7 s11 the block, just use the delay decoderD? with feed-
Proof: The sources; is an iid random process forward, and then use the feedforward error signals to
and the channel inputs]** are functions _ofsjﬁA, correct any mistakes that might have occurred. As a
so we have the Markov chaing ™' — #I7' —  block coding system, this hypothetical system never
(s77, yfA) — s/, Conditioned on the past makes an error from end to end. As shown in Figure 3,
source symbols, the past channel outputs are conhe data processing inequality implies:

pletely irrelevant for estimation. .
Lemma 3:1f n is the block-length, the channel

. inputs arex{’, then
Write the error sequence of the feed-forward de-

coder a& 5, = s; — 3;. Then we have the following H(S') > H(s?) — I(x(T2, y+2) (8)
property for the feed-forward decoders. Proof:

Lemma 2:Given a joint source-channel encodgr H(st) = I(si5s))
the optimal delayA decoderD? with feid-forward =@ I(s{;s7, yra)

j [+ gt n,zn|,,n
for symbo.ly only needs _to depend o 7,5 ‘ =) I(S{L;y{HA) S+ I(sT; 80|y +A)
Proof. Proceed by induction. It holds fof = CA ntA ~ A

- i <@ 14T )+ IS v )
1 since there are no prior source symbols. Suppose 1 1 1
that it holds for allj < k and consider; = k. By < IRy L H (D)

the induction hypothesis, the action of all the prior
decoderg can be simulated using? ™, 5/ ~") giving
8¥=1. This in turn allows the recovery off~! since

we also knowst . Thus the decoder is equivalent.

(a) is true because of the data processing inequality
considering the following Markov chainsp?  —
(37, yr*t2)  — s and the fact that/(s}';s}) =
H(st) > I(s?;57,,y"™). (b) is the chain rule for
mutual information.(c) is true because of the the
We call the feed-forward decoders in Lemmas 1 angdata processing inequality considering the following
2 type | and Il delayA feed-forward joint source- Markov chain:s! _X{HA _yln+A), |
channel decoders respectively. Lemma 1 and 2 tell us
that feed—fgrward decoders can be thought of in threg_ Lower bound the symbol-wise error probability
ways: having access to all channel outputs and all

past source Symbolsy{#A’S]l'fl), having access to a Now suppose this block-code were to be run with

recent window of channel outputs and all past sourci€ source distributiods from time 1 to » and were
to be run with the distributior); from timen + 1 to

9For any finite|S|, we can always define a grougjs| on S, n + A, and the channel transition mamf}/lx frgm
where the operators- and + are indeed-, + mod |S] time 1 to n + A s.t. nH(Us) > I(x]"2;yf2),



wherex"“‘ is the input random vector to the channel. We can pickj = j; > t, by the previous lemma we
We first examinel (x;""2; y**) under the discrete know that;* > (H(U)*"an(fx Vi) g
memoryless channel 1df V.. By Lemma 8.9.2 in " A 2 2log, |S|—(H (Us) = ZLE1(Pv V)
[11]: if we fix & and letn go to |nf|n|ty, thenj* goes to
N infinity as well.
T(xPHA, yntay < Z I(x:: yi) At this point, Lemma 1 and 4 together imply that
i1 even if the channel only behaves like it came from the

channel lawV,, |, from time j* to j*+A andthe source
behaves like it came from a distributidi, from time
1toj*—1,s.t. H(Us) > (1+2)I(Py,V, ), whatever
) the source distribution from time+ 1 to timen+ A
is, the same minimum error probability still holds.
If nH{U;,) > (n + A)JI(Py,V,,) > So we assume the source from timet 1 to time
I(xT8,yr+2) then the block coding schemen + A is from distribution@s.
constructed in the previous section will with Now define the “bad source-channel-sequence” set
probability 1 make a block error. Moreover, many E;- as the set of source and channel output sequence
individual symbols will also be in error often: pairs so that the type | delag joint source-channel
decoder makes a decoding errorjat Formally*3
Ej- = {(3,9)|s;» # D5(5,4)}. By Lemma 4,
Pr(E;«) > 6. Notice thatFE;- does not depend on
the distribution of the sourcer the channel behavior
(here we fix the ratlm) the feed-forward decoder bqt only on the encoger-decoder pair. De_fuiie:
H(U) - 22 1(Py V) min{n,j* + A}, and 5 = s{.Now we write the
will make at least; o= mrs—mes vy typical set for distributionUs: A“( .) = {3lvs €
f%/mbol errors with proPablhtyi or aboneé satisfies g . nT() € (Uy(s) — e1,Us(s) + €1)} and for each
hs+010gy(|S|=1) = 5(H(Us)="321(Pv, Vyix))- 5, write the strongly typical set for channdf,:
Proof: Lemma 3 implies: A2V, ]3) = {glVe € X either nm(i(é')) <

Now assumePy is the distribution on the input to
maximizeI(x; y) given the channel law,,. Then:
IO 2y 8) < (n+ APy, Y,

ylx

Lemma 4:If the source is coming front/s from
time 1 to n, and the channel law ig/,, from time 1
to timen+ A, such thatt (Us) > (1+2)I(Py, V)

, then there exists & > 0 so that forn large enough

) . e or Yyey, %&‘3;’) € (Vyx — €1, Vyjz +€1)}-
Z H(5) > H(sY) Finally we have the joint strongly typical set for source
' Us and channelV,,: A5V (Us,V, ) = {(5,9)]5 €
nH(Us) = (0 + APV )O) () and § e AL (V05

v

The average entropy per source symbol $ois at

least H(Us) — “t21(Py,V,,). Now suppose that

H(5) > $(H(Us) - M2 1(Py,V,,)) for ¢ positions.

By noticing thatH (5;) < log, |S|, we have

Lemma 5:Pry, v, (Ej- N A2 (Us, V1) > 5
for largen and A.
Proof: First, we definedf (US) = {(5,9)[3s €

S =) ¢ (Uy(s) — ths()m)}

ZH(T%) < tlog, |S]| and A5V 52§§ fo) = {(5, §)|vig# , €
i=1 X either "“(Z(q)) <e or Yyey, % €
T AR (07O B A N
2 n So the total se{(s,y)} can be partitioned as
With Egn. 9, we derive the desired result:
. 59)} = (11)
(H(U) — S21(Py V) o

10 A2 (Us, V) U (AL (UE) U [Ug A2 (5, V.
= 21og2 |S| — (H(Us) — MI(Pv,Vylx))n ( ) J ( vl ) ( 7 ( ) [ 7 ( y|x)])

Where 2log, |S| — (H(Us) — “E21(Py,V,,)) > Fix 2, letn go to infinity, then/ = min{n, j*+A}

2log, |S| — H(Us) > 2log, |S| —logy |S| > 0 and A go to infinity. By strong typicality in Lemma

Now for ¢ positions1l < j; < jo < .. < 13.6.1in [11], we know thaVe; > 0, if J is large
ji < n the individual entropyH (3;) > 5(H(Us) — enough, therPry, v, (AL(US)) < 4. By the same
2 1(Py, Vy),)) - By the property of the binary lemma:vs': V. (451 (5, V,(,)|#(5)) < §. Because

entropy functiof?, Pr(3; # so) = Pr(s; # §;) > 6.0 the channel behavior is independent with the source,

Owe write the transition probability, |, (z,y) = vy, _ _ ' A *_y
L\Write hs = —6logy & — (1 — 8) logy(1 — &) 13To simplify the notation, writes'= s7 ™%, 5 =] ~, 5=

1250 is the zero element in the finite group x|. 5§*+A. Y= y; A



we have:

PI'US_’V”X(A;I*’62 (US,Vy|X))
=@ 1-Pry,y, (ASEUS))
—Pry, v, (UsAS2 (5, V)
6 €1,€2 (= =
Z@m) =g~ ZUs(g)Vy\x(Aj*’ (5, V,5)12(3))
) )
> 1--— ()~
> 1 ZU (5)7
]
= 1-= 12
; (12)
(a) is true because of (11)b) is true because the

source and channel behavior are independent. From

this we know:

Pry, v, (Ej N A2 (Us, Vi)
2@ Pro,v, (Ej)
7(1 — PrUmVy\x (A;i’Q(US, Vy‘x)))
)
> -z
> 9 5
_ 9
2
(a) is true becausePr(A; N As;) > Pr(4;) —
Pr(AY) = Pr(A4;) — (1 — Pr(4y)) O
For source channel output pains,y) €

AS0(Us, Vyx), we can bound the ratio of the

probability of (3,y) under sourcel/s, channel rule
Vyx and the probability of(5,y) under the true
source@)s and true channel ruléV,, as follows.

Lemma 6:Ve > 0, we can picke; , e2 small enough,
s.t. for large enoughn (% is fixed): V(5,y) €
AZ2 (Us, Vi),

Pro.w,.((5,9))

PrUs,V:HX((gv 37))
> 9= Asupp D(Vy Wy P) =5 D(Us|Q5) = (57 +A)e

where ¢ can be arbitrarily small.

We are ready to bound the error probability of the
7*'th source symbol under the true source distribution
Qs and channel ruléVy,,.

Lemma 7:Ve > 0, and large enough (% fixed):
\X(Ej*) >

9—Asupp D(Vy[Wy x| P)=5" D(Us||Qs) = (5" +A)e

Prg, w,
1)

Pr200f: Combining Lemma 5 and 6.

Prstwy\x (Ej*)

> Pro,w,, (Ej- 0VAT2(Us, Vyx))

= Pry, v, (Ej N A (Us, Vi i)

Pro, w,, (Ej- N A% (Us, Vi 1))

(B VAL (Us, Vi)

sy PR (e 0 A (U )
2 PI"US,VW(EJ‘* N A]-*’ (Us, Vyix))

0 5 Asupp D(Vy1ulIWy e P)—5* D(ULIIQ5) —(5* +2)e

PrUmVy

§ Pro,w,

> (b) 5
(a) is true because of Lemma 5 afig is true because
of Lemma 6. O

Now we are ready to prove Theorem 2. Farand
Vyx as long asH (Us) > “E21(Py,V,,), we have
a constant > 0, by lettinge go to0, A andn go to

infinity proportionally, we have:
-1 »
R loga Pro.w, (s (" + A) # 55+)

_ !
A

< e+sup D(Vy . [[Wy | P) +
P

log, PrQS7Wy‘x (Ej* )

j*

n
<e+ Slllng(Vy\x”Wy\x‘P) =+ KD(USHQS)
Notice that
H(Us) > “21(Py,V,) is equivalent to3R, s.t.

= H(U;) > R > I(Py, V), wherea = 2. Then

Proof: The source and the channel behavior ar¢he upper bound on the error exponent is the minimum

independent, so:

Pro.w, ((5,9)  Qs(5)Wyx(y]Z(5))

Pro,v,, ((5.9))  Us(5)Vyx(5]2(3))
s € AZL(Us), from Lemmaé in [12], we know that
for n large enough:

Qs(g') > 2—j*D(Us‘|Qs)_j*€

Us(5) —
Meanwhile,y € A2(5,V,.), from Lemma 4.4 in
[3], we know that forn large enough:

Wy« (512(5)) > 9—Asupp D(Vyl|Wy | P)-Ac

Vy1x(9]Z(5))

of the above error exponents over alt> 0, i.e:

ES(QS)C = inf inf
’ R a>O,U5,V:V|X:I(PV,V:V|X)<R,H(U5)>(1+(1)R

1
{sup D(V;1a| Wyl P) + < DU Q0)}

— inf f D »
HIl% {‘/}|X1[(131‘r/1,\/ylx)<R81113p (‘/)/\X“Wyp(‘ )
1
(X>0,U5:H%I[}5)>(1+(X)R a (USHQS)}
= i%f{E+(R) + B, +(R)} (13)
]

Combining the above two inequalities, we get the Both the upper bound for sequential error exponent

desired result. O

and the upper bound for the block source channel
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Fig. 4. Separate source-channel coding

coding error exponent have the fo_rm of a minimization \ ZKl (i+A—2)E.(R)
over the sum of the source coding and the channel <o)

coding error exponents over an imaginary rdte (1+A)R
However, the_ sequential source coding error expo_nent n Z K12—(i+A—%)E,.(R)2—(%4)(&,5(1%)—61)
E, s(R) is strictly larger than the block source coding

error expongng(ﬁ) in general. Thus the. upper bound 9 AE ()
for sequential joint source-channel coding error expo- 1 At B ()5 (o

nent is generally strictly larger than its block coding < Ko A2~ A(min{Fe«(1).Er ()} =)

counterpart. < K2~ Amin{Es s (R),Er(R)}—e¢) (14)

k=iR

whereK, K, ande; are properly chosen finite real
numbers.(a) is the union bound on all possible error
events and the fact that channel coding and source

An obvious lower bound on the error exponent caf°ding are mdependent as shown in Figurg#. is
be obtained by implementing an optimal sequentid?y (2) and (3).E{%2 The above coding scheme works
source code [5] and randomized sequential channfr all & € (H(Qs),Cw). The optimal rateR” is
code [13] separately. Both the source coding an@hosen for the source codandthe channel coder to
channel coding are committed at the same rate achieve the error exponedt ... u

€ (H(Qs), Cw), whereCyy is the capacity of the BecausieE r(R) < E*(R), in general the lower

channel This separate source channel coding systdgund E(; is strictly smaller than the upper bound
works as shown in Figure 4. EEQL in Eqn.13. This is comparable to the obuvi-

Theorem 3:For the iid source~ Q. and a dis- 0us non-optimal achievable error exponent for block
crete memoryless channel with transition probabilsource-channel coding.
ity Wy the delay-reliability defined in Defini- IV. JOINT SOURCECHANNEL CODING WITH
tion 2 is lower bounded b)Eé,ls)c, where Eﬁls)c = FEEDBACK
maxp{min{E,(R), Es s(R)}}. i.e. there exists a sep-
arate source channel codmg system committed to rafe
R*, where R* maximizesmin{E,(R), E; s(R)} s.t.
for all e > 0, there existsK < oo, s.t. for alli, A,

I1l. L OWER BOUND ON ACHIEVABLE ERROR
EXPONENTS WITH DELAY

In this section, we study the joint source-channel
dlng with feedback problem under delay constraint.
As shown in Figure 5, the output of the channel is fed
back to the joint source-channel encoder noiselessly.

.. Recall thatt is the error exponent with feedback
Pr(si # &(i + A)) < K2~ A9 5 P
with decoding delay.
Proof: For this coding scheme, a decoding error

on s; at timei + A occurs only if the first channel o
error occurs before the last information bit describing:. = .. om et (- chame el R
s; or the last information bit about is not fed into the s ~ @ x50, SNV v
channel encoder at time+ A yet. The union bound

on the error events is as follows. For alt> 0, there

exists K < oo s.t.

Fig. 5. joint source-channel coding with feedback

iR
Pr(s; £ 5(i + A)) ZPrW BE £ Bk (i +A))A' Upper bound orE&fcf -
Py Theorem 4:For the iid source- Qs and a discrete
(i+A)R A ) memoryless channel with transition probability, |,
+ Z Pryy (b # BY(i + A))Pry(s; # gi(ﬁ)) and noiseless feedback, then

k=iR A
P Es sc < PR 7E+
+Prg(s; # 5i(i + A)) ARt A /\e[o 1]R 1—A e(R) + 1-A (AR)}



Proof: Suppose a sequential joint source channel For any A, the right hand side is minimized b

coding with feedback error exponeitt, .., can be
achieved. i.e. for alk > 0, there exists finitek, s.t.
for all 7, A:

Pr(si # (i + A)) < k2 2Fe; =9 (15)

Thus we can give an upper bound on the block error

at decoding time: + A:

n

Pr(s # 87 (n+A)) < 3 Pr(s; # &i(n + A))

=1

<3 K2 AT Baee 0
i=1
= o~ AFeee; =9 (16)
where K is finite.
On the other hand, we also have a lower bound
the block error. For a message set of s¥&® and

allowing m channel uses, the channel coding error
probability for the memoryless channel with causal

feedback is lower bounded bys2—m(E" (B)—en)
wheree,, — 0. This gives the following lower bou

s.t. H(P) > H(Qs) because for thos®, s.t. H(P) <
H(Qs), we have
A I R
1-X 1- AE
1
2 (a) ﬁEJr()\H(Qs))

A

1—A
(a) is true becaus&* (-) is monotonically decreasing.

D(P[Qs) + (AH(P))

DQs]IQs) + 75 X MI(@5)

ES,SCf
AD(P||@s) + EX(AH(P))
1-A '
AD(P||Qs) + ET(AH(P))
1—-A

ET(AR)}

< min
X€[0,1],P:H(P)>H(Qs)

1

min
X€[0,1],R>H(Qs) P:H(P)=R
A
{

e(R)

1

DY
(AR)}

on  _ min e(R) +
A€[0,1],R>H(Q5)

1-A

1
———e(R)+ ——E"

mi TEEY

= n
Ae[0,1,R 1 — A

’nd The last equality is becaus€R) = 0, for R < H(Qs)

on the block error probability for joint source-channel@Nd £ () is monotonically decreasing.

coding with feedback, where the length of the source

block isn and allowingn + A channel uses.

Pr(si" # &) (17)
> S Pro,(Tp)2 HAETCEE )

TRET™

>p Y 2 nPTIQ))
TpeTn

2—(7L+A)(E+(%(Ap))+€£3)))

nH(P)
n+A

> 9= minp {nD(P[|Qs)+(n+A)(E( ))}—nen
whereT,, is the set of types o§” andE*(R) = 0
for R > Cyw, en, e ande'? all converge ta) asn
goes to infinity.(a) is true because there age’!(")
equally likely sequences in a tydg, meanwhilen +
A channel uses with feedback are available, thus

have the lower bound on the error probability by th

Haroutunian bound(b) is by Theorem 12.1.4 in [11].
Combining (16) and (17), we have:

logy K en
A A

+min{ X D(PQs) +

Es,SCf <

€

nH(P)

n+ A
E+
n+ A

A (
This is true for allA andn, write A =
let n goes to infinity:

)}

and

n
n+A

FE, s, < min LD
P xeo1)p 1 — A

1
(P||Qs)+ﬁE+()\H(P))}

B. Es s, for binary erasure channels (BEC)

We do not have a general scheme for joint source
channel coding for arbitrary DMC's. But for binary
erasure channels, we can apply an optimal universal
source code[5] followed by an optimal “repeat until
received” channel code[3] for a BEC. In [3], a “fo-
cusing” bound is derived for BEC.

Our optimal joint source-channel coding with feed-
back scheme for binary erasure channel is as follows.
A block-length V is chosen that is much smaller than
the target end-to-end deld§swhile still being large
enough. For a discrete memoryless source and large
block-lengths N, the best possible variable-length
code is given in [2] and consists of two stages: first
describing the type of the blogk usingO(|S|log, N)

v\}%its and then describing which particular realization
das occurred by using a variablé H (s;) bits. The
overheadO(|S|log, N) is asymptotically negligible
and the code is also universal in nature. It is easy to
verify that limy ., 228 — f(Q,) This code is
obviously a prefix-free code. Writds;) as the length

of the codeword fog;, then:

I(5) < |S|logy(N + 1) + NH(5)  (18)

The binary sequences describing the source is fed
to the optimal “repeat until received” channel coding
system described in [3].

14We are interested in the performance with asymptotically large
delaysA



Theorem 5:For the iid source~ Qs and a binary means that the to maximizel(z, p) is positive. This
erasure channel with error radewith causal noiseless implies thatl(x) is monotonically increasing with.
feedback, then using the code described above:  Thusinf, >y, I(z) = I(Nr)

For p > 0, using the upper bound dfz) in (18):
Ess.. = min {Ae(R) + Efpe(A R)} A oy
T ael0)R 1—A )
wheré® Ef . (R) = D(1— R||6) is the Haroutunian logs (Y Qs(5)271))
bound for BEC. gesN

Before the proof, we have the following lemmas to < log,( Z 2~ ND(PIQs) gp(ISIlogy (N+1)+NH(P))
bound the probabilities of atypical channel behavior
and atypical source behavior respectively.

Lemma 8:(Channel atypicality) For a binary era-
sure channel with erasure rafe the probability of =N(- min{D(P||Qs) — pH(P)} + en)
more thann erasures int channel uses is upper

bounded by(t — n)2~tP 19 if 2 > § and er
boznded b?//l( if ﬂni 5 | PPET Where ey = goes to0 as N goes
n <.

Proof: The proof is trivial by applying Theorem to infinity. Substltute the above equality I Nr):

12.1.4 in [11]. Thus for alt > 0, there existds < oo,
s.t. the above probability is upper bounded by: I(Nr) > N(Sup{mmﬁ(r — H(P)) + D(P||Qs)} — en) (22)

T eTN
< logy((N + 1)|$\2—Nminp{D(PHQs)—NH(P)}+p|S| logz(N+1))

(1+p)|S] logz(N-H

p>0
K2 tFrpc(1-%)=¢) (19)
First fix p, by a simple Lagrange multiplier argument,
o U with fixed H(P), we know that the distribution to min-
I Lemma 9:(Source atypicality) for alle > 0, N imize D(P||Q,) is a tilted distribution of92.. It can be
arge enough, there exisfs < oo, s.t. for allA, n : verified thataH(Q ) > 0 and D(Q1Qs) _ aﬂa(gs)_
n Thus the dlstr|but|on to m|n|m|z@( ) pH(P)

Pr(} I(5) > nNr) < K27NE=9 0 (20) g Q?. Using some algebra, we have
=1
Proof: Only need to show the case for >

H(Qs). By the Cranér's theorem[14]: D(Q2Qs) — pH(Q?) = —(1+ p) log, Z Qs(s) T
n n sES
1
Pr l > nNr) — I(s;) > Nr)
(; (&) n ; Substitute this into (22):
< (n41)8gmninfaze I@) (21)
I(Nr) > N{(suppr—(1+p)log Qs(s 1+p76
where the rate functio(z) is [14]: (8r) (p>op (1+p)log, ;S v)
I(x) = sup{px —logy( Z Qs( 5)2”1 5‘))} = N(e(r) - 6N) (23)
PER FeSN

. The last equality can again be proved by a simple
o 1)
; W(r;te_[éx,pi &)pz NI?&(Z?ES;V Qs(j:)f?p ): Lagrange multiplier argument. Substitute (23) into
(#,0)=0. x> Nr > NH(Q.), for large N (21) and by lettingV be big enough, we get the the

8I(x p)|p S— Z Qs((5) >0 desired bound in (20). O
sesN Now we are ready to prove Theorem 5.

By the Holder inequality, for allp;, p2, and for all Proof: We give an upper bound on the decoding
6 € (0,1): error ons; at time (¢t + A)N. At time (¢t + A)N, the
ZP SYARY, Zp’lei)(l_a) ;jheec%(ij:;rcamqt decode§t_ vyitb 0 error probability iff
y strings describing are not all out of the

> Z(p?20f’lli)(p§179)2(1_9)92l77) buffer. Since the encoding buffer is FIFO, this means
that the number of non-erasures from some time:

= p20n =0t tN to (t+A)N is less than the number of the bits in

the buffer at timet; plus the number of bits coming
into the encoder from timeg, to timetN. Suppose the
buffer is last empty at timeN —n N where0 < n < t.
Given this condition, the decoding error occurs only if

n—1;/-
15We write D(a||b) as the Kullback-Liebler divergence of two Dico U(S—i) > (_n—|—A)N—nE(tN—nN, tN+AN)_
binary distributions(a, 1 — a) and (b, 1 — b). whereng(t1,t2) is the number of erasures from time

This shows thatog, (3= 5csv Qs(5)271) is a convex
function onp, thusI(z, p) is a concave function op
for fixedz. ThenvVz > 0,Vp < 0, I(x, p) < 0., which



=
&

(@)

Upper bound on Es’SC

Separate source channel
coding error exponent

=

0 P
0 0.05 0.10
Erasure rate &

Error exponents
without feedback

0.15

o
)
=}

Fig. 6.

10 (0)

Error exponnets
with feedback
[$]

o

0.05 0.10

Erasure rate &

0.15 0.20

(a)Upper/lower bounds afis s. as functions of erasure rate. Upper(dotted)/lower(dashed) bounds on block coding error exponent

Ep,sc (b) Joint source-channel coding error exponent with feedtiagk.

t; to time¢y. Thert®

Pr(5; # 5 ((t + A)N)

Nlmax n—1

<D0 P> UE) >m)

m=0 =0

Pr((n+ A)N — ng(tN — nN,tN + AN) < m)]
Nlmaz

n=0 m=0

K227(n+A)N(E§EC(1*

A)N-—m
Crra)—ea)

VI. CONCLUSIONS ANDFUTURE WORK

We studied sequential joint source-channel coding
and defined the error exponents with delay. By ap-
plying a variation of the feed-forward channel coding
analysis in [3], we derived an upper bound on error ex-
ponents with delay for lossless source-channel coding.
A lower bound on the error exponent based on separate
sequential source and channel coding is given. There
is, in general, a gap between the lower and upper
bounds. It is an open problem on how to implement
joint source channel coding with delay constraint. For
joint source channel coding with feedback, we only

t
<) ZK327N(mi“R{”e(R)+("+A)E§EC(%)}763)show the achievability result for erasure channels.

n=0
YA

S(c) Z K327AN(minRAe[o,1]{
n=0
oo

+ Z K32_"N(minR{€(R)+E§EC(R)}_E3)

n=vyA
KQ—AN(E*—E)

Xe(R)+Ef p o (AR)
I T e—

}—es)

<(a)

where,K/s ande.s are properly chosen real numbers.
(a) is true because the source and memoryless channel

are independent and Lemma 8 and 9. (I, we
write R = -% and take theR? to minimize the error
exponents. Defing = minn (e(B)+ EL o ()] The first
term of (c) comes from defining\ = =+, the
second term is by noticing th&t ™ (-) is monotonically
decreasing(d) is by definitions ofy and E*. [ |

V. EXAMPLE: ERROR EXPONENTS FORBECS

For a Bernoulli (.25) source followed by a binary

erasure channeb) joint source-channel coding sys-

tem, the entropy rate of the sourcedigs) = 0.81. We

plot both the upper bound and the lower bound on the
joint source channel coding error exponent with dela§/u]

E s and the bounds on block error expone#ig;.
in Figure 6(a). The feedback error exponént,., is
plotted in Figure 6(b).

16,02 is the longest code lengtty,qe < |S|logy (N + 1) +
N|S]|.

General results for general DMCs are unknown. More-
over, no result on lossy source-channel coding with
delay-constrained problem is known.
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